1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/CodeGen/LexicalScopes.h" 31 #include "llvm/CodeGen/LiveInterval.h" 32 #include "llvm/CodeGen/LiveIntervals.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineDominators.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/SlotIndexes.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetOpcodes.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/VirtRegMap.h" 46 #include "llvm/Config/llvm-config.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 74 75 char LiveDebugVariables::ID = 0; 76 77 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 78 "Debug Variable Analysis", false, false) 79 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 80 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 81 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 82 "Debug Variable Analysis", false, false) 83 84 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.addRequired<MachineDominatorTree>(); 86 AU.addRequiredTransitive<LiveIntervals>(); 87 AU.setPreservesAll(); 88 MachineFunctionPass::getAnalysisUsage(AU); 89 } 90 91 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 92 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 93 } 94 95 enum : unsigned { UndefLocNo = ~0U }; 96 97 /// Describes a location by number along with some flags about the original 98 /// usage of the location. 99 class DbgValueLocation { 100 public: 101 DbgValueLocation(unsigned LocNo, bool WasIndirect) 102 : LocNo(LocNo), WasIndirect(WasIndirect) { 103 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 104 assert(locNo() == LocNo && "location truncation"); 105 } 106 107 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 108 109 unsigned locNo() const { 110 // Fix up the undef location number, which gets truncated. 111 return LocNo == INT_MAX ? UndefLocNo : LocNo; 112 } 113 bool wasIndirect() const { return WasIndirect; } 114 bool isUndef() const { return locNo() == UndefLocNo; } 115 116 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 117 return DbgValueLocation(NewLocNo, WasIndirect); 118 } 119 120 friend inline bool operator==(const DbgValueLocation &LHS, 121 const DbgValueLocation &RHS) { 122 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect; 123 } 124 125 friend inline bool operator!=(const DbgValueLocation &LHS, 126 const DbgValueLocation &RHS) { 127 return !(LHS == RHS); 128 } 129 130 private: 131 unsigned LocNo : 31; 132 unsigned WasIndirect : 1; 133 }; 134 135 /// Map of where a user value is live, and its location. 136 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 137 138 /// Map of stack slot offsets for spilled locations. 139 /// Non-spilled locations are not added to the map. 140 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 141 142 namespace { 143 144 class LDVImpl; 145 146 /// A user value is a part of a debug info user variable. 147 /// 148 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 149 /// holds part of a user variable. The part is identified by a byte offset. 150 /// 151 /// UserValues are grouped into equivalence classes for easier searching. Two 152 /// user values are related if they refer to the same variable, or if they are 153 /// held by the same virtual register. The equivalence class is the transitive 154 /// closure of that relation. 155 class UserValue { 156 const DILocalVariable *Variable; ///< The debug info variable we are part of. 157 const DIExpression *Expression; ///< Any complex address expression. 158 DebugLoc dl; ///< The debug location for the variable. This is 159 ///< used by dwarf writer to find lexical scope. 160 UserValue *leader; ///< Equivalence class leader. 161 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 162 163 /// Numbered locations referenced by locmap. 164 SmallVector<MachineOperand, 4> locations; 165 166 /// Map of slot indices where this value is live. 167 LocMap locInts; 168 169 /// Set of interval start indexes that have been trimmed to the 170 /// lexical scope. 171 SmallSet<SlotIndex, 2> trimmedDefs; 172 173 /// Insert a DBG_VALUE into MBB at Idx for LocNo. 174 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 175 SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled, 176 unsigned SpillOffset, LiveIntervals &LIS, 177 const TargetInstrInfo &TII, 178 const TargetRegisterInfo &TRI); 179 180 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 181 /// is live. Returns true if any changes were made. 182 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 183 LiveIntervals &LIS); 184 185 public: 186 /// Create a new UserValue. 187 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 188 LocMap::Allocator &alloc) 189 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 190 locInts(alloc) {} 191 192 /// Get the leader of this value's equivalence class. 193 UserValue *getLeader() { 194 UserValue *l = leader; 195 while (l != l->leader) 196 l = l->leader; 197 return leader = l; 198 } 199 200 /// Return the next UserValue in the equivalence class. 201 UserValue *getNext() const { return next; } 202 203 /// Does this UserValue match the parameters? 204 bool match(const DILocalVariable *Var, const DIExpression *Expr, 205 const DILocation *IA) const { 206 // FIXME: The fragment should be part of the equivalence class, but not 207 // other things in the expression like stack values. 208 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 209 } 210 211 /// Merge equivalence classes. 212 static UserValue *merge(UserValue *L1, UserValue *L2) { 213 L2 = L2->getLeader(); 214 if (!L1) 215 return L2; 216 L1 = L1->getLeader(); 217 if (L1 == L2) 218 return L1; 219 // Splice L2 before L1's members. 220 UserValue *End = L2; 221 while (End->next) { 222 End->leader = L1; 223 End = End->next; 224 } 225 End->leader = L1; 226 End->next = L1->next; 227 L1->next = L2; 228 return L1; 229 } 230 231 /// Return the location number that matches Loc. 232 /// 233 /// For undef values we always return location number UndefLocNo without 234 /// inserting anything in locations. Since locations is a vector and the 235 /// location number is the position in the vector and UndefLocNo is ~0, 236 /// we would need a very big vector to put the value at the right position. 237 unsigned getLocationNo(const MachineOperand &LocMO) { 238 if (LocMO.isReg()) { 239 if (LocMO.getReg() == 0) 240 return UndefLocNo; 241 // For register locations we dont care about use/def and other flags. 242 for (unsigned i = 0, e = locations.size(); i != e; ++i) 243 if (locations[i].isReg() && 244 locations[i].getReg() == LocMO.getReg() && 245 locations[i].getSubReg() == LocMO.getSubReg()) 246 return i; 247 } else 248 for (unsigned i = 0, e = locations.size(); i != e; ++i) 249 if (LocMO.isIdenticalTo(locations[i])) 250 return i; 251 locations.push_back(LocMO); 252 // We are storing a MachineOperand outside a MachineInstr. 253 locations.back().clearParent(); 254 // Don't store def operands. 255 if (locations.back().isReg()) { 256 if (locations.back().isDef()) 257 locations.back().setIsDead(false); 258 locations.back().setIsUse(); 259 } 260 return locations.size() - 1; 261 } 262 263 /// Ensure that all virtual register locations are mapped. 264 void mapVirtRegs(LDVImpl *LDV); 265 266 /// Add a definition point to this value. 267 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 268 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 269 // Add a singular (Idx,Idx) -> Loc mapping. 270 LocMap::iterator I = locInts.find(Idx); 271 if (!I.valid() || I.start() != Idx) 272 I.insert(Idx, Idx.getNextSlot(), Loc); 273 else 274 // A later DBG_VALUE at the same SlotIndex overrides the old location. 275 I.setValue(Loc); 276 } 277 278 /// Extend the current definition as far as possible down. 279 /// 280 /// Stop when meeting an existing def or when leaving the live 281 /// range of VNI. End points where VNI is no longer live are added to Kills. 282 /// 283 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 284 /// data-flow analysis to propagate them beyond basic block boundaries. 285 /// 286 /// \param Idx Starting point for the definition. 287 /// \param Loc Location number to propagate. 288 /// \param LR Restrict liveness to where LR has the value VNI. May be null. 289 /// \param VNI When LR is not null, this is the value to restrict to. 290 /// \param [out] Kills Append end points of VNI's live range to Kills. 291 /// \param LIS Live intervals analysis. 292 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 293 LiveRange *LR, const VNInfo *VNI, 294 SmallVectorImpl<SlotIndex> *Kills, 295 LiveIntervals &LIS); 296 297 /// The value in LI/LocNo may be copies to other registers. Determine if 298 /// any of the copies are available at the kill points, and add defs if 299 /// possible. 300 /// 301 /// \param LI Scan for copies of the value in LI->reg. 302 /// \param LocNo Location number of LI->reg. 303 /// \param WasIndirect Indicates if the original use of LI->reg was indirect 304 /// \param Kills Points where the range of LocNo could be extended. 305 /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here. 306 void addDefsFromCopies( 307 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 308 const SmallVectorImpl<SlotIndex> &Kills, 309 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 310 MachineRegisterInfo &MRI, LiveIntervals &LIS); 311 312 /// Compute the live intervals of all locations after collecting all their 313 /// def points. 314 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 315 LiveIntervals &LIS, LexicalScopes &LS); 316 317 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 318 /// live. Returns true if any changes were made. 319 bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 320 LiveIntervals &LIS); 321 322 /// Rewrite virtual register locations according to the provided virtual 323 /// register map. Record the stack slot offsets for the locations that 324 /// were spilled. 325 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 326 const TargetInstrInfo &TII, 327 const TargetRegisterInfo &TRI, 328 SpillOffsetMap &SpillOffsets); 329 330 /// Recreate DBG_VALUE instruction from data structures. 331 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 332 const TargetInstrInfo &TII, 333 const TargetRegisterInfo &TRI, 334 const SpillOffsetMap &SpillOffsets); 335 336 /// Return DebugLoc of this UserValue. 337 DebugLoc getDebugLoc() { return dl;} 338 339 void print(raw_ostream &, const TargetRegisterInfo *); 340 }; 341 342 /// A user label is a part of a debug info user label. 343 class UserLabel { 344 const DILabel *Label; ///< The debug info label we are part of. 345 DebugLoc dl; ///< The debug location for the label. This is 346 ///< used by dwarf writer to find lexical scope. 347 SlotIndex loc; ///< Slot used by the debug label. 348 349 /// Insert a DBG_LABEL into MBB at Idx. 350 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 351 LiveIntervals &LIS, const TargetInstrInfo &TII); 352 353 public: 354 /// Create a new UserLabel. 355 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 356 : Label(label), dl(std::move(L)), loc(Idx) {} 357 358 /// Does this UserLabel match the parameters? 359 bool match(const DILabel *L, const DILocation *IA, 360 const SlotIndex Index) const { 361 return Label == L && dl->getInlinedAt() == IA && loc == Index; 362 } 363 364 /// Recreate DBG_LABEL instruction from data structures. 365 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII); 366 367 /// Return DebugLoc of this UserLabel. 368 DebugLoc getDebugLoc() { return dl; } 369 370 void print(raw_ostream &, const TargetRegisterInfo *); 371 }; 372 373 /// Implementation of the LiveDebugVariables pass. 374 class LDVImpl { 375 LiveDebugVariables &pass; 376 LocMap::Allocator allocator; 377 MachineFunction *MF = nullptr; 378 LiveIntervals *LIS; 379 const TargetRegisterInfo *TRI; 380 381 /// Whether emitDebugValues is called. 382 bool EmitDone = false; 383 384 /// Whether the machine function is modified during the pass. 385 bool ModifiedMF = false; 386 387 /// All allocated UserValue instances. 388 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 389 390 /// All allocated UserLabel instances. 391 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 392 393 /// Map virtual register to eq class leader. 394 using VRMap = DenseMap<unsigned, UserValue *>; 395 VRMap virtRegToEqClass; 396 397 /// Map user variable to eq class leader. 398 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 399 UVMap userVarMap; 400 401 /// Find or create a UserValue. 402 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 403 const DebugLoc &DL); 404 405 /// Find the EC leader for VirtReg or null. 406 UserValue *lookupVirtReg(unsigned VirtReg); 407 408 /// Add DBG_VALUE instruction to our maps. 409 /// 410 /// \param MI DBG_VALUE instruction 411 /// \param Idx Last valid SLotIndex before instruction. 412 /// 413 /// \returns True if the DBG_VALUE instruction should be deleted. 414 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 415 416 /// Add DBG_LABEL instruction to UserLabel. 417 /// 418 /// \param MI DBG_LABEL instruction 419 /// \param Idx Last valid SlotIndex before instruction. 420 /// 421 /// \returns True if the DBG_LABEL instruction should be deleted. 422 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 423 424 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 425 /// for each instruction. 426 /// 427 /// \param mf MachineFunction to be scanned. 428 /// 429 /// \returns True if any debug values were found. 430 bool collectDebugValues(MachineFunction &mf); 431 432 /// Compute the live intervals of all user values after collecting all 433 /// their def points. 434 void computeIntervals(); 435 436 public: 437 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 438 439 bool runOnMachineFunction(MachineFunction &mf); 440 441 /// Release all memory. 442 void clear() { 443 MF = nullptr; 444 userValues.clear(); 445 userLabels.clear(); 446 virtRegToEqClass.clear(); 447 userVarMap.clear(); 448 // Make sure we call emitDebugValues if the machine function was modified. 449 assert((!ModifiedMF || EmitDone) && 450 "Dbg values are not emitted in LDV"); 451 EmitDone = false; 452 ModifiedMF = false; 453 } 454 455 /// Map virtual register to an equivalence class. 456 void mapVirtReg(unsigned VirtReg, UserValue *EC); 457 458 /// Replace all references to OldReg with NewRegs. 459 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 460 461 /// Recreate DBG_VALUE instruction from data structures. 462 void emitDebugValues(VirtRegMap *VRM); 463 464 void print(raw_ostream&); 465 }; 466 467 } // end anonymous namespace 468 469 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 470 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 471 const LLVMContext &Ctx) { 472 if (!DL) 473 return; 474 475 auto *Scope = cast<DIScope>(DL.getScope()); 476 // Omit the directory, because it's likely to be long and uninteresting. 477 CommentOS << Scope->getFilename(); 478 CommentOS << ':' << DL.getLine(); 479 if (DL.getCol() != 0) 480 CommentOS << ':' << DL.getCol(); 481 482 DebugLoc InlinedAtDL = DL.getInlinedAt(); 483 if (!InlinedAtDL) 484 return; 485 486 CommentOS << " @[ "; 487 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 488 CommentOS << " ]"; 489 } 490 491 static void printExtendedName(raw_ostream &OS, const DINode *Node, 492 const DILocation *DL) { 493 const LLVMContext &Ctx = Node->getContext(); 494 StringRef Res; 495 unsigned Line; 496 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 497 Res = V->getName(); 498 Line = V->getLine(); 499 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 500 Res = L->getName(); 501 Line = L->getLine(); 502 } 503 504 if (!Res.empty()) 505 OS << Res << "," << Line; 506 if (auto *InlinedAt = DL->getInlinedAt()) { 507 if (DebugLoc InlinedAtDL = InlinedAt) { 508 OS << " @["; 509 printDebugLoc(InlinedAtDL, OS, Ctx); 510 OS << "]"; 511 } 512 } 513 } 514 515 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 516 OS << "!\""; 517 printExtendedName(OS, Variable, dl); 518 519 OS << "\"\t"; 520 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 521 OS << " [" << I.start() << ';' << I.stop() << "):"; 522 if (I.value().isUndef()) 523 OS << "undef"; 524 else { 525 OS << I.value().locNo(); 526 if (I.value().wasIndirect()) 527 OS << " ind"; 528 } 529 } 530 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 531 OS << " Loc" << i << '='; 532 locations[i].print(OS, TRI); 533 } 534 OS << '\n'; 535 } 536 537 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 538 OS << "!\""; 539 printExtendedName(OS, Label, dl); 540 541 OS << "\"\t"; 542 OS << loc; 543 OS << '\n'; 544 } 545 546 void LDVImpl::print(raw_ostream &OS) { 547 OS << "********** DEBUG VARIABLES **********\n"; 548 for (auto &userValue : userValues) 549 userValue->print(OS, TRI); 550 OS << "********** DEBUG LABELS **********\n"; 551 for (auto &userLabel : userLabels) 552 userLabel->print(OS, TRI); 553 } 554 #endif 555 556 void UserValue::mapVirtRegs(LDVImpl *LDV) { 557 for (unsigned i = 0, e = locations.size(); i != e; ++i) 558 if (locations[i].isReg() && 559 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 560 LDV->mapVirtReg(locations[i].getReg(), this); 561 } 562 563 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 564 const DIExpression *Expr, const DebugLoc &DL) { 565 UserValue *&Leader = userVarMap[Var]; 566 if (Leader) { 567 UserValue *UV = Leader->getLeader(); 568 Leader = UV; 569 for (; UV; UV = UV->getNext()) 570 if (UV->match(Var, Expr, DL->getInlinedAt())) 571 return UV; 572 } 573 574 userValues.push_back( 575 llvm::make_unique<UserValue>(Var, Expr, DL, allocator)); 576 UserValue *UV = userValues.back().get(); 577 Leader = UserValue::merge(Leader, UV); 578 return UV; 579 } 580 581 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 582 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 583 UserValue *&Leader = virtRegToEqClass[VirtReg]; 584 Leader = UserValue::merge(Leader, EC); 585 } 586 587 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 588 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 589 return UV->getLeader(); 590 return nullptr; 591 } 592 593 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 594 // DBG_VALUE loc, offset, variable 595 if (MI.getNumOperands() != 4 || 596 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 597 !MI.getOperand(2).isMetadata()) { 598 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 599 return false; 600 } 601 602 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 603 // register that hasn't been defined yet. If we do not remove those here, then 604 // the re-insertion of the DBG_VALUE instruction after register allocation 605 // will be incorrect. 606 // TODO: If earlier passes are corrected to generate sane debug information 607 // (and if the machine verifier is improved to catch this), then these checks 608 // could be removed or replaced by asserts. 609 bool Discard = false; 610 if (MI.getOperand(0).isReg() && 611 TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) { 612 const unsigned Reg = MI.getOperand(0).getReg(); 613 if (!LIS->hasInterval(Reg)) { 614 // The DBG_VALUE is described by a virtual register that does not have a 615 // live interval. Discard the DBG_VALUE. 616 Discard = true; 617 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 618 << " " << MI); 619 } else { 620 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 621 // is defined dead at Idx (where Idx is the slot index for the instruction 622 // preceeding the DBG_VALUE). 623 const LiveInterval &LI = LIS->getInterval(Reg); 624 LiveQueryResult LRQ = LI.Query(Idx); 625 if (!LRQ.valueOutOrDead()) { 626 // We have found a DBG_VALUE with the value in a virtual register that 627 // is not live. Discard the DBG_VALUE. 628 Discard = true; 629 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 630 << " " << MI); 631 } 632 } 633 } 634 635 // Get or create the UserValue for (variable,offset) here. 636 bool IsIndirect = MI.getOperand(1).isImm(); 637 if (IsIndirect) 638 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 639 const DILocalVariable *Var = MI.getDebugVariable(); 640 const DIExpression *Expr = MI.getDebugExpression(); 641 UserValue *UV = 642 getUserValue(Var, Expr, MI.getDebugLoc()); 643 if (!Discard) 644 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 645 else { 646 MachineOperand MO = MachineOperand::CreateReg(0U, false); 647 MO.setIsDebug(); 648 UV->addDef(Idx, MO, false); 649 } 650 return true; 651 } 652 653 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 654 // DBG_LABEL label 655 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 656 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 657 return false; 658 } 659 660 // Get or create the UserLabel for label here. 661 const DILabel *Label = MI.getDebugLabel(); 662 const DebugLoc &DL = MI.getDebugLoc(); 663 bool Found = false; 664 for (auto const &L : userLabels) { 665 if (L->match(Label, DL->getInlinedAt(), Idx)) { 666 Found = true; 667 break; 668 } 669 } 670 if (!Found) 671 userLabels.push_back(llvm::make_unique<UserLabel>(Label, DL, Idx)); 672 673 return true; 674 } 675 676 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 677 bool Changed = false; 678 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 679 ++MFI) { 680 MachineBasicBlock *MBB = &*MFI; 681 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 682 MBBI != MBBE;) { 683 // Use the first debug instruction in the sequence to get a SlotIndex 684 // for following consecutive debug instructions. 685 if (!MBBI->isDebugInstr()) { 686 ++MBBI; 687 continue; 688 } 689 // Debug instructions has no slot index. Use the previous 690 // non-debug instruction's SlotIndex as its SlotIndex. 691 SlotIndex Idx = 692 MBBI == MBB->begin() 693 ? LIS->getMBBStartIdx(MBB) 694 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 695 // Handle consecutive debug instructions with the same slot index. 696 do { 697 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 698 // kinds of debug instructions. 699 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 700 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 701 MBBI = MBB->erase(MBBI); 702 Changed = true; 703 } else 704 ++MBBI; 705 } while (MBBI != MBBE && MBBI->isDebugInstr()); 706 } 707 } 708 return Changed; 709 } 710 711 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 712 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 713 LiveIntervals &LIS) { 714 SlotIndex Start = Idx; 715 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 716 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 717 LocMap::iterator I = locInts.find(Start); 718 719 // Limit to VNI's live range. 720 bool ToEnd = true; 721 if (LR && VNI) { 722 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 723 if (!Segment || Segment->valno != VNI) { 724 if (Kills) 725 Kills->push_back(Start); 726 return; 727 } 728 if (Segment->end < Stop) { 729 Stop = Segment->end; 730 ToEnd = false; 731 } 732 } 733 734 // There could already be a short def at Start. 735 if (I.valid() && I.start() <= Start) { 736 // Stop when meeting a different location or an already extended interval. 737 Start = Start.getNextSlot(); 738 if (I.value() != Loc || I.stop() != Start) 739 return; 740 // This is a one-slot placeholder. Just skip it. 741 ++I; 742 } 743 744 // Limited by the next def. 745 if (I.valid() && I.start() < Stop) { 746 Stop = I.start(); 747 ToEnd = false; 748 } 749 // Limited by VNI's live range. 750 else if (!ToEnd && Kills) 751 Kills->push_back(Stop); 752 753 if (Start < Stop) 754 I.insert(Start, Stop, Loc); 755 } 756 757 void UserValue::addDefsFromCopies( 758 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 759 const SmallVectorImpl<SlotIndex> &Kills, 760 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 761 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 762 if (Kills.empty()) 763 return; 764 // Don't track copies from physregs, there are too many uses. 765 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 766 return; 767 768 // Collect all the (vreg, valno) pairs that are copies of LI. 769 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 770 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 771 MachineInstr *MI = MO.getParent(); 772 // Copies of the full value. 773 if (MO.getSubReg() || !MI->isCopy()) 774 continue; 775 unsigned DstReg = MI->getOperand(0).getReg(); 776 777 // Don't follow copies to physregs. These are usually setting up call 778 // arguments, and the argument registers are always call clobbered. We are 779 // better off in the source register which could be a callee-saved register, 780 // or it could be spilled. 781 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 782 continue; 783 784 // Is LocNo extended to reach this copy? If not, another def may be blocking 785 // it, or we are looking at a wrong value of LI. 786 SlotIndex Idx = LIS.getInstructionIndex(*MI); 787 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 788 if (!I.valid() || I.value().locNo() != LocNo) 789 continue; 790 791 if (!LIS.hasInterval(DstReg)) 792 continue; 793 LiveInterval *DstLI = &LIS.getInterval(DstReg); 794 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 795 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 796 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 797 } 798 799 if (CopyValues.empty()) 800 return; 801 802 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 803 << '\n'); 804 805 // Try to add defs of the copied values for each kill point. 806 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 807 SlotIndex Idx = Kills[i]; 808 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 809 LiveInterval *DstLI = CopyValues[j].first; 810 const VNInfo *DstVNI = CopyValues[j].second; 811 if (DstLI->getVNInfoAt(Idx) != DstVNI) 812 continue; 813 // Check that there isn't already a def at Idx 814 LocMap::iterator I = locInts.find(Idx); 815 if (I.valid() && I.start() <= Idx) 816 continue; 817 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 818 << DstVNI->id << " in " << *DstLI << '\n'); 819 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 820 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 821 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 822 DbgValueLocation NewLoc(LocNo, WasIndirect); 823 I.insert(Idx, Idx.getNextSlot(), NewLoc); 824 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 825 break; 826 } 827 } 828 } 829 830 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 831 const TargetRegisterInfo &TRI, 832 LiveIntervals &LIS, LexicalScopes &LS) { 833 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 834 835 // Collect all defs to be extended (Skipping undefs). 836 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 837 if (!I.value().isUndef()) 838 Defs.push_back(std::make_pair(I.start(), I.value())); 839 840 // Extend all defs, and possibly add new ones along the way. 841 for (unsigned i = 0; i != Defs.size(); ++i) { 842 SlotIndex Idx = Defs[i].first; 843 DbgValueLocation Loc = Defs[i].second; 844 const MachineOperand &LocMO = locations[Loc.locNo()]; 845 846 if (!LocMO.isReg()) { 847 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 848 continue; 849 } 850 851 // Register locations are constrained to where the register value is live. 852 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) { 853 LiveInterval *LI = nullptr; 854 const VNInfo *VNI = nullptr; 855 if (LIS.hasInterval(LocMO.getReg())) { 856 LI = &LIS.getInterval(LocMO.getReg()); 857 VNI = LI->getVNInfoAt(Idx); 858 } 859 SmallVector<SlotIndex, 16> Kills; 860 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 861 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 862 // if the original location for example is %vreg0:sub_hi, and we find a 863 // full register copy in addDefsFromCopies (at the moment it only handles 864 // full register copies), then we must add the sub1 sub-register index to 865 // the new location. However, that is only possible if the new virtual 866 // register is of the same regclass (or if there is an equivalent 867 // sub-register in that regclass). For now, simply skip handling copies if 868 // a sub-register is involved. 869 if (LI && !LocMO.getSubReg()) 870 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 871 LIS); 872 continue; 873 } 874 875 // For physregs, we only mark the start slot idx. DwarfDebug will see it 876 // as if the DBG_VALUE is valid up until the end of the basic block, or 877 // the next def of the physical register. So we do not need to extend the 878 // range. It might actually happen that the DBG_VALUE is the last use of 879 // the physical register (e.g. if this is an unused input argument to a 880 // function). 881 } 882 883 // The computed intervals may extend beyond the range of the debug 884 // location's lexical scope. In this case, splitting of an interval 885 // can result in an interval outside of the scope being created, 886 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 887 // this, trim the intervals to the lexical scope. 888 889 LexicalScope *Scope = LS.findLexicalScope(dl); 890 if (!Scope) 891 return; 892 893 SlotIndex PrevEnd; 894 LocMap::iterator I = locInts.begin(); 895 896 // Iterate over the lexical scope ranges. Each time round the loop 897 // we check the intervals for overlap with the end of the previous 898 // range and the start of the next. The first range is handled as 899 // a special case where there is no PrevEnd. 900 for (const InsnRange &Range : Scope->getRanges()) { 901 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 902 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 903 904 // At the start of each iteration I has been advanced so that 905 // I.stop() >= PrevEnd. Check for overlap. 906 if (PrevEnd && I.start() < PrevEnd) { 907 SlotIndex IStop = I.stop(); 908 DbgValueLocation Loc = I.value(); 909 910 // Stop overlaps previous end - trim the end of the interval to 911 // the scope range. 912 I.setStopUnchecked(PrevEnd); 913 ++I; 914 915 // If the interval also overlaps the start of the "next" (i.e. 916 // current) range create a new interval for the remainder (which 917 // may be further trimmed). 918 if (RStart < IStop) 919 I.insert(RStart, IStop, Loc); 920 } 921 922 // Advance I so that I.stop() >= RStart, and check for overlap. 923 I.advanceTo(RStart); 924 if (!I.valid()) 925 return; 926 927 if (I.start() < RStart) { 928 // Interval start overlaps range - trim to the scope range. 929 I.setStartUnchecked(RStart); 930 // Remember that this interval was trimmed. 931 trimmedDefs.insert(RStart); 932 } 933 934 // The end of a lexical scope range is the last instruction in the 935 // range. To convert to an interval we need the index of the 936 // instruction after it. 937 REnd = REnd.getNextIndex(); 938 939 // Advance I to first interval outside current range. 940 I.advanceTo(REnd); 941 if (!I.valid()) 942 return; 943 944 PrevEnd = REnd; 945 } 946 947 // Check for overlap with end of final range. 948 if (PrevEnd && I.start() < PrevEnd) 949 I.setStopUnchecked(PrevEnd); 950 } 951 952 void LDVImpl::computeIntervals() { 953 LexicalScopes LS; 954 LS.initialize(*MF); 955 956 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 957 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 958 userValues[i]->mapVirtRegs(this); 959 } 960 } 961 962 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 963 clear(); 964 MF = &mf; 965 LIS = &pass.getAnalysis<LiveIntervals>(); 966 TRI = mf.getSubtarget().getRegisterInfo(); 967 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 968 << mf.getName() << " **********\n"); 969 970 bool Changed = collectDebugValues(mf); 971 computeIntervals(); 972 LLVM_DEBUG(print(dbgs())); 973 ModifiedMF = Changed; 974 return Changed; 975 } 976 977 static void removeDebugValues(MachineFunction &mf) { 978 for (MachineBasicBlock &MBB : mf) { 979 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 980 if (!MBBI->isDebugValue()) { 981 ++MBBI; 982 continue; 983 } 984 MBBI = MBB.erase(MBBI); 985 } 986 } 987 } 988 989 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 990 if (!EnableLDV) 991 return false; 992 if (!mf.getFunction().getSubprogram()) { 993 removeDebugValues(mf); 994 return false; 995 } 996 if (!pImpl) 997 pImpl = new LDVImpl(this); 998 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 999 } 1000 1001 void LiveDebugVariables::releaseMemory() { 1002 if (pImpl) 1003 static_cast<LDVImpl*>(pImpl)->clear(); 1004 } 1005 1006 LiveDebugVariables::~LiveDebugVariables() { 1007 if (pImpl) 1008 delete static_cast<LDVImpl*>(pImpl); 1009 } 1010 1011 //===----------------------------------------------------------------------===// 1012 // Live Range Splitting 1013 //===----------------------------------------------------------------------===// 1014 1015 bool 1016 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 1017 LiveIntervals& LIS) { 1018 LLVM_DEBUG({ 1019 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1020 print(dbgs(), nullptr); 1021 }); 1022 bool DidChange = false; 1023 LocMap::iterator LocMapI; 1024 LocMapI.setMap(locInts); 1025 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1026 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1027 if (LI->empty()) 1028 continue; 1029 1030 // Don't allocate the new LocNo until it is needed. 1031 unsigned NewLocNo = UndefLocNo; 1032 1033 // Iterate over the overlaps between locInts and LI. 1034 LocMapI.find(LI->beginIndex()); 1035 if (!LocMapI.valid()) 1036 continue; 1037 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1038 LiveInterval::iterator LIE = LI->end(); 1039 while (LocMapI.valid() && LII != LIE) { 1040 // At this point, we know that LocMapI.stop() > LII->start. 1041 LII = LI->advanceTo(LII, LocMapI.start()); 1042 if (LII == LIE) 1043 break; 1044 1045 // Now LII->end > LocMapI.start(). Do we have an overlap? 1046 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 1047 // Overlapping correct location. Allocate NewLocNo now. 1048 if (NewLocNo == UndefLocNo) { 1049 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 1050 MO.setSubReg(locations[OldLocNo].getSubReg()); 1051 NewLocNo = getLocationNo(MO); 1052 DidChange = true; 1053 } 1054 1055 SlotIndex LStart = LocMapI.start(); 1056 SlotIndex LStop = LocMapI.stop(); 1057 DbgValueLocation OldLoc = LocMapI.value(); 1058 1059 // Trim LocMapI down to the LII overlap. 1060 if (LStart < LII->start) 1061 LocMapI.setStartUnchecked(LII->start); 1062 if (LStop > LII->end) 1063 LocMapI.setStopUnchecked(LII->end); 1064 1065 // Change the value in the overlap. This may trigger coalescing. 1066 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 1067 1068 // Re-insert any removed OldLocNo ranges. 1069 if (LStart < LocMapI.start()) { 1070 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 1071 ++LocMapI; 1072 assert(LocMapI.valid() && "Unexpected coalescing"); 1073 } 1074 if (LStop > LocMapI.stop()) { 1075 ++LocMapI; 1076 LocMapI.insert(LII->end, LStop, OldLoc); 1077 --LocMapI; 1078 } 1079 } 1080 1081 // Advance to the next overlap. 1082 if (LII->end < LocMapI.stop()) { 1083 if (++LII == LIE) 1084 break; 1085 LocMapI.advanceTo(LII->start); 1086 } else { 1087 ++LocMapI; 1088 if (!LocMapI.valid()) 1089 break; 1090 LII = LI->advanceTo(LII, LocMapI.start()); 1091 } 1092 } 1093 } 1094 1095 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 1096 locations.erase(locations.begin() + OldLocNo); 1097 LocMapI.goToBegin(); 1098 while (LocMapI.valid()) { 1099 DbgValueLocation v = LocMapI.value(); 1100 if (v.locNo() == OldLocNo) { 1101 LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 1102 << LocMapI.stop() << ")\n"); 1103 LocMapI.erase(); 1104 } else { 1105 // Undef values always have location number UndefLocNo, so don't change 1106 // locNo in that case. See getLocationNo(). 1107 if (!v.isUndef() && v.locNo() > OldLocNo) 1108 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 1109 ++LocMapI; 1110 } 1111 } 1112 1113 LLVM_DEBUG({ 1114 dbgs() << "Split result: \t"; 1115 print(dbgs(), nullptr); 1116 }); 1117 return DidChange; 1118 } 1119 1120 bool 1121 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 1122 LiveIntervals &LIS) { 1123 bool DidChange = false; 1124 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1125 // safely erase unused locations. 1126 for (unsigned i = locations.size(); i ; --i) { 1127 unsigned LocNo = i-1; 1128 const MachineOperand *Loc = &locations[LocNo]; 1129 if (!Loc->isReg() || Loc->getReg() != OldReg) 1130 continue; 1131 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1132 } 1133 return DidChange; 1134 } 1135 1136 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 1137 bool DidChange = false; 1138 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1139 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1140 1141 if (!DidChange) 1142 return; 1143 1144 // Map all of the new virtual registers. 1145 UserValue *UV = lookupVirtReg(OldReg); 1146 for (unsigned i = 0; i != NewRegs.size(); ++i) 1147 mapVirtReg(NewRegs[i], UV); 1148 } 1149 1150 void LiveDebugVariables:: 1151 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 1152 if (pImpl) 1153 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1154 } 1155 1156 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1157 const TargetInstrInfo &TII, 1158 const TargetRegisterInfo &TRI, 1159 SpillOffsetMap &SpillOffsets) { 1160 // Build a set of new locations with new numbers so we can coalesce our 1161 // IntervalMap if two vreg intervals collapse to the same physical location. 1162 // Use MapVector instead of SetVector because MapVector::insert returns the 1163 // position of the previously or newly inserted element. The boolean value 1164 // tracks if the location was produced by a spill. 1165 // FIXME: This will be problematic if we ever support direct and indirect 1166 // frame index locations, i.e. expressing both variables in memory and 1167 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1168 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1169 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1170 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1171 bool Spilled = false; 1172 unsigned SpillOffset = 0; 1173 MachineOperand Loc = locations[I]; 1174 // Only virtual registers are rewritten. 1175 if (Loc.isReg() && Loc.getReg() && 1176 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 1177 unsigned VirtReg = Loc.getReg(); 1178 if (VRM.isAssignedReg(VirtReg) && 1179 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1180 // This can create a %noreg operand in rare cases when the sub-register 1181 // index is no longer available. That means the user value is in a 1182 // non-existent sub-register, and %noreg is exactly what we want. 1183 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1184 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1185 // Retrieve the stack slot offset. 1186 unsigned SpillSize; 1187 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1188 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1189 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1190 SpillOffset, MF); 1191 1192 // FIXME: Invalidate the location if the offset couldn't be calculated. 1193 (void)Success; 1194 1195 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1196 Spilled = true; 1197 } else { 1198 Loc.setReg(0); 1199 Loc.setSubReg(0); 1200 } 1201 } 1202 1203 // Insert this location if it doesn't already exist and record a mapping 1204 // from the old number to the new number. 1205 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1206 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1207 LocNoMap[I] = NewLocNo; 1208 } 1209 1210 // Rewrite the locations and record the stack slot offsets for spills. 1211 locations.clear(); 1212 SpillOffsets.clear(); 1213 for (auto &Pair : NewLocations) { 1214 bool Spilled; 1215 unsigned SpillOffset; 1216 std::tie(Spilled, SpillOffset) = Pair.second; 1217 locations.push_back(Pair.first); 1218 if (Spilled) { 1219 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1220 SpillOffsets[NewLocNo] = SpillOffset; 1221 } 1222 } 1223 1224 // Update the interval map, but only coalesce left, since intervals to the 1225 // right use the old location numbers. This should merge two contiguous 1226 // DBG_VALUE intervals with different vregs that were allocated to the same 1227 // physical register. 1228 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1229 DbgValueLocation Loc = I.value(); 1230 // Undef values don't exist in locations (and thus not in LocNoMap either) 1231 // so skip over them. See getLocationNo(). 1232 if (Loc.isUndef()) 1233 continue; 1234 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1235 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1236 I.setStart(I.start()); 1237 } 1238 } 1239 1240 /// Find an iterator for inserting a DBG_VALUE instruction. 1241 static MachineBasicBlock::iterator 1242 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1243 LiveIntervals &LIS) { 1244 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1245 Idx = Idx.getBaseIndex(); 1246 1247 // Try to find an insert location by going backwards from Idx. 1248 MachineInstr *MI; 1249 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1250 // We've reached the beginning of MBB. 1251 if (Idx == Start) { 1252 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1253 return I; 1254 } 1255 Idx = Idx.getPrevIndex(); 1256 } 1257 1258 // Don't insert anything after the first terminator, though. 1259 return MI->isTerminator() ? MBB->getFirstTerminator() : 1260 std::next(MachineBasicBlock::iterator(MI)); 1261 } 1262 1263 /// Find an iterator for inserting the next DBG_VALUE instruction 1264 /// (or end if no more insert locations found). 1265 static MachineBasicBlock::iterator 1266 findNextInsertLocation(MachineBasicBlock *MBB, 1267 MachineBasicBlock::iterator I, 1268 SlotIndex StopIdx, MachineOperand &LocMO, 1269 LiveIntervals &LIS, 1270 const TargetRegisterInfo &TRI) { 1271 if (!LocMO.isReg()) 1272 return MBB->instr_end(); 1273 unsigned Reg = LocMO.getReg(); 1274 1275 // Find the next instruction in the MBB that define the register Reg. 1276 while (I != MBB->end() && !I->isTerminator()) { 1277 if (!LIS.isNotInMIMap(*I) && 1278 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1279 break; 1280 if (I->definesRegister(Reg, &TRI)) 1281 // The insert location is directly after the instruction/bundle. 1282 return std::next(I); 1283 ++I; 1284 } 1285 return MBB->end(); 1286 } 1287 1288 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1289 SlotIndex StopIdx, DbgValueLocation Loc, 1290 bool Spilled, unsigned SpillOffset, 1291 LiveIntervals &LIS, const TargetInstrInfo &TII, 1292 const TargetRegisterInfo &TRI) { 1293 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1294 // Only search within the current MBB. 1295 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1296 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1297 // Undef values don't exist in locations so create new "noreg" register MOs 1298 // for them. See getLocationNo(). 1299 MachineOperand MO = !Loc.isUndef() ? 1300 locations[Loc.locNo()] : 1301 MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false, 1302 /* isKill */ false, /* isDead */ false, 1303 /* isUndef */ false, /* isEarlyClobber */ false, 1304 /* SubReg */ 0, /* isDebug */ true); 1305 1306 ++NumInsertedDebugValues; 1307 1308 assert(cast<DILocalVariable>(Variable) 1309 ->isValidLocationForIntrinsic(getDebugLoc()) && 1310 "Expected inlined-at fields to agree"); 1311 1312 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1313 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1314 // that the original virtual register was a pointer. Also, add the stack slot 1315 // offset for the spilled register to the expression. 1316 const DIExpression *Expr = Expression; 1317 bool IsIndirect = Loc.wasIndirect(); 1318 if (Spilled) { 1319 auto Deref = IsIndirect ? DIExpression::WithDeref : DIExpression::NoDeref; 1320 Expr = 1321 DIExpression::prepend(Expr, DIExpression::NoDeref, SpillOffset, Deref); 1322 IsIndirect = true; 1323 } 1324 1325 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1326 1327 do { 1328 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1329 IsIndirect, MO, Variable, Expr); 1330 1331 // Continue and insert DBG_VALUES after every redefinition of register 1332 // associated with the debug value within the range 1333 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1334 } while (I != MBB->end()); 1335 } 1336 1337 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1338 LiveIntervals &LIS, 1339 const TargetInstrInfo &TII) { 1340 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1341 ++NumInsertedDebugLabels; 1342 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1343 .addMetadata(Label); 1344 } 1345 1346 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1347 const TargetInstrInfo &TII, 1348 const TargetRegisterInfo &TRI, 1349 const SpillOffsetMap &SpillOffsets) { 1350 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1351 1352 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1353 SlotIndex Start = I.start(); 1354 SlotIndex Stop = I.stop(); 1355 DbgValueLocation Loc = I.value(); 1356 auto SpillIt = 1357 !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end(); 1358 bool Spilled = SpillIt != SpillOffsets.end(); 1359 unsigned SpillOffset = Spilled ? SpillIt->second : 0; 1360 1361 // If the interval start was trimmed to the lexical scope insert the 1362 // DBG_VALUE at the previous index (otherwise it appears after the 1363 // first instruction in the range). 1364 if (trimmedDefs.count(Start)) 1365 Start = Start.getPrevIndex(); 1366 1367 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1368 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1369 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1370 1371 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1372 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1373 TRI); 1374 // This interval may span multiple basic blocks. 1375 // Insert a DBG_VALUE into each one. 1376 while (Stop > MBBEnd) { 1377 // Move to the next block. 1378 Start = MBBEnd; 1379 if (++MBB == MFEnd) 1380 break; 1381 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1382 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1383 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1384 TRI); 1385 } 1386 LLVM_DEBUG(dbgs() << '\n'); 1387 if (MBB == MFEnd) 1388 break; 1389 1390 ++I; 1391 } 1392 } 1393 1394 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) { 1395 LLVM_DEBUG(dbgs() << "\t" << loc); 1396 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1397 1398 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1399 insertDebugLabel(&*MBB, loc, LIS, TII); 1400 1401 LLVM_DEBUG(dbgs() << '\n'); 1402 } 1403 1404 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1405 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1406 if (!MF) 1407 return; 1408 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1409 SpillOffsetMap SpillOffsets; 1410 for (auto &userValue : userValues) { 1411 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1412 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1413 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets); 1414 } 1415 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1416 for (auto &userLabel : userLabels) { 1417 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1418 userLabel->emitDebugLabel(*LIS, *TII); 1419 } 1420 EmitDone = true; 1421 } 1422 1423 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1424 if (pImpl) 1425 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1426 } 1427 1428 bool LiveDebugVariables::doInitialization(Module &M) { 1429 return Pass::doInitialization(M); 1430 } 1431 1432 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1433 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1434 if (pImpl) 1435 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1436 } 1437 #endif 1438