xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision 10f740df4d28beeef139c818b7502467ab4eba4b)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveDebugVariables analysis.
11 //
12 // Remove all DBG_VALUE instructions referencing virtual registers and replace
13 // them with a data structure tracking where live user variables are kept - in a
14 // virtual register or in a stack slot.
15 //
16 // Allow the data structure to be updated during register allocation when values
17 // are moved between registers and stack slots. Finally emit new DBG_VALUE
18 // instructions after register allocation is complete.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "LiveDebugVariables.h"
23 #include "llvm/ADT/IntervalMap.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/CodeGen/LexicalScopes.h"
27 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/VirtRegMap.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetInstrInfo.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Target/TargetSubtargetInfo.h"
45 #include <memory>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "livedebugvars"
51 
52 static cl::opt<bool>
53 EnableLDV("live-debug-variables", cl::init(true),
54           cl::desc("Enable the live debug variables pass"), cl::Hidden);
55 
56 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
57 char LiveDebugVariables::ID = 0;
58 
59 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
60                 "Debug Variable Analysis", false, false)
61 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
62 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
63 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
64                 "Debug Variable Analysis", false, false)
65 
66 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
67   AU.addRequired<MachineDominatorTree>();
68   AU.addRequiredTransitive<LiveIntervals>();
69   AU.setPreservesAll();
70   MachineFunctionPass::getAnalysisUsage(AU);
71 }
72 
73 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(nullptr) {
74   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
75 }
76 
77 /// LocMap - Map of where a user value is live, and its location.
78 typedef IntervalMap<SlotIndex, unsigned, 4> LocMap;
79 
80 /// UserValue - A user value is a part of a debug info user variable.
81 ///
82 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
83 /// holds part of a user variable. The part is identified by a byte offset.
84 ///
85 /// UserValues are grouped into equivalence classes for easier searching. Two
86 /// user values are related if they refer to the same variable, or if they are
87 /// held by the same virtual register. The equivalence class is the transitive
88 /// closure of that relation.
89 namespace {
90 class LDVImpl;
91 class UserValue {
92   const MDNode *Variable;   ///< The debug info variable we are part of.
93   const MDNode *Expression; ///< Any complex address expression.
94   bool IsIndirect;        ///< true if this is a register-indirect+offset value.
95   DebugLoc dl;            ///< The debug location for the variable. This is
96                           ///< used by dwarf writer to find lexical scope.
97   UserValue *leader;      ///< Equivalence class leader.
98   UserValue *next;        ///< Next value in equivalence class, or null.
99 
100   /// Numbered locations referenced by locmap.
101   SmallVector<MachineOperand, 4> locations;
102 
103   /// Map of slot indices where this value is live.
104   LocMap locInts;
105 
106   /// Set of interval start indexes that have been trimmed to the
107   /// lexical scope.
108   SmallSet<SlotIndex, 2> trimmedDefs;
109 
110   /// coalesceLocation - After LocNo was changed, check if it has become
111   /// identical to another location, and coalesce them. This may cause LocNo or
112   /// a later location to be erased, but no earlier location will be erased.
113   void coalesceLocation(unsigned LocNo);
114 
115   /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
116   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, unsigned LocNo,
117                         LiveIntervals &LIS, const TargetInstrInfo &TII);
118 
119   /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
120   /// is live. Returns true if any changes were made.
121   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
122                      LiveIntervals &LIS);
123 
124 public:
125   /// UserValue - Create a new UserValue.
126   UserValue(const MDNode *var, const MDNode *expr, bool i, DebugLoc L,
127             LocMap::Allocator &alloc)
128       : Variable(var), Expression(expr), IsIndirect(i), dl(std::move(L)),
129         leader(this), next(nullptr), locInts(alloc) {}
130 
131   /// getLeader - Get the leader of this value's equivalence class.
132   UserValue *getLeader() {
133     UserValue *l = leader;
134     while (l != l->leader)
135       l = l->leader;
136     return leader = l;
137   }
138 
139   /// getNext - Return the next UserValue in the equivalence class.
140   UserValue *getNext() const { return next; }
141 
142   /// match - Does this UserValue match the parameters?
143   bool match(const MDNode *Var, const MDNode *Expr, const DILocation *IA,
144              bool indirect) const {
145     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA &&
146            indirect == IsIndirect;
147   }
148 
149   /// merge - Merge equivalence classes.
150   static UserValue *merge(UserValue *L1, UserValue *L2) {
151     L2 = L2->getLeader();
152     if (!L1)
153       return L2;
154     L1 = L1->getLeader();
155     if (L1 == L2)
156       return L1;
157     // Splice L2 before L1's members.
158     UserValue *End = L2;
159     while (End->next) {
160       End->leader = L1;
161       End = End->next;
162     }
163     End->leader = L1;
164     End->next = L1->next;
165     L1->next = L2;
166     return L1;
167   }
168 
169   /// getLocationNo - Return the location number that matches Loc.
170   unsigned getLocationNo(const MachineOperand &LocMO) {
171     if (LocMO.isReg()) {
172       if (LocMO.getReg() == 0)
173         return ~0u;
174       // For register locations we dont care about use/def and other flags.
175       for (unsigned i = 0, e = locations.size(); i != e; ++i)
176         if (locations[i].isReg() &&
177             locations[i].getReg() == LocMO.getReg() &&
178             locations[i].getSubReg() == LocMO.getSubReg())
179           return i;
180     } else
181       for (unsigned i = 0, e = locations.size(); i != e; ++i)
182         if (LocMO.isIdenticalTo(locations[i]))
183           return i;
184     locations.push_back(LocMO);
185     // We are storing a MachineOperand outside a MachineInstr.
186     locations.back().clearParent();
187     // Don't store def operands.
188     if (locations.back().isReg())
189       locations.back().setIsUse();
190     return locations.size() - 1;
191   }
192 
193   /// mapVirtRegs - Ensure that all virtual register locations are mapped.
194   void mapVirtRegs(LDVImpl *LDV);
195 
196   /// addDef - Add a definition point to this value.
197   void addDef(SlotIndex Idx, const MachineOperand &LocMO) {
198     // Add a singular (Idx,Idx) -> Loc mapping.
199     LocMap::iterator I = locInts.find(Idx);
200     if (!I.valid() || I.start() != Idx)
201       I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO));
202     else
203       // A later DBG_VALUE at the same SlotIndex overrides the old location.
204       I.setValue(getLocationNo(LocMO));
205   }
206 
207   /// extendDef - Extend the current definition as far as possible down.
208   /// Stop when meeting an existing def or when leaving the live
209   /// range of VNI.
210   /// End points where VNI is no longer live are added to Kills.
211   /// @param Idx   Starting point for the definition.
212   /// @param LocNo Location number to propagate.
213   /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
214   /// @param VNI   When LR is not null, this is the value to restrict to.
215   /// @param Kills Append end points of VNI's live range to Kills.
216   /// @param LIS   Live intervals analysis.
217   void extendDef(SlotIndex Idx, unsigned LocNo,
218                  LiveRange *LR, const VNInfo *VNI,
219                  SmallVectorImpl<SlotIndex> *Kills,
220                  LiveIntervals &LIS);
221 
222   /// addDefsFromCopies - The value in LI/LocNo may be copies to other
223   /// registers. Determine if any of the copies are available at the kill
224   /// points, and add defs if possible.
225   /// @param LI      Scan for copies of the value in LI->reg.
226   /// @param LocNo   Location number of LI->reg.
227   /// @param Kills   Points where the range of LocNo could be extended.
228   /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
229   void addDefsFromCopies(LiveInterval *LI, unsigned LocNo,
230                       const SmallVectorImpl<SlotIndex> &Kills,
231                       SmallVectorImpl<std::pair<SlotIndex, unsigned> > &NewDefs,
232                       MachineRegisterInfo &MRI,
233                       LiveIntervals &LIS);
234 
235   /// computeIntervals - Compute the live intervals of all locations after
236   /// collecting all their def points.
237   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
238                         LiveIntervals &LIS, LexicalScopes &LS);
239 
240   /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
241   /// live. Returns true if any changes were made.
242   bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
243                      LiveIntervals &LIS);
244 
245   /// rewriteLocations - Rewrite virtual register locations according to the
246   /// provided virtual register map.
247   void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI);
248 
249   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
250   void emitDebugValues(VirtRegMap *VRM,
251                        LiveIntervals &LIS, const TargetInstrInfo &TRI);
252 
253   /// getDebugLoc - Return DebugLoc of this UserValue.
254   DebugLoc getDebugLoc() { return dl;}
255   void print(raw_ostream &, const TargetRegisterInfo *);
256 };
257 } // namespace
258 
259 /// LDVImpl - Implementation of the LiveDebugVariables pass.
260 namespace {
261 class LDVImpl {
262   LiveDebugVariables &pass;
263   LocMap::Allocator allocator;
264   MachineFunction *MF;
265   LiveIntervals *LIS;
266   const TargetRegisterInfo *TRI;
267 
268   /// Whether emitDebugValues is called.
269   bool EmitDone;
270   /// Whether the machine function is modified during the pass.
271   bool ModifiedMF;
272 
273   /// userValues - All allocated UserValue instances.
274   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
275 
276   /// Map virtual register to eq class leader.
277   typedef DenseMap<unsigned, UserValue*> VRMap;
278   VRMap virtRegToEqClass;
279 
280   /// Map user variable to eq class leader.
281   typedef DenseMap<const MDNode *, UserValue*> UVMap;
282   UVMap userVarMap;
283 
284   /// getUserValue - Find or create a UserValue.
285   UserValue *getUserValue(const MDNode *Var, const MDNode *Expr,
286                           bool IsIndirect, const DebugLoc &DL);
287 
288   /// lookupVirtReg - Find the EC leader for VirtReg or null.
289   UserValue *lookupVirtReg(unsigned VirtReg);
290 
291   /// handleDebugValue - Add DBG_VALUE instruction to our maps.
292   /// @param MI  DBG_VALUE instruction
293   /// @param Idx Last valid SLotIndex before instruction.
294   /// @return    True if the DBG_VALUE instruction should be deleted.
295   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
296 
297   /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
298   /// a UserValue def for each instruction.
299   /// @param mf MachineFunction to be scanned.
300   /// @return True if any debug values were found.
301   bool collectDebugValues(MachineFunction &mf);
302 
303   /// computeIntervals - Compute the live intervals of all user values after
304   /// collecting all their def points.
305   void computeIntervals();
306 
307 public:
308   LDVImpl(LiveDebugVariables *ps)
309       : pass(*ps), MF(nullptr), EmitDone(false), ModifiedMF(false) {}
310   bool runOnMachineFunction(MachineFunction &mf);
311 
312   /// clear - Release all memory.
313   void clear() {
314     MF = nullptr;
315     userValues.clear();
316     virtRegToEqClass.clear();
317     userVarMap.clear();
318     // Make sure we call emitDebugValues if the machine function was modified.
319     assert((!ModifiedMF || EmitDone) &&
320            "Dbg values are not emitted in LDV");
321     EmitDone = false;
322     ModifiedMF = false;
323   }
324 
325   /// mapVirtReg - Map virtual register to an equivalence class.
326   void mapVirtReg(unsigned VirtReg, UserValue *EC);
327 
328   /// splitRegister -  Replace all references to OldReg with NewRegs.
329   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
330 
331   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
332   void emitDebugValues(VirtRegMap *VRM);
333 
334   void print(raw_ostream&);
335 };
336 } // namespace
337 
338 #ifndef NDEBUG
339 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
340                           const LLVMContext &Ctx) {
341   if (!DL)
342     return;
343 
344   auto *Scope = cast<DIScope>(DL.getScope());
345   // Omit the directory, because it's likely to be long and uninteresting.
346   CommentOS << Scope->getFilename();
347   CommentOS << ':' << DL.getLine();
348   if (DL.getCol() != 0)
349     CommentOS << ':' << DL.getCol();
350 
351   DebugLoc InlinedAtDL = DL.getInlinedAt();
352   if (!InlinedAtDL)
353     return;
354 
355   CommentOS << " @[ ";
356   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
357   CommentOS << " ]";
358 }
359 
360 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
361                               const DILocation *DL) {
362   const LLVMContext &Ctx = V->getContext();
363   StringRef Res = V->getName();
364   if (!Res.empty())
365     OS << Res << "," << V->getLine();
366   if (auto *InlinedAt = DL->getInlinedAt()) {
367     if (DebugLoc InlinedAtDL = InlinedAt) {
368       OS << " @[";
369       printDebugLoc(InlinedAtDL, OS, Ctx);
370       OS << "]";
371     }
372   }
373 }
374 
375 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
376   auto *DV = cast<DILocalVariable>(Variable);
377   OS << "!\"";
378   printExtendedName(OS, DV, dl);
379 
380   OS << "\"\t";
381   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
382     OS << " [" << I.start() << ';' << I.stop() << "):";
383     if (I.value() == ~0u)
384       OS << "undef";
385     else
386       OS << I.value();
387   }
388   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
389     OS << " Loc" << i << '=';
390     locations[i].print(OS, TRI);
391   }
392   OS << '\n';
393 }
394 
395 void LDVImpl::print(raw_ostream &OS) {
396   OS << "********** DEBUG VARIABLES **********\n";
397   for (unsigned i = 0, e = userValues.size(); i != e; ++i)
398     userValues[i]->print(OS, TRI);
399 }
400 #endif
401 
402 void UserValue::coalesceLocation(unsigned LocNo) {
403   unsigned KeepLoc = 0;
404   for (unsigned e = locations.size(); KeepLoc != e; ++KeepLoc) {
405     if (KeepLoc == LocNo)
406       continue;
407     if (locations[KeepLoc].isIdenticalTo(locations[LocNo]))
408       break;
409   }
410   // No matches.
411   if (KeepLoc == locations.size())
412     return;
413 
414   // Keep the smaller location, erase the larger one.
415   unsigned EraseLoc = LocNo;
416   if (KeepLoc > EraseLoc)
417     std::swap(KeepLoc, EraseLoc);
418   locations.erase(locations.begin() + EraseLoc);
419 
420   // Rewrite values.
421   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
422     unsigned v = I.value();
423     if (v == EraseLoc)
424       I.setValue(KeepLoc);      // Coalesce when possible.
425     else if (v > EraseLoc)
426       I.setValueUnchecked(v-1); // Avoid coalescing with untransformed values.
427   }
428 }
429 
430 void UserValue::mapVirtRegs(LDVImpl *LDV) {
431   for (unsigned i = 0, e = locations.size(); i != e; ++i)
432     if (locations[i].isReg() &&
433         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
434       LDV->mapVirtReg(locations[i].getReg(), this);
435 }
436 
437 UserValue *LDVImpl::getUserValue(const MDNode *Var, const MDNode *Expr,
438                                  bool IsIndirect, const DebugLoc &DL) {
439   UserValue *&Leader = userVarMap[Var];
440   if (Leader) {
441     UserValue *UV = Leader->getLeader();
442     Leader = UV;
443     for (; UV; UV = UV->getNext())
444       if (UV->match(Var, Expr, DL->getInlinedAt(), IsIndirect))
445         return UV;
446   }
447 
448   userValues.push_back(
449       make_unique<UserValue>(Var, Expr, IsIndirect, DL, allocator));
450   UserValue *UV = userValues.back().get();
451   Leader = UserValue::merge(Leader, UV);
452   return UV;
453 }
454 
455 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
456   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
457   UserValue *&Leader = virtRegToEqClass[VirtReg];
458   Leader = UserValue::merge(Leader, EC);
459 }
460 
461 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
462   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
463     return UV->getLeader();
464   return nullptr;
465 }
466 
467 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
468   // DBG_VALUE loc, offset, variable
469   if (MI.getNumOperands() != 4 ||
470       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
471       !MI.getOperand(2).isMetadata()) {
472     DEBUG(dbgs() << "Can't handle " << MI);
473     return false;
474   }
475 
476   // Get or create the UserValue for (variable,offset).
477   bool IsIndirect = MI.isIndirectDebugValue();
478   if (IsIndirect)
479     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
480   const MDNode *Var = MI.getDebugVariable();
481   const MDNode *Expr = MI.getDebugExpression();
482   //here.
483   UserValue *UV = getUserValue(Var, Expr, IsIndirect, MI.getDebugLoc());
484   UV->addDef(Idx, MI.getOperand(0));
485   return true;
486 }
487 
488 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
489   bool Changed = false;
490   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
491        ++MFI) {
492     MachineBasicBlock *MBB = &*MFI;
493     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
494          MBBI != MBBE;) {
495       if (!MBBI->isDebugValue()) {
496         ++MBBI;
497         continue;
498       }
499       // DBG_VALUE has no slot index, use the previous instruction instead.
500       SlotIndex Idx =
501           MBBI == MBB->begin()
502               ? LIS->getMBBStartIdx(MBB)
503               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
504       // Handle consecutive DBG_VALUE instructions with the same slot index.
505       do {
506         if (handleDebugValue(*MBBI, Idx)) {
507           MBBI = MBB->erase(MBBI);
508           Changed = true;
509         } else
510           ++MBBI;
511       } while (MBBI != MBBE && MBBI->isDebugValue());
512     }
513   }
514   return Changed;
515 }
516 
517 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
518 /// data-flow analysis to propagate them beyond basic block boundaries.
519 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, LiveRange *LR,
520                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
521                           LiveIntervals &LIS) {
522   SlotIndex Start = Idx;
523   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
524   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
525   LocMap::iterator I = locInts.find(Start);
526 
527   // Limit to VNI's live range.
528   bool ToEnd = true;
529   if (LR && VNI) {
530     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
531     if (!Segment || Segment->valno != VNI) {
532       if (Kills)
533         Kills->push_back(Start);
534       return;
535     }
536     if (Segment->end < Stop) {
537       Stop = Segment->end;
538       ToEnd = false;
539     }
540   }
541 
542   // There could already be a short def at Start.
543   if (I.valid() && I.start() <= Start) {
544     // Stop when meeting a different location or an already extended interval.
545     Start = Start.getNextSlot();
546     if (I.value() != LocNo || I.stop() != Start)
547       return;
548     // This is a one-slot placeholder. Just skip it.
549     ++I;
550   }
551 
552   // Limited by the next def.
553   if (I.valid() && I.start() < Stop) {
554     Stop = I.start();
555     ToEnd = false;
556   }
557   // Limited by VNI's live range.
558   else if (!ToEnd && Kills)
559     Kills->push_back(Stop);
560 
561   if (Start < Stop)
562     I.insert(Start, Stop, LocNo);
563 }
564 
565 void
566 UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo,
567                       const SmallVectorImpl<SlotIndex> &Kills,
568                       SmallVectorImpl<std::pair<SlotIndex, unsigned> > &NewDefs,
569                       MachineRegisterInfo &MRI, LiveIntervals &LIS) {
570   if (Kills.empty())
571     return;
572   // Don't track copies from physregs, there are too many uses.
573   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
574     return;
575 
576   // Collect all the (vreg, valno) pairs that are copies of LI.
577   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
578   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
579     MachineInstr *MI = MO.getParent();
580     // Copies of the full value.
581     if (MO.getSubReg() || !MI->isCopy())
582       continue;
583     unsigned DstReg = MI->getOperand(0).getReg();
584 
585     // Don't follow copies to physregs. These are usually setting up call
586     // arguments, and the argument registers are always call clobbered. We are
587     // better off in the source register which could be a callee-saved register,
588     // or it could be spilled.
589     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
590       continue;
591 
592     // Is LocNo extended to reach this copy? If not, another def may be blocking
593     // it, or we are looking at a wrong value of LI.
594     SlotIndex Idx = LIS.getInstructionIndex(*MI);
595     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
596     if (!I.valid() || I.value() != LocNo)
597       continue;
598 
599     if (!LIS.hasInterval(DstReg))
600       continue;
601     LiveInterval *DstLI = &LIS.getInterval(DstReg);
602     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
603     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
604     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
605   }
606 
607   if (CopyValues.empty())
608     return;
609 
610   DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n');
611 
612   // Try to add defs of the copied values for each kill point.
613   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
614     SlotIndex Idx = Kills[i];
615     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
616       LiveInterval *DstLI = CopyValues[j].first;
617       const VNInfo *DstVNI = CopyValues[j].second;
618       if (DstLI->getVNInfoAt(Idx) != DstVNI)
619         continue;
620       // Check that there isn't already a def at Idx
621       LocMap::iterator I = locInts.find(Idx);
622       if (I.valid() && I.start() <= Idx)
623         continue;
624       DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
625                    << DstVNI->id << " in " << *DstLI << '\n');
626       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
627       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
628       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
629       I.insert(Idx, Idx.getNextSlot(), LocNo);
630       NewDefs.push_back(std::make_pair(Idx, LocNo));
631       break;
632     }
633   }
634 }
635 
636 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
637                                  const TargetRegisterInfo &TRI,
638                                  LiveIntervals &LIS, LexicalScopes &LS) {
639   SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs;
640 
641   // Collect all defs to be extended (Skipping undefs).
642   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
643     if (I.value() != ~0u)
644       Defs.push_back(std::make_pair(I.start(), I.value()));
645 
646   // Extend all defs, and possibly add new ones along the way.
647   for (unsigned i = 0; i != Defs.size(); ++i) {
648     SlotIndex Idx = Defs[i].first;
649     unsigned LocNo = Defs[i].second;
650     const MachineOperand &Loc = locations[LocNo];
651 
652     if (!Loc.isReg()) {
653       extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS);
654       continue;
655     }
656 
657     // Register locations are constrained to where the register value is live.
658     if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
659       LiveInterval *LI = nullptr;
660       const VNInfo *VNI = nullptr;
661       if (LIS.hasInterval(Loc.getReg())) {
662         LI = &LIS.getInterval(Loc.getReg());
663         VNI = LI->getVNInfoAt(Idx);
664       }
665       SmallVector<SlotIndex, 16> Kills;
666       extendDef(Idx, LocNo, LI, VNI, &Kills, LIS);
667       if (LI)
668         addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS);
669       continue;
670     }
671 
672     // For physregs, use the live range of the first regunit as a guide.
673     unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI);
674     LiveRange *LR = &LIS.getRegUnit(Unit);
675     const VNInfo *VNI = LR->getVNInfoAt(Idx);
676     // Don't track copies from physregs, it is too expensive.
677     extendDef(Idx, LocNo, LR, VNI, nullptr, LIS);
678   }
679 
680   // Erase all the undefs.
681   for (LocMap::iterator I = locInts.begin(); I.valid();)
682     if (I.value() == ~0u)
683       I.erase();
684     else
685       ++I;
686 
687   // The computed intervals may extend beyond the range of the debug
688   // location's lexical scope. In this case, splitting of an interval
689   // can result in an interval outside of the scope being created,
690   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
691   // this, trim the intervals to the lexical scope.
692 
693   LexicalScope *Scope = LS.findLexicalScope(dl);
694   if (!Scope)
695     return;
696 
697   SlotIndex PrevEnd;
698   LocMap::iterator I = locInts.begin();
699 
700   // Iterate over the lexical scope ranges. Each time round the loop
701   // we check the intervals for overlap with the end of the previous
702   // range and the start of the next. The first range is handled as
703   // a special case where there is no PrevEnd.
704   for (const InsnRange &Range : Scope->getRanges()) {
705     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
706     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
707 
708     // At the start of each iteration I has been advanced so that
709     // I.stop() >= PrevEnd. Check for overlap.
710     if (PrevEnd && I.start() < PrevEnd) {
711       SlotIndex IStop = I.stop();
712       unsigned LocNo = I.value();
713 
714       // Stop overlaps previous end - trim the end of the interval to
715       // the scope range.
716       I.setStopUnchecked(PrevEnd);
717       ++I;
718 
719       // If the interval also overlaps the start of the "next" (i.e.
720       // current) range create a new interval for the remainder (which
721       // may be further trimmed).
722       if (RStart < IStop)
723         I.insert(RStart, IStop, LocNo);
724     }
725 
726     // Advance I so that I.stop() >= RStart, and check for overlap.
727     I.advanceTo(RStart);
728     if (!I.valid())
729       return;
730 
731     if (I.start() < RStart) {
732       // Interval start overlaps range - trim to the scope range.
733       I.setStartUnchecked(RStart);
734       // Remember that this interval was trimmed.
735       trimmedDefs.insert(RStart);
736     }
737 
738     // The end of a lexical scope range is the last instruction in the
739     // range. To convert to an interval we need the index of the
740     // instruction after it.
741     REnd = REnd.getNextIndex();
742 
743     // Advance I to first interval outside current range.
744     I.advanceTo(REnd);
745     if (!I.valid())
746       return;
747 
748     PrevEnd = REnd;
749   }
750 
751   // Check for overlap with end of final range.
752   if (PrevEnd && I.start() < PrevEnd)
753     I.setStopUnchecked(PrevEnd);
754 }
755 
756 void LDVImpl::computeIntervals() {
757   LexicalScopes LS;
758   LS.initialize(*MF);
759 
760   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
761     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
762     userValues[i]->mapVirtRegs(this);
763   }
764 }
765 
766 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
767   clear();
768   MF = &mf;
769   LIS = &pass.getAnalysis<LiveIntervals>();
770   TRI = mf.getSubtarget().getRegisterInfo();
771   DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
772                << mf.getName() << " **********\n");
773 
774   bool Changed = collectDebugValues(mf);
775   computeIntervals();
776   DEBUG(print(dbgs()));
777   ModifiedMF = Changed;
778   return Changed;
779 }
780 
781 static void removeDebugValues(MachineFunction &mf) {
782   for (MachineBasicBlock &MBB : mf) {
783     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
784       if (!MBBI->isDebugValue()) {
785         ++MBBI;
786         continue;
787       }
788       MBBI = MBB.erase(MBBI);
789     }
790   }
791 }
792 
793 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
794   if (!EnableLDV)
795     return false;
796   if (!mf.getFunction()->getSubprogram()) {
797     removeDebugValues(mf);
798     return false;
799   }
800   if (!pImpl)
801     pImpl = new LDVImpl(this);
802   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
803 }
804 
805 void LiveDebugVariables::releaseMemory() {
806   if (pImpl)
807     static_cast<LDVImpl*>(pImpl)->clear();
808 }
809 
810 LiveDebugVariables::~LiveDebugVariables() {
811   if (pImpl)
812     delete static_cast<LDVImpl*>(pImpl);
813 }
814 
815 //===----------------------------------------------------------------------===//
816 //                           Live Range Splitting
817 //===----------------------------------------------------------------------===//
818 
819 bool
820 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
821                          LiveIntervals& LIS) {
822   DEBUG({
823     dbgs() << "Splitting Loc" << OldLocNo << '\t';
824     print(dbgs(), nullptr);
825   });
826   bool DidChange = false;
827   LocMap::iterator LocMapI;
828   LocMapI.setMap(locInts);
829   for (unsigned i = 0; i != NewRegs.size(); ++i) {
830     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
831     if (LI->empty())
832       continue;
833 
834     // Don't allocate the new LocNo until it is needed.
835     unsigned NewLocNo = ~0u;
836 
837     // Iterate over the overlaps between locInts and LI.
838     LocMapI.find(LI->beginIndex());
839     if (!LocMapI.valid())
840       continue;
841     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
842     LiveInterval::iterator LIE = LI->end();
843     while (LocMapI.valid() && LII != LIE) {
844       // At this point, we know that LocMapI.stop() > LII->start.
845       LII = LI->advanceTo(LII, LocMapI.start());
846       if (LII == LIE)
847         break;
848 
849       // Now LII->end > LocMapI.start(). Do we have an overlap?
850       if (LocMapI.value() == OldLocNo && LII->start < LocMapI.stop()) {
851         // Overlapping correct location. Allocate NewLocNo now.
852         if (NewLocNo == ~0u) {
853           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
854           MO.setSubReg(locations[OldLocNo].getSubReg());
855           NewLocNo = getLocationNo(MO);
856           DidChange = true;
857         }
858 
859         SlotIndex LStart = LocMapI.start();
860         SlotIndex LStop  = LocMapI.stop();
861 
862         // Trim LocMapI down to the LII overlap.
863         if (LStart < LII->start)
864           LocMapI.setStartUnchecked(LII->start);
865         if (LStop > LII->end)
866           LocMapI.setStopUnchecked(LII->end);
867 
868         // Change the value in the overlap. This may trigger coalescing.
869         LocMapI.setValue(NewLocNo);
870 
871         // Re-insert any removed OldLocNo ranges.
872         if (LStart < LocMapI.start()) {
873           LocMapI.insert(LStart, LocMapI.start(), OldLocNo);
874           ++LocMapI;
875           assert(LocMapI.valid() && "Unexpected coalescing");
876         }
877         if (LStop > LocMapI.stop()) {
878           ++LocMapI;
879           LocMapI.insert(LII->end, LStop, OldLocNo);
880           --LocMapI;
881         }
882       }
883 
884       // Advance to the next overlap.
885       if (LII->end < LocMapI.stop()) {
886         if (++LII == LIE)
887           break;
888         LocMapI.advanceTo(LII->start);
889       } else {
890         ++LocMapI;
891         if (!LocMapI.valid())
892           break;
893         LII = LI->advanceTo(LII, LocMapI.start());
894       }
895     }
896   }
897 
898   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
899   locations.erase(locations.begin() + OldLocNo);
900   LocMapI.goToBegin();
901   while (LocMapI.valid()) {
902     unsigned v = LocMapI.value();
903     if (v == OldLocNo) {
904       DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
905                    << LocMapI.stop() << ")\n");
906       LocMapI.erase();
907     } else {
908       if (v > OldLocNo)
909         LocMapI.setValueUnchecked(v-1);
910       ++LocMapI;
911     }
912   }
913 
914   DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);});
915   return DidChange;
916 }
917 
918 bool
919 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
920                          LiveIntervals &LIS) {
921   bool DidChange = false;
922   // Split locations referring to OldReg. Iterate backwards so splitLocation can
923   // safely erase unused locations.
924   for (unsigned i = locations.size(); i ; --i) {
925     unsigned LocNo = i-1;
926     const MachineOperand *Loc = &locations[LocNo];
927     if (!Loc->isReg() || Loc->getReg() != OldReg)
928       continue;
929     DidChange |= splitLocation(LocNo, NewRegs, LIS);
930   }
931   return DidChange;
932 }
933 
934 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
935   bool DidChange = false;
936   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
937     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
938 
939   if (!DidChange)
940     return;
941 
942   // Map all of the new virtual registers.
943   UserValue *UV = lookupVirtReg(OldReg);
944   for (unsigned i = 0; i != NewRegs.size(); ++i)
945     mapVirtReg(NewRegs[i], UV);
946 }
947 
948 void LiveDebugVariables::
949 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
950   if (pImpl)
951     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
952 }
953 
954 void
955 UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI) {
956   // Iterate over locations in reverse makes it easier to handle coalescing.
957   for (unsigned i = locations.size(); i ; --i) {
958     unsigned LocNo = i-1;
959     MachineOperand &Loc = locations[LocNo];
960     // Only virtual registers are rewritten.
961     if (!Loc.isReg() || !Loc.getReg() ||
962         !TargetRegisterInfo::isVirtualRegister(Loc.getReg()))
963       continue;
964     unsigned VirtReg = Loc.getReg();
965     if (VRM.isAssignedReg(VirtReg) &&
966         TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
967       // This can create a %noreg operand in rare cases when the sub-register
968       // index is no longer available. That means the user value is in a
969       // non-existent sub-register, and %noreg is exactly what we want.
970       Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
971     } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
972       // FIXME: Translate SubIdx to a stackslot offset.
973       Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
974     } else {
975       Loc.setReg(0);
976       Loc.setSubReg(0);
977     }
978     coalesceLocation(LocNo);
979   }
980 }
981 
982 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE
983 /// instruction.
984 static MachineBasicBlock::iterator
985 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
986                    LiveIntervals &LIS) {
987   SlotIndex Start = LIS.getMBBStartIdx(MBB);
988   Idx = Idx.getBaseIndex();
989 
990   // Try to find an insert location by going backwards from Idx.
991   MachineInstr *MI;
992   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
993     // We've reached the beginning of MBB.
994     if (Idx == Start) {
995       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
996       return I;
997     }
998     Idx = Idx.getPrevIndex();
999   }
1000 
1001   // Don't insert anything after the first terminator, though.
1002   return MI->isTerminator() ? MBB->getFirstTerminator() :
1003                               std::next(MachineBasicBlock::iterator(MI));
1004 }
1005 
1006 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx,
1007                                  unsigned LocNo,
1008                                  LiveIntervals &LIS,
1009                                  const TargetInstrInfo &TII) {
1010   MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1011   MachineOperand &Loc = locations[LocNo];
1012   ++NumInsertedDebugValues;
1013 
1014   assert(cast<DILocalVariable>(Variable)
1015              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1016          "Expected inlined-at fields to agree");
1017   if (Loc.isReg())
1018     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1019             IsIndirect, Loc.getReg(), Variable, Expression);
1020   else
1021     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE))
1022         .add(Loc)
1023         .addImm(0U)
1024         .addMetadata(Variable)
1025         .addMetadata(Expression);
1026 }
1027 
1028 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1029                                 const TargetInstrInfo &TII) {
1030   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1031 
1032   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1033     SlotIndex Start = I.start();
1034     SlotIndex Stop = I.stop();
1035     unsigned LocNo = I.value();
1036 
1037     // If the interval start was trimmed to the lexical scope insert the
1038     // DBG_VALUE at the previous index (otherwise it appears after the
1039     // first instruction in the range).
1040     if (trimmedDefs.count(Start))
1041       Start = Start.getPrevIndex();
1042 
1043     DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo);
1044     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1045     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1046 
1047     DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
1048     insertDebugValue(&*MBB, Start, LocNo, LIS, TII);
1049     // This interval may span multiple basic blocks.
1050     // Insert a DBG_VALUE into each one.
1051     while(Stop > MBBEnd) {
1052       // Move to the next block.
1053       Start = MBBEnd;
1054       if (++MBB == MFEnd)
1055         break;
1056       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1057       DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
1058       insertDebugValue(&*MBB, Start, LocNo, LIS, TII);
1059     }
1060     DEBUG(dbgs() << '\n');
1061     if (MBB == MFEnd)
1062       break;
1063 
1064     ++I;
1065   }
1066 }
1067 
1068 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1069   DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1070   if (!MF)
1071     return;
1072   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1073   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1074     DEBUG(userValues[i]->print(dbgs(), TRI));
1075     userValues[i]->rewriteLocations(*VRM, *TRI);
1076     userValues[i]->emitDebugValues(VRM, *LIS, *TII);
1077   }
1078   EmitDone = true;
1079 }
1080 
1081 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1082   if (pImpl)
1083     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1084 }
1085 
1086 bool LiveDebugVariables::doInitialization(Module &M) {
1087   return Pass::doInitialization(M);
1088 }
1089 
1090 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1091 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1092   if (pImpl)
1093     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1094 }
1095 #endif
1096