1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/VirtRegMap.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetOpcodes.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 enum : unsigned { UndefLocNo = ~0U }; 95 96 /// Describes a location by number along with some flags about the original 97 /// usage of the location. 98 class DbgValueLocation { 99 public: 100 DbgValueLocation(unsigned LocNo, bool WasIndirect) 101 : LocNo(LocNo), WasIndirect(WasIndirect) { 102 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 103 assert(locNo() == LocNo && "location truncation"); 104 } 105 106 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 107 108 unsigned locNo() const { 109 // Fix up the undef location number, which gets truncated. 110 return LocNo == INT_MAX ? UndefLocNo : LocNo; 111 } 112 bool wasIndirect() const { return WasIndirect; } 113 bool isUndef() const { return locNo() == UndefLocNo; } 114 115 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 116 return DbgValueLocation(NewLocNo, WasIndirect); 117 } 118 119 bool operator==(const DbgValueLocation &O) const { 120 return LocNo == O.LocNo && WasIndirect == O.WasIndirect; 121 } 122 bool operator!=(const DbgValueLocation &O) const { return !(*this == O); } 123 124 private: 125 unsigned LocNo : 31; 126 unsigned WasIndirect : 1; 127 }; 128 129 /// LocMap - Map of where a user value is live, and its location. 130 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 131 132 namespace { 133 134 class LDVImpl; 135 136 /// UserValue - A user value is a part of a debug info user variable. 137 /// 138 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 139 /// holds part of a user variable. The part is identified by a byte offset. 140 /// 141 /// UserValues are grouped into equivalence classes for easier searching. Two 142 /// user values are related if they refer to the same variable, or if they are 143 /// held by the same virtual register. The equivalence class is the transitive 144 /// closure of that relation. 145 class UserValue { 146 const DILocalVariable *Variable; ///< The debug info variable we are part of. 147 const DIExpression *Expression; ///< Any complex address expression. 148 DebugLoc dl; ///< The debug location for the variable. This is 149 ///< used by dwarf writer to find lexical scope. 150 UserValue *leader; ///< Equivalence class leader. 151 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 152 153 /// Numbered locations referenced by locmap. 154 SmallVector<MachineOperand, 4> locations; 155 156 /// Map of slot indices where this value is live. 157 LocMap locInts; 158 159 /// Set of interval start indexes that have been trimmed to the 160 /// lexical scope. 161 SmallSet<SlotIndex, 2> trimmedDefs; 162 163 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 164 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 165 DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS, 166 const TargetInstrInfo &TII); 167 168 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 169 /// is live. Returns true if any changes were made. 170 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 171 LiveIntervals &LIS); 172 173 public: 174 /// UserValue - Create a new UserValue. 175 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 176 LocMap::Allocator &alloc) 177 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 178 locInts(alloc) {} 179 180 /// getLeader - Get the leader of this value's equivalence class. 181 UserValue *getLeader() { 182 UserValue *l = leader; 183 while (l != l->leader) 184 l = l->leader; 185 return leader = l; 186 } 187 188 /// getNext - Return the next UserValue in the equivalence class. 189 UserValue *getNext() const { return next; } 190 191 /// match - Does this UserValue match the parameters? 192 bool match(const DILocalVariable *Var, const DIExpression *Expr, 193 const DILocation *IA) const { 194 // FIXME: The fragment should be part of the equivalence class, but not 195 // other things in the expression like stack values. 196 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 197 } 198 199 /// merge - Merge equivalence classes. 200 static UserValue *merge(UserValue *L1, UserValue *L2) { 201 L2 = L2->getLeader(); 202 if (!L1) 203 return L2; 204 L1 = L1->getLeader(); 205 if (L1 == L2) 206 return L1; 207 // Splice L2 before L1's members. 208 UserValue *End = L2; 209 while (End->next) { 210 End->leader = L1; 211 End = End->next; 212 } 213 End->leader = L1; 214 End->next = L1->next; 215 L1->next = L2; 216 return L1; 217 } 218 219 /// getLocationNo - Return the location number that matches Loc. 220 unsigned getLocationNo(const MachineOperand &LocMO) { 221 if (LocMO.isReg()) { 222 if (LocMO.getReg() == 0) 223 return UndefLocNo; 224 // For register locations we dont care about use/def and other flags. 225 for (unsigned i = 0, e = locations.size(); i != e; ++i) 226 if (locations[i].isReg() && 227 locations[i].getReg() == LocMO.getReg() && 228 locations[i].getSubReg() == LocMO.getSubReg()) 229 return i; 230 } else 231 for (unsigned i = 0, e = locations.size(); i != e; ++i) 232 if (LocMO.isIdenticalTo(locations[i])) 233 return i; 234 locations.push_back(LocMO); 235 // We are storing a MachineOperand outside a MachineInstr. 236 locations.back().clearParent(); 237 // Don't store def operands. 238 if (locations.back().isReg()) 239 locations.back().setIsUse(); 240 return locations.size() - 1; 241 } 242 243 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 244 void mapVirtRegs(LDVImpl *LDV); 245 246 /// addDef - Add a definition point to this value. 247 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 248 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 249 // Add a singular (Idx,Idx) -> Loc mapping. 250 LocMap::iterator I = locInts.find(Idx); 251 if (!I.valid() || I.start() != Idx) 252 I.insert(Idx, Idx.getNextSlot(), Loc); 253 else 254 // A later DBG_VALUE at the same SlotIndex overrides the old location. 255 I.setValue(Loc); 256 } 257 258 /// extendDef - Extend the current definition as far as possible down. 259 /// Stop when meeting an existing def or when leaving the live 260 /// range of VNI. 261 /// End points where VNI is no longer live are added to Kills. 262 /// @param Idx Starting point for the definition. 263 /// @param Loc Location number to propagate. 264 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 265 /// @param VNI When LR is not null, this is the value to restrict to. 266 /// @param Kills Append end points of VNI's live range to Kills. 267 /// @param LIS Live intervals analysis. 268 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 269 LiveRange *LR, const VNInfo *VNI, 270 SmallVectorImpl<SlotIndex> *Kills, 271 LiveIntervals &LIS); 272 273 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 274 /// registers. Determine if any of the copies are available at the kill 275 /// points, and add defs if possible. 276 /// @param LI Scan for copies of the value in LI->reg. 277 /// @param LocNo Location number of LI->reg. 278 /// @param WasIndirect Indicates if the original use of LI->reg was indirect 279 /// @param Kills Points where the range of LocNo could be extended. 280 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 281 void addDefsFromCopies( 282 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 283 const SmallVectorImpl<SlotIndex> &Kills, 284 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 285 MachineRegisterInfo &MRI, LiveIntervals &LIS); 286 287 /// computeIntervals - Compute the live intervals of all locations after 288 /// collecting all their def points. 289 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 290 LiveIntervals &LIS, LexicalScopes &LS); 291 292 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 293 /// live. Returns true if any changes were made. 294 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 295 LiveIntervals &LIS); 296 297 /// rewriteLocations - Rewrite virtual register locations according to the 298 /// provided virtual register map. Record which locations were spilled. 299 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 300 BitVector &SpilledLocations); 301 302 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 303 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 304 const TargetInstrInfo &TRI, 305 const BitVector &SpilledLocations); 306 307 /// getDebugLoc - Return DebugLoc of this UserValue. 308 DebugLoc getDebugLoc() { return dl;} 309 310 void print(raw_ostream &, const TargetRegisterInfo *); 311 }; 312 313 /// LDVImpl - Implementation of the LiveDebugVariables pass. 314 class LDVImpl { 315 LiveDebugVariables &pass; 316 LocMap::Allocator allocator; 317 MachineFunction *MF = nullptr; 318 LiveIntervals *LIS; 319 const TargetRegisterInfo *TRI; 320 321 /// Whether emitDebugValues is called. 322 bool EmitDone = false; 323 324 /// Whether the machine function is modified during the pass. 325 bool ModifiedMF = false; 326 327 /// userValues - All allocated UserValue instances. 328 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 329 330 /// Map virtual register to eq class leader. 331 using VRMap = DenseMap<unsigned, UserValue *>; 332 VRMap virtRegToEqClass; 333 334 /// Map user variable to eq class leader. 335 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 336 UVMap userVarMap; 337 338 /// getUserValue - Find or create a UserValue. 339 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 340 const DebugLoc &DL); 341 342 /// lookupVirtReg - Find the EC leader for VirtReg or null. 343 UserValue *lookupVirtReg(unsigned VirtReg); 344 345 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 346 /// @param MI DBG_VALUE instruction 347 /// @param Idx Last valid SLotIndex before instruction. 348 /// @return True if the DBG_VALUE instruction should be deleted. 349 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 350 351 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 352 /// a UserValue def for each instruction. 353 /// @param mf MachineFunction to be scanned. 354 /// @return True if any debug values were found. 355 bool collectDebugValues(MachineFunction &mf); 356 357 /// computeIntervals - Compute the live intervals of all user values after 358 /// collecting all their def points. 359 void computeIntervals(); 360 361 public: 362 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 363 364 bool runOnMachineFunction(MachineFunction &mf); 365 366 /// clear - Release all memory. 367 void clear() { 368 MF = nullptr; 369 userValues.clear(); 370 virtRegToEqClass.clear(); 371 userVarMap.clear(); 372 // Make sure we call emitDebugValues if the machine function was modified. 373 assert((!ModifiedMF || EmitDone) && 374 "Dbg values are not emitted in LDV"); 375 EmitDone = false; 376 ModifiedMF = false; 377 } 378 379 /// mapVirtReg - Map virtual register to an equivalence class. 380 void mapVirtReg(unsigned VirtReg, UserValue *EC); 381 382 /// splitRegister - Replace all references to OldReg with NewRegs. 383 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 384 385 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 386 void emitDebugValues(VirtRegMap *VRM); 387 388 void print(raw_ostream&); 389 }; 390 391 } // end anonymous namespace 392 393 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 394 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 395 const LLVMContext &Ctx) { 396 if (!DL) 397 return; 398 399 auto *Scope = cast<DIScope>(DL.getScope()); 400 // Omit the directory, because it's likely to be long and uninteresting. 401 CommentOS << Scope->getFilename(); 402 CommentOS << ':' << DL.getLine(); 403 if (DL.getCol() != 0) 404 CommentOS << ':' << DL.getCol(); 405 406 DebugLoc InlinedAtDL = DL.getInlinedAt(); 407 if (!InlinedAtDL) 408 return; 409 410 CommentOS << " @[ "; 411 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 412 CommentOS << " ]"; 413 } 414 415 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 416 const DILocation *DL) { 417 const LLVMContext &Ctx = V->getContext(); 418 StringRef Res = V->getName(); 419 if (!Res.empty()) 420 OS << Res << "," << V->getLine(); 421 if (auto *InlinedAt = DL->getInlinedAt()) { 422 if (DebugLoc InlinedAtDL = InlinedAt) { 423 OS << " @["; 424 printDebugLoc(InlinedAtDL, OS, Ctx); 425 OS << "]"; 426 } 427 } 428 } 429 430 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 431 auto *DV = cast<DILocalVariable>(Variable); 432 OS << "!\""; 433 printExtendedName(OS, DV, dl); 434 435 OS << "\"\t"; 436 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 437 OS << " [" << I.start() << ';' << I.stop() << "):"; 438 if (I.value().isUndef()) 439 OS << "undef"; 440 else { 441 OS << I.value().locNo(); 442 if (I.value().wasIndirect()) 443 OS << " ind"; 444 } 445 } 446 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 447 OS << " Loc" << i << '='; 448 locations[i].print(OS, TRI); 449 } 450 OS << '\n'; 451 } 452 453 void LDVImpl::print(raw_ostream &OS) { 454 OS << "********** DEBUG VARIABLES **********\n"; 455 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 456 userValues[i]->print(OS, TRI); 457 } 458 #endif 459 460 void UserValue::mapVirtRegs(LDVImpl *LDV) { 461 for (unsigned i = 0, e = locations.size(); i != e; ++i) 462 if (locations[i].isReg() && 463 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 464 LDV->mapVirtReg(locations[i].getReg(), this); 465 } 466 467 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 468 const DIExpression *Expr, const DebugLoc &DL) { 469 UserValue *&Leader = userVarMap[Var]; 470 if (Leader) { 471 UserValue *UV = Leader->getLeader(); 472 Leader = UV; 473 for (; UV; UV = UV->getNext()) 474 if (UV->match(Var, Expr, DL->getInlinedAt())) 475 return UV; 476 } 477 478 userValues.push_back( 479 llvm::make_unique<UserValue>(Var, Expr, DL, allocator)); 480 UserValue *UV = userValues.back().get(); 481 Leader = UserValue::merge(Leader, UV); 482 return UV; 483 } 484 485 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 486 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 487 UserValue *&Leader = virtRegToEqClass[VirtReg]; 488 Leader = UserValue::merge(Leader, EC); 489 } 490 491 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 492 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 493 return UV->getLeader(); 494 return nullptr; 495 } 496 497 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 498 // DBG_VALUE loc, offset, variable 499 if (MI.getNumOperands() != 4 || 500 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 501 !MI.getOperand(2).isMetadata()) { 502 DEBUG(dbgs() << "Can't handle " << MI); 503 return false; 504 } 505 506 // Get or create the UserValue for (variable,offset) here. 507 bool IsIndirect = MI.getOperand(1).isImm(); 508 if (IsIndirect) 509 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 510 const DILocalVariable *Var = MI.getDebugVariable(); 511 const DIExpression *Expr = MI.getDebugExpression(); 512 UserValue *UV = 513 getUserValue(Var, Expr, MI.getDebugLoc()); 514 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 515 return true; 516 } 517 518 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 519 bool Changed = false; 520 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 521 ++MFI) { 522 MachineBasicBlock *MBB = &*MFI; 523 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 524 MBBI != MBBE;) { 525 if (!MBBI->isDebugValue()) { 526 ++MBBI; 527 continue; 528 } 529 // DBG_VALUE has no slot index, use the previous instruction instead. 530 SlotIndex Idx = 531 MBBI == MBB->begin() 532 ? LIS->getMBBStartIdx(MBB) 533 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 534 // Handle consecutive DBG_VALUE instructions with the same slot index. 535 do { 536 if (handleDebugValue(*MBBI, Idx)) { 537 MBBI = MBB->erase(MBBI); 538 Changed = true; 539 } else 540 ++MBBI; 541 } while (MBBI != MBBE && MBBI->isDebugValue()); 542 } 543 } 544 return Changed; 545 } 546 547 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 548 /// data-flow analysis to propagate them beyond basic block boundaries. 549 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 550 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 551 LiveIntervals &LIS) { 552 SlotIndex Start = Idx; 553 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 554 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 555 LocMap::iterator I = locInts.find(Start); 556 557 // Limit to VNI's live range. 558 bool ToEnd = true; 559 if (LR && VNI) { 560 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 561 if (!Segment || Segment->valno != VNI) { 562 if (Kills) 563 Kills->push_back(Start); 564 return; 565 } 566 if (Segment->end < Stop) { 567 Stop = Segment->end; 568 ToEnd = false; 569 } 570 } 571 572 // There could already be a short def at Start. 573 if (I.valid() && I.start() <= Start) { 574 // Stop when meeting a different location or an already extended interval. 575 Start = Start.getNextSlot(); 576 if (I.value() != Loc || I.stop() != Start) 577 return; 578 // This is a one-slot placeholder. Just skip it. 579 ++I; 580 } 581 582 // Limited by the next def. 583 if (I.valid() && I.start() < Stop) { 584 Stop = I.start(); 585 ToEnd = false; 586 } 587 // Limited by VNI's live range. 588 else if (!ToEnd && Kills) 589 Kills->push_back(Stop); 590 591 if (Start < Stop) 592 I.insert(Start, Stop, Loc); 593 } 594 595 void UserValue::addDefsFromCopies( 596 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 597 const SmallVectorImpl<SlotIndex> &Kills, 598 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 599 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 600 if (Kills.empty()) 601 return; 602 // Don't track copies from physregs, there are too many uses. 603 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 604 return; 605 606 // Collect all the (vreg, valno) pairs that are copies of LI. 607 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 608 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 609 MachineInstr *MI = MO.getParent(); 610 // Copies of the full value. 611 if (MO.getSubReg() || !MI->isCopy()) 612 continue; 613 unsigned DstReg = MI->getOperand(0).getReg(); 614 615 // Don't follow copies to physregs. These are usually setting up call 616 // arguments, and the argument registers are always call clobbered. We are 617 // better off in the source register which could be a callee-saved register, 618 // or it could be spilled. 619 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 620 continue; 621 622 // Is LocNo extended to reach this copy? If not, another def may be blocking 623 // it, or we are looking at a wrong value of LI. 624 SlotIndex Idx = LIS.getInstructionIndex(*MI); 625 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 626 if (!I.valid() || I.value().locNo() != LocNo) 627 continue; 628 629 if (!LIS.hasInterval(DstReg)) 630 continue; 631 LiveInterval *DstLI = &LIS.getInterval(DstReg); 632 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 633 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 634 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 635 } 636 637 if (CopyValues.empty()) 638 return; 639 640 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 641 642 // Try to add defs of the copied values for each kill point. 643 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 644 SlotIndex Idx = Kills[i]; 645 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 646 LiveInterval *DstLI = CopyValues[j].first; 647 const VNInfo *DstVNI = CopyValues[j].second; 648 if (DstLI->getVNInfoAt(Idx) != DstVNI) 649 continue; 650 // Check that there isn't already a def at Idx 651 LocMap::iterator I = locInts.find(Idx); 652 if (I.valid() && I.start() <= Idx) 653 continue; 654 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 655 << DstVNI->id << " in " << *DstLI << '\n'); 656 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 657 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 658 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 659 DbgValueLocation NewLoc(LocNo, WasIndirect); 660 I.insert(Idx, Idx.getNextSlot(), NewLoc); 661 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 662 break; 663 } 664 } 665 } 666 667 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 668 const TargetRegisterInfo &TRI, 669 LiveIntervals &LIS, LexicalScopes &LS) { 670 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 671 672 // Collect all defs to be extended (Skipping undefs). 673 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 674 if (!I.value().isUndef()) 675 Defs.push_back(std::make_pair(I.start(), I.value())); 676 677 // Extend all defs, and possibly add new ones along the way. 678 for (unsigned i = 0; i != Defs.size(); ++i) { 679 SlotIndex Idx = Defs[i].first; 680 DbgValueLocation Loc = Defs[i].second; 681 const MachineOperand &LocMO = locations[Loc.locNo()]; 682 683 if (!LocMO.isReg()) { 684 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 685 continue; 686 } 687 688 // Register locations are constrained to where the register value is live. 689 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) { 690 LiveInterval *LI = nullptr; 691 const VNInfo *VNI = nullptr; 692 if (LIS.hasInterval(LocMO.getReg())) { 693 LI = &LIS.getInterval(LocMO.getReg()); 694 VNI = LI->getVNInfoAt(Idx); 695 } 696 SmallVector<SlotIndex, 16> Kills; 697 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 698 if (LI) 699 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 700 LIS); 701 continue; 702 } 703 704 // For physregs, we only mark the start slot idx. DwarfDebug will see it 705 // as if the DBG_VALUE is valid up until the end of the basic block, or 706 // the next def of the physical register. So we do not need to extend the 707 // range. It might actually happen that the DBG_VALUE is the last use of 708 // the physical register (e.g. if this is an unused input argument to a 709 // function). 710 } 711 712 // Erase all the undefs. 713 for (LocMap::iterator I = locInts.begin(); I.valid();) 714 if (I.value().isUndef()) 715 I.erase(); 716 else 717 ++I; 718 719 // The computed intervals may extend beyond the range of the debug 720 // location's lexical scope. In this case, splitting of an interval 721 // can result in an interval outside of the scope being created, 722 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 723 // this, trim the intervals to the lexical scope. 724 725 LexicalScope *Scope = LS.findLexicalScope(dl); 726 if (!Scope) 727 return; 728 729 SlotIndex PrevEnd; 730 LocMap::iterator I = locInts.begin(); 731 732 // Iterate over the lexical scope ranges. Each time round the loop 733 // we check the intervals for overlap with the end of the previous 734 // range and the start of the next. The first range is handled as 735 // a special case where there is no PrevEnd. 736 for (const InsnRange &Range : Scope->getRanges()) { 737 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 738 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 739 740 // At the start of each iteration I has been advanced so that 741 // I.stop() >= PrevEnd. Check for overlap. 742 if (PrevEnd && I.start() < PrevEnd) { 743 SlotIndex IStop = I.stop(); 744 DbgValueLocation Loc = I.value(); 745 746 // Stop overlaps previous end - trim the end of the interval to 747 // the scope range. 748 I.setStopUnchecked(PrevEnd); 749 ++I; 750 751 // If the interval also overlaps the start of the "next" (i.e. 752 // current) range create a new interval for the remainder (which 753 // may be further trimmed). 754 if (RStart < IStop) 755 I.insert(RStart, IStop, Loc); 756 } 757 758 // Advance I so that I.stop() >= RStart, and check for overlap. 759 I.advanceTo(RStart); 760 if (!I.valid()) 761 return; 762 763 if (I.start() < RStart) { 764 // Interval start overlaps range - trim to the scope range. 765 I.setStartUnchecked(RStart); 766 // Remember that this interval was trimmed. 767 trimmedDefs.insert(RStart); 768 } 769 770 // The end of a lexical scope range is the last instruction in the 771 // range. To convert to an interval we need the index of the 772 // instruction after it. 773 REnd = REnd.getNextIndex(); 774 775 // Advance I to first interval outside current range. 776 I.advanceTo(REnd); 777 if (!I.valid()) 778 return; 779 780 PrevEnd = REnd; 781 } 782 783 // Check for overlap with end of final range. 784 if (PrevEnd && I.start() < PrevEnd) 785 I.setStopUnchecked(PrevEnd); 786 } 787 788 void LDVImpl::computeIntervals() { 789 LexicalScopes LS; 790 LS.initialize(*MF); 791 792 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 793 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 794 userValues[i]->mapVirtRegs(this); 795 } 796 } 797 798 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 799 clear(); 800 MF = &mf; 801 LIS = &pass.getAnalysis<LiveIntervals>(); 802 TRI = mf.getSubtarget().getRegisterInfo(); 803 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 804 << mf.getName() << " **********\n"); 805 806 bool Changed = collectDebugValues(mf); 807 computeIntervals(); 808 DEBUG(print(dbgs())); 809 ModifiedMF = Changed; 810 return Changed; 811 } 812 813 static void removeDebugValues(MachineFunction &mf) { 814 for (MachineBasicBlock &MBB : mf) { 815 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 816 if (!MBBI->isDebugValue()) { 817 ++MBBI; 818 continue; 819 } 820 MBBI = MBB.erase(MBBI); 821 } 822 } 823 } 824 825 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 826 if (!EnableLDV) 827 return false; 828 if (!mf.getFunction()->getSubprogram()) { 829 removeDebugValues(mf); 830 return false; 831 } 832 if (!pImpl) 833 pImpl = new LDVImpl(this); 834 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 835 } 836 837 void LiveDebugVariables::releaseMemory() { 838 if (pImpl) 839 static_cast<LDVImpl*>(pImpl)->clear(); 840 } 841 842 LiveDebugVariables::~LiveDebugVariables() { 843 if (pImpl) 844 delete static_cast<LDVImpl*>(pImpl); 845 } 846 847 //===----------------------------------------------------------------------===// 848 // Live Range Splitting 849 //===----------------------------------------------------------------------===// 850 851 bool 852 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 853 LiveIntervals& LIS) { 854 DEBUG({ 855 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 856 print(dbgs(), nullptr); 857 }); 858 bool DidChange = false; 859 LocMap::iterator LocMapI; 860 LocMapI.setMap(locInts); 861 for (unsigned i = 0; i != NewRegs.size(); ++i) { 862 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 863 if (LI->empty()) 864 continue; 865 866 // Don't allocate the new LocNo until it is needed. 867 unsigned NewLocNo = UndefLocNo; 868 869 // Iterate over the overlaps between locInts and LI. 870 LocMapI.find(LI->beginIndex()); 871 if (!LocMapI.valid()) 872 continue; 873 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 874 LiveInterval::iterator LIE = LI->end(); 875 while (LocMapI.valid() && LII != LIE) { 876 // At this point, we know that LocMapI.stop() > LII->start. 877 LII = LI->advanceTo(LII, LocMapI.start()); 878 if (LII == LIE) 879 break; 880 881 // Now LII->end > LocMapI.start(). Do we have an overlap? 882 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 883 // Overlapping correct location. Allocate NewLocNo now. 884 if (NewLocNo == UndefLocNo) { 885 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 886 MO.setSubReg(locations[OldLocNo].getSubReg()); 887 NewLocNo = getLocationNo(MO); 888 DidChange = true; 889 } 890 891 SlotIndex LStart = LocMapI.start(); 892 SlotIndex LStop = LocMapI.stop(); 893 DbgValueLocation OldLoc = LocMapI.value(); 894 895 // Trim LocMapI down to the LII overlap. 896 if (LStart < LII->start) 897 LocMapI.setStartUnchecked(LII->start); 898 if (LStop > LII->end) 899 LocMapI.setStopUnchecked(LII->end); 900 901 // Change the value in the overlap. This may trigger coalescing. 902 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 903 904 // Re-insert any removed OldLocNo ranges. 905 if (LStart < LocMapI.start()) { 906 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 907 ++LocMapI; 908 assert(LocMapI.valid() && "Unexpected coalescing"); 909 } 910 if (LStop > LocMapI.stop()) { 911 ++LocMapI; 912 LocMapI.insert(LII->end, LStop, OldLoc); 913 --LocMapI; 914 } 915 } 916 917 // Advance to the next overlap. 918 if (LII->end < LocMapI.stop()) { 919 if (++LII == LIE) 920 break; 921 LocMapI.advanceTo(LII->start); 922 } else { 923 ++LocMapI; 924 if (!LocMapI.valid()) 925 break; 926 LII = LI->advanceTo(LII, LocMapI.start()); 927 } 928 } 929 } 930 931 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 932 locations.erase(locations.begin() + OldLocNo); 933 LocMapI.goToBegin(); 934 while (LocMapI.valid()) { 935 DbgValueLocation v = LocMapI.value(); 936 if (v.locNo() == OldLocNo) { 937 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 938 << LocMapI.stop() << ")\n"); 939 LocMapI.erase(); 940 } else { 941 if (v.locNo() > OldLocNo) 942 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 943 ++LocMapI; 944 } 945 } 946 947 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 948 return DidChange; 949 } 950 951 bool 952 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 953 LiveIntervals &LIS) { 954 bool DidChange = false; 955 // Split locations referring to OldReg. Iterate backwards so splitLocation can 956 // safely erase unused locations. 957 for (unsigned i = locations.size(); i ; --i) { 958 unsigned LocNo = i-1; 959 const MachineOperand *Loc = &locations[LocNo]; 960 if (!Loc->isReg() || Loc->getReg() != OldReg) 961 continue; 962 DidChange |= splitLocation(LocNo, NewRegs, LIS); 963 } 964 return DidChange; 965 } 966 967 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 968 bool DidChange = false; 969 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 970 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 971 972 if (!DidChange) 973 return; 974 975 // Map all of the new virtual registers. 976 UserValue *UV = lookupVirtReg(OldReg); 977 for (unsigned i = 0; i != NewRegs.size(); ++i) 978 mapVirtReg(NewRegs[i], UV); 979 } 980 981 void LiveDebugVariables:: 982 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 983 if (pImpl) 984 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 985 } 986 987 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 988 BitVector &SpilledLocations) { 989 // Build a set of new locations with new numbers so we can coalesce our 990 // IntervalMap if two vreg intervals collapse to the same physical location. 991 // Use MapVector instead of SetVector because MapVector::insert returns the 992 // position of the previously or newly inserted element. The boolean value 993 // tracks if the location was produced by a spill. 994 // FIXME: This will be problematic if we ever support direct and indirect 995 // frame index locations, i.e. expressing both variables in memory and 996 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 997 MapVector<MachineOperand, bool> NewLocations; 998 SmallVector<unsigned, 4> LocNoMap(locations.size()); 999 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1000 bool Spilled = false; 1001 MachineOperand Loc = locations[I]; 1002 // Only virtual registers are rewritten. 1003 if (Loc.isReg() && Loc.getReg() && 1004 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 1005 unsigned VirtReg = Loc.getReg(); 1006 if (VRM.isAssignedReg(VirtReg) && 1007 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1008 // This can create a %noreg operand in rare cases when the sub-register 1009 // index is no longer available. That means the user value is in a 1010 // non-existent sub-register, and %noreg is exactly what we want. 1011 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1012 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1013 // FIXME: Translate SubIdx to a stackslot offset. 1014 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1015 Spilled = true; 1016 } else { 1017 Loc.setReg(0); 1018 Loc.setSubReg(0); 1019 } 1020 } 1021 1022 // Insert this location if it doesn't already exist and record a mapping 1023 // from the old number to the new number. 1024 auto InsertResult = NewLocations.insert({Loc, Spilled}); 1025 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1026 LocNoMap[I] = NewLocNo; 1027 } 1028 1029 // Rewrite the locations and record which ones were spill slots. 1030 locations.clear(); 1031 SpilledLocations.clear(); 1032 SpilledLocations.resize(NewLocations.size()); 1033 for (auto &Pair : NewLocations) { 1034 locations.push_back(Pair.first); 1035 if (Pair.second) { 1036 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1037 SpilledLocations.set(NewLocNo); 1038 } 1039 } 1040 1041 // Update the interval map, but only coalesce left, since intervals to the 1042 // right use the old location numbers. This should merge two contiguous 1043 // DBG_VALUE intervals with different vregs that were allocated to the same 1044 // physical register. 1045 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1046 DbgValueLocation Loc = I.value(); 1047 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1048 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1049 I.setStart(I.start()); 1050 } 1051 } 1052 1053 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE 1054 /// instruction. 1055 static MachineBasicBlock::iterator 1056 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1057 LiveIntervals &LIS) { 1058 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1059 Idx = Idx.getBaseIndex(); 1060 1061 // Try to find an insert location by going backwards from Idx. 1062 MachineInstr *MI; 1063 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1064 // We've reached the beginning of MBB. 1065 if (Idx == Start) { 1066 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1067 return I; 1068 } 1069 Idx = Idx.getPrevIndex(); 1070 } 1071 1072 // Don't insert anything after the first terminator, though. 1073 return MI->isTerminator() ? MBB->getFirstTerminator() : 1074 std::next(MachineBasicBlock::iterator(MI)); 1075 } 1076 1077 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 1078 DbgValueLocation Loc, bool Spilled, 1079 LiveIntervals &LIS, 1080 const TargetInstrInfo &TII) { 1081 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1082 MachineOperand &MO = locations[Loc.locNo()]; 1083 ++NumInsertedDebugValues; 1084 1085 assert(cast<DILocalVariable>(Variable) 1086 ->isValidLocationForIntrinsic(getDebugLoc()) && 1087 "Expected inlined-at fields to agree"); 1088 1089 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1090 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1091 // that the original virtual register was a pointer. 1092 const DIExpression *Expr = Expression; 1093 bool IsIndirect = Loc.wasIndirect(); 1094 if (Spilled) { 1095 if (IsIndirect) 1096 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1097 IsIndirect = true; 1098 } 1099 1100 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1101 1102 MachineInstrBuilder MIB = 1103 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1104 .add(MO); 1105 if (IsIndirect) 1106 MIB.addImm(0U); 1107 else 1108 MIB.addReg(0U, RegState::Debug); 1109 MIB.addMetadata(Variable).addMetadata(Expr); 1110 } 1111 1112 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1113 const TargetInstrInfo &TII, 1114 const BitVector &SpilledLocations) { 1115 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1116 1117 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1118 SlotIndex Start = I.start(); 1119 SlotIndex Stop = I.stop(); 1120 DbgValueLocation Loc = I.value(); 1121 bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false; 1122 1123 // If the interval start was trimmed to the lexical scope insert the 1124 // DBG_VALUE at the previous index (otherwise it appears after the 1125 // first instruction in the range). 1126 if (trimmedDefs.count(Start)) 1127 Start = Start.getPrevIndex(); 1128 1129 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1130 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1131 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1132 1133 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1134 insertDebugValue(&*MBB, Start, Loc, Spilled, LIS, TII); 1135 // This interval may span multiple basic blocks. 1136 // Insert a DBG_VALUE into each one. 1137 while(Stop > MBBEnd) { 1138 // Move to the next block. 1139 Start = MBBEnd; 1140 if (++MBB == MFEnd) 1141 break; 1142 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1143 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1144 insertDebugValue(&*MBB, Start, Loc, Spilled, LIS, TII); 1145 } 1146 DEBUG(dbgs() << '\n'); 1147 if (MBB == MFEnd) 1148 break; 1149 1150 ++I; 1151 } 1152 } 1153 1154 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1155 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1156 if (!MF) 1157 return; 1158 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1159 BitVector SpilledLocations; 1160 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1161 DEBUG(userValues[i]->print(dbgs(), TRI)); 1162 userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations); 1163 userValues[i]->emitDebugValues(VRM, *LIS, *TII, SpilledLocations); 1164 } 1165 EmitDone = true; 1166 } 1167 1168 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1169 if (pImpl) 1170 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1171 } 1172 1173 bool LiveDebugVariables::doInitialization(Module &M) { 1174 return Pass::doInitialization(M); 1175 } 1176 1177 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1178 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1179 if (pImpl) 1180 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1181 } 1182 #endif 1183