xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision 04e25e00b7fa8e8bc680acc548ca3734cc66d1ab)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveDebugVariables analysis.
11 //
12 // Remove all DBG_VALUE instructions referencing virtual registers and replace
13 // them with a data structure tracking where live user variables are kept - in a
14 // virtual register or in a stack slot.
15 //
16 // Allow the data structure to be updated during register allocation when values
17 // are moved between registers and stack slots. Finally emit new DBG_VALUE
18 // instructions after register allocation is complete.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "LiveDebugVariables.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IntervalMap.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/VirtRegMap.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetOpcodes.h"
56 #include "llvm/Target/TargetRegisterInfo.h"
57 #include "llvm/Target/TargetSubtargetInfo.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <memory>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "livedebugvars"
67 
68 static cl::opt<bool>
69 EnableLDV("live-debug-variables", cl::init(true),
70           cl::desc("Enable the live debug variables pass"), cl::Hidden);
71 
72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
73 
74 char LiveDebugVariables::ID = 0;
75 
76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
77                 "Debug Variable Analysis", false, false)
78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
81                 "Debug Variable Analysis", false, false)
82 
83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
84   AU.addRequired<MachineDominatorTree>();
85   AU.addRequiredTransitive<LiveIntervals>();
86   AU.setPreservesAll();
87   MachineFunctionPass::getAnalysisUsage(AU);
88 }
89 
90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
91   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
92 }
93 
94 enum : unsigned { UndefLocNo = ~0U };
95 
96 /// Describes a location by number along with some flags about the original
97 /// usage of the location.
98 class DbgValueLocation {
99 public:
100   DbgValueLocation(unsigned LocNo, bool WasIndirect)
101       : LocNo(LocNo), WasIndirect(WasIndirect) {
102     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
103     assert(locNo() == LocNo && "location truncation");
104   }
105 
106   DbgValueLocation() : LocNo(0), WasIndirect(0) {}
107 
108   unsigned locNo() const {
109     // Fix up the undef location number, which gets truncated.
110     return LocNo == INT_MAX ? UndefLocNo : LocNo;
111   }
112   bool wasIndirect() const { return WasIndirect; }
113   bool isUndef() const { return locNo() == UndefLocNo; }
114 
115   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
116     return DbgValueLocation(NewLocNo, WasIndirect);
117   }
118 
119   bool operator==(const DbgValueLocation &O) const {
120     return LocNo == O.LocNo && WasIndirect == O.WasIndirect;
121   }
122   bool operator!=(const DbgValueLocation &O) const { return !(*this == O); }
123 
124 private:
125   unsigned LocNo : 31;
126   unsigned WasIndirect : 1;
127 };
128 
129 /// LocMap - Map of where a user value is live, and its location.
130 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
131 
132 namespace {
133 
134 class LDVImpl;
135 
136 /// UserValue - A user value is a part of a debug info user variable.
137 ///
138 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
139 /// holds part of a user variable. The part is identified by a byte offset.
140 ///
141 /// UserValues are grouped into equivalence classes for easier searching. Two
142 /// user values are related if they refer to the same variable, or if they are
143 /// held by the same virtual register. The equivalence class is the transitive
144 /// closure of that relation.
145 class UserValue {
146   const DILocalVariable *Variable; ///< The debug info variable we are part of.
147   const DIExpression *Expression; ///< Any complex address expression.
148   DebugLoc dl;            ///< The debug location for the variable. This is
149                           ///< used by dwarf writer to find lexical scope.
150   UserValue *leader;      ///< Equivalence class leader.
151   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
152 
153   /// Numbered locations referenced by locmap.
154   SmallVector<MachineOperand, 4> locations;
155 
156   /// Map of slot indices where this value is live.
157   LocMap locInts;
158 
159   /// Set of interval start indexes that have been trimmed to the
160   /// lexical scope.
161   SmallSet<SlotIndex, 2> trimmedDefs;
162 
163   /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
164   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx,
165                         DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS,
166                         const TargetInstrInfo &TII);
167 
168   /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
169   /// is live. Returns true if any changes were made.
170   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
171                      LiveIntervals &LIS);
172 
173 public:
174   /// UserValue - Create a new UserValue.
175   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
176             LocMap::Allocator &alloc)
177       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
178         locInts(alloc) {}
179 
180   /// getLeader - Get the leader of this value's equivalence class.
181   UserValue *getLeader() {
182     UserValue *l = leader;
183     while (l != l->leader)
184       l = l->leader;
185     return leader = l;
186   }
187 
188   /// getNext - Return the next UserValue in the equivalence class.
189   UserValue *getNext() const { return next; }
190 
191   /// match - Does this UserValue match the parameters?
192   bool match(const DILocalVariable *Var, const DIExpression *Expr,
193              const DILocation *IA) const {
194     // FIXME: The fragment should be part of the equivalence class, but not
195     // other things in the expression like stack values.
196     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
197   }
198 
199   /// merge - Merge equivalence classes.
200   static UserValue *merge(UserValue *L1, UserValue *L2) {
201     L2 = L2->getLeader();
202     if (!L1)
203       return L2;
204     L1 = L1->getLeader();
205     if (L1 == L2)
206       return L1;
207     // Splice L2 before L1's members.
208     UserValue *End = L2;
209     while (End->next) {
210       End->leader = L1;
211       End = End->next;
212     }
213     End->leader = L1;
214     End->next = L1->next;
215     L1->next = L2;
216     return L1;
217   }
218 
219   /// getLocationNo - Return the location number that matches Loc.
220   unsigned getLocationNo(const MachineOperand &LocMO) {
221     if (LocMO.isReg()) {
222       if (LocMO.getReg() == 0)
223         return UndefLocNo;
224       // For register locations we dont care about use/def and other flags.
225       for (unsigned i = 0, e = locations.size(); i != e; ++i)
226         if (locations[i].isReg() &&
227             locations[i].getReg() == LocMO.getReg() &&
228             locations[i].getSubReg() == LocMO.getSubReg())
229           return i;
230     } else
231       for (unsigned i = 0, e = locations.size(); i != e; ++i)
232         if (LocMO.isIdenticalTo(locations[i]))
233           return i;
234     locations.push_back(LocMO);
235     // We are storing a MachineOperand outside a MachineInstr.
236     locations.back().clearParent();
237     // Don't store def operands.
238     if (locations.back().isReg())
239       locations.back().setIsUse();
240     return locations.size() - 1;
241   }
242 
243   /// mapVirtRegs - Ensure that all virtual register locations are mapped.
244   void mapVirtRegs(LDVImpl *LDV);
245 
246   /// addDef - Add a definition point to this value.
247   void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
248     DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
249     // Add a singular (Idx,Idx) -> Loc mapping.
250     LocMap::iterator I = locInts.find(Idx);
251     if (!I.valid() || I.start() != Idx)
252       I.insert(Idx, Idx.getNextSlot(), Loc);
253     else
254       // A later DBG_VALUE at the same SlotIndex overrides the old location.
255       I.setValue(Loc);
256   }
257 
258   /// extendDef - Extend the current definition as far as possible down.
259   /// Stop when meeting an existing def or when leaving the live
260   /// range of VNI.
261   /// End points where VNI is no longer live are added to Kills.
262   /// @param Idx   Starting point for the definition.
263   /// @param Loc   Location number to propagate.
264   /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
265   /// @param VNI   When LR is not null, this is the value to restrict to.
266   /// @param Kills Append end points of VNI's live range to Kills.
267   /// @param LIS   Live intervals analysis.
268   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
269                  LiveRange *LR, const VNInfo *VNI,
270                  SmallVectorImpl<SlotIndex> *Kills,
271                  LiveIntervals &LIS);
272 
273   /// addDefsFromCopies - The value in LI/LocNo may be copies to other
274   /// registers. Determine if any of the copies are available at the kill
275   /// points, and add defs if possible.
276   /// @param LI      Scan for copies of the value in LI->reg.
277   /// @param LocNo   Location number of LI->reg.
278   /// @param WasIndirect Indicates if the original use of LI->reg was indirect
279   /// @param Kills   Points where the range of LocNo could be extended.
280   /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
281   void addDefsFromCopies(
282       LiveInterval *LI, unsigned LocNo, bool WasIndirect,
283       const SmallVectorImpl<SlotIndex> &Kills,
284       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
285       MachineRegisterInfo &MRI, LiveIntervals &LIS);
286 
287   /// computeIntervals - Compute the live intervals of all locations after
288   /// collecting all their def points.
289   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
290                         LiveIntervals &LIS, LexicalScopes &LS);
291 
292   /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
293   /// live. Returns true if any changes were made.
294   bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
295                      LiveIntervals &LIS);
296 
297   /// rewriteLocations - Rewrite virtual register locations according to the
298   /// provided virtual register map. Record which locations were spilled.
299   void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
300                         BitVector &SpilledLocations);
301 
302   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
303   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
304                        const TargetInstrInfo &TRI,
305                        const BitVector &SpilledLocations);
306 
307   /// getDebugLoc - Return DebugLoc of this UserValue.
308   DebugLoc getDebugLoc() { return dl;}
309 
310   void print(raw_ostream &, const TargetRegisterInfo *);
311 };
312 
313 /// LDVImpl - Implementation of the LiveDebugVariables pass.
314 class LDVImpl {
315   LiveDebugVariables &pass;
316   LocMap::Allocator allocator;
317   MachineFunction *MF = nullptr;
318   LiveIntervals *LIS;
319   const TargetRegisterInfo *TRI;
320 
321   /// Whether emitDebugValues is called.
322   bool EmitDone = false;
323 
324   /// Whether the machine function is modified during the pass.
325   bool ModifiedMF = false;
326 
327   /// userValues - All allocated UserValue instances.
328   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
329 
330   /// Map virtual register to eq class leader.
331   using VRMap = DenseMap<unsigned, UserValue *>;
332   VRMap virtRegToEqClass;
333 
334   /// Map user variable to eq class leader.
335   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
336   UVMap userVarMap;
337 
338   /// getUserValue - Find or create a UserValue.
339   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
340                           const DebugLoc &DL);
341 
342   /// lookupVirtReg - Find the EC leader for VirtReg or null.
343   UserValue *lookupVirtReg(unsigned VirtReg);
344 
345   /// handleDebugValue - Add DBG_VALUE instruction to our maps.
346   /// @param MI  DBG_VALUE instruction
347   /// @param Idx Last valid SLotIndex before instruction.
348   /// @return    True if the DBG_VALUE instruction should be deleted.
349   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
350 
351   /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
352   /// a UserValue def for each instruction.
353   /// @param mf MachineFunction to be scanned.
354   /// @return True if any debug values were found.
355   bool collectDebugValues(MachineFunction &mf);
356 
357   /// computeIntervals - Compute the live intervals of all user values after
358   /// collecting all their def points.
359   void computeIntervals();
360 
361 public:
362   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
363 
364   bool runOnMachineFunction(MachineFunction &mf);
365 
366   /// clear - Release all memory.
367   void clear() {
368     MF = nullptr;
369     userValues.clear();
370     virtRegToEqClass.clear();
371     userVarMap.clear();
372     // Make sure we call emitDebugValues if the machine function was modified.
373     assert((!ModifiedMF || EmitDone) &&
374            "Dbg values are not emitted in LDV");
375     EmitDone = false;
376     ModifiedMF = false;
377   }
378 
379   /// mapVirtReg - Map virtual register to an equivalence class.
380   void mapVirtReg(unsigned VirtReg, UserValue *EC);
381 
382   /// splitRegister -  Replace all references to OldReg with NewRegs.
383   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
384 
385   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
386   void emitDebugValues(VirtRegMap *VRM);
387 
388   void print(raw_ostream&);
389 };
390 
391 } // end anonymous namespace
392 
393 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
394 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
395                           const LLVMContext &Ctx) {
396   if (!DL)
397     return;
398 
399   auto *Scope = cast<DIScope>(DL.getScope());
400   // Omit the directory, because it's likely to be long and uninteresting.
401   CommentOS << Scope->getFilename();
402   CommentOS << ':' << DL.getLine();
403   if (DL.getCol() != 0)
404     CommentOS << ':' << DL.getCol();
405 
406   DebugLoc InlinedAtDL = DL.getInlinedAt();
407   if (!InlinedAtDL)
408     return;
409 
410   CommentOS << " @[ ";
411   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
412   CommentOS << " ]";
413 }
414 
415 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
416                               const DILocation *DL) {
417   const LLVMContext &Ctx = V->getContext();
418   StringRef Res = V->getName();
419   if (!Res.empty())
420     OS << Res << "," << V->getLine();
421   if (auto *InlinedAt = DL->getInlinedAt()) {
422     if (DebugLoc InlinedAtDL = InlinedAt) {
423       OS << " @[";
424       printDebugLoc(InlinedAtDL, OS, Ctx);
425       OS << "]";
426     }
427   }
428 }
429 
430 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
431   auto *DV = cast<DILocalVariable>(Variable);
432   OS << "!\"";
433   printExtendedName(OS, DV, dl);
434 
435   OS << "\"\t";
436   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
437     OS << " [" << I.start() << ';' << I.stop() << "):";
438     if (I.value().isUndef())
439       OS << "undef";
440     else {
441       OS << I.value().locNo();
442       if (I.value().wasIndirect())
443         OS << " ind";
444     }
445   }
446   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
447     OS << " Loc" << i << '=';
448     locations[i].print(OS, TRI);
449   }
450   OS << '\n';
451 }
452 
453 void LDVImpl::print(raw_ostream &OS) {
454   OS << "********** DEBUG VARIABLES **********\n";
455   for (unsigned i = 0, e = userValues.size(); i != e; ++i)
456     userValues[i]->print(OS, TRI);
457 }
458 #endif
459 
460 void UserValue::mapVirtRegs(LDVImpl *LDV) {
461   for (unsigned i = 0, e = locations.size(); i != e; ++i)
462     if (locations[i].isReg() &&
463         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
464       LDV->mapVirtReg(locations[i].getReg(), this);
465 }
466 
467 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
468                                  const DIExpression *Expr, const DebugLoc &DL) {
469   UserValue *&Leader = userVarMap[Var];
470   if (Leader) {
471     UserValue *UV = Leader->getLeader();
472     Leader = UV;
473     for (; UV; UV = UV->getNext())
474       if (UV->match(Var, Expr, DL->getInlinedAt()))
475         return UV;
476   }
477 
478   userValues.push_back(
479       llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
480   UserValue *UV = userValues.back().get();
481   Leader = UserValue::merge(Leader, UV);
482   return UV;
483 }
484 
485 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
486   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
487   UserValue *&Leader = virtRegToEqClass[VirtReg];
488   Leader = UserValue::merge(Leader, EC);
489 }
490 
491 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
492   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
493     return UV->getLeader();
494   return nullptr;
495 }
496 
497 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
498   // DBG_VALUE loc, offset, variable
499   if (MI.getNumOperands() != 4 ||
500       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
501       !MI.getOperand(2).isMetadata()) {
502     DEBUG(dbgs() << "Can't handle " << MI);
503     return false;
504   }
505 
506   // Get or create the UserValue for (variable,offset) here.
507   bool IsIndirect = MI.getOperand(1).isImm();
508   if (IsIndirect)
509     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
510   const DILocalVariable *Var = MI.getDebugVariable();
511   const DIExpression *Expr = MI.getDebugExpression();
512   UserValue *UV =
513       getUserValue(Var, Expr, MI.getDebugLoc());
514   UV->addDef(Idx, MI.getOperand(0), IsIndirect);
515   return true;
516 }
517 
518 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
519   bool Changed = false;
520   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
521        ++MFI) {
522     MachineBasicBlock *MBB = &*MFI;
523     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
524          MBBI != MBBE;) {
525       if (!MBBI->isDebugValue()) {
526         ++MBBI;
527         continue;
528       }
529       // DBG_VALUE has no slot index, use the previous instruction instead.
530       SlotIndex Idx =
531           MBBI == MBB->begin()
532               ? LIS->getMBBStartIdx(MBB)
533               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
534       // Handle consecutive DBG_VALUE instructions with the same slot index.
535       do {
536         if (handleDebugValue(*MBBI, Idx)) {
537           MBBI = MBB->erase(MBBI);
538           Changed = true;
539         } else
540           ++MBBI;
541       } while (MBBI != MBBE && MBBI->isDebugValue());
542     }
543   }
544   return Changed;
545 }
546 
547 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
548 /// data-flow analysis to propagate them beyond basic block boundaries.
549 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
550                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
551                           LiveIntervals &LIS) {
552   SlotIndex Start = Idx;
553   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
554   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
555   LocMap::iterator I = locInts.find(Start);
556 
557   // Limit to VNI's live range.
558   bool ToEnd = true;
559   if (LR && VNI) {
560     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
561     if (!Segment || Segment->valno != VNI) {
562       if (Kills)
563         Kills->push_back(Start);
564       return;
565     }
566     if (Segment->end < Stop) {
567       Stop = Segment->end;
568       ToEnd = false;
569     }
570   }
571 
572   // There could already be a short def at Start.
573   if (I.valid() && I.start() <= Start) {
574     // Stop when meeting a different location or an already extended interval.
575     Start = Start.getNextSlot();
576     if (I.value() != Loc || I.stop() != Start)
577       return;
578     // This is a one-slot placeholder. Just skip it.
579     ++I;
580   }
581 
582   // Limited by the next def.
583   if (I.valid() && I.start() < Stop) {
584     Stop = I.start();
585     ToEnd = false;
586   }
587   // Limited by VNI's live range.
588   else if (!ToEnd && Kills)
589     Kills->push_back(Stop);
590 
591   if (Start < Stop)
592     I.insert(Start, Stop, Loc);
593 }
594 
595 void UserValue::addDefsFromCopies(
596     LiveInterval *LI, unsigned LocNo, bool WasIndirect,
597     const SmallVectorImpl<SlotIndex> &Kills,
598     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
599     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
600   if (Kills.empty())
601     return;
602   // Don't track copies from physregs, there are too many uses.
603   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
604     return;
605 
606   // Collect all the (vreg, valno) pairs that are copies of LI.
607   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
608   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
609     MachineInstr *MI = MO.getParent();
610     // Copies of the full value.
611     if (MO.getSubReg() || !MI->isCopy())
612       continue;
613     unsigned DstReg = MI->getOperand(0).getReg();
614 
615     // Don't follow copies to physregs. These are usually setting up call
616     // arguments, and the argument registers are always call clobbered. We are
617     // better off in the source register which could be a callee-saved register,
618     // or it could be spilled.
619     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
620       continue;
621 
622     // Is LocNo extended to reach this copy? If not, another def may be blocking
623     // it, or we are looking at a wrong value of LI.
624     SlotIndex Idx = LIS.getInstructionIndex(*MI);
625     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
626     if (!I.valid() || I.value().locNo() != LocNo)
627       continue;
628 
629     if (!LIS.hasInterval(DstReg))
630       continue;
631     LiveInterval *DstLI = &LIS.getInterval(DstReg);
632     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
633     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
634     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
635   }
636 
637   if (CopyValues.empty())
638     return;
639 
640   DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n');
641 
642   // Try to add defs of the copied values for each kill point.
643   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
644     SlotIndex Idx = Kills[i];
645     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
646       LiveInterval *DstLI = CopyValues[j].first;
647       const VNInfo *DstVNI = CopyValues[j].second;
648       if (DstLI->getVNInfoAt(Idx) != DstVNI)
649         continue;
650       // Check that there isn't already a def at Idx
651       LocMap::iterator I = locInts.find(Idx);
652       if (I.valid() && I.start() <= Idx)
653         continue;
654       DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
655                    << DstVNI->id << " in " << *DstLI << '\n');
656       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
657       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
658       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
659       DbgValueLocation NewLoc(LocNo, WasIndirect);
660       I.insert(Idx, Idx.getNextSlot(), NewLoc);
661       NewDefs.push_back(std::make_pair(Idx, NewLoc));
662       break;
663     }
664   }
665 }
666 
667 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
668                                  const TargetRegisterInfo &TRI,
669                                  LiveIntervals &LIS, LexicalScopes &LS) {
670   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
671 
672   // Collect all defs to be extended (Skipping undefs).
673   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
674     if (!I.value().isUndef())
675       Defs.push_back(std::make_pair(I.start(), I.value()));
676 
677   // Extend all defs, and possibly add new ones along the way.
678   for (unsigned i = 0; i != Defs.size(); ++i) {
679     SlotIndex Idx = Defs[i].first;
680     DbgValueLocation Loc = Defs[i].second;
681     const MachineOperand &LocMO = locations[Loc.locNo()];
682 
683     if (!LocMO.isReg()) {
684       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
685       continue;
686     }
687 
688     // Register locations are constrained to where the register value is live.
689     if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
690       LiveInterval *LI = nullptr;
691       const VNInfo *VNI = nullptr;
692       if (LIS.hasInterval(LocMO.getReg())) {
693         LI = &LIS.getInterval(LocMO.getReg());
694         VNI = LI->getVNInfoAt(Idx);
695       }
696       SmallVector<SlotIndex, 16> Kills;
697       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
698       if (LI)
699         addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
700                           LIS);
701       continue;
702     }
703 
704     // For physregs, we only mark the start slot idx. DwarfDebug will see it
705     // as if the DBG_VALUE is valid up until the end of the basic block, or
706     // the next def of the physical register. So we do not need to extend the
707     // range. It might actually happen that the DBG_VALUE is the last use of
708     // the physical register (e.g. if this is an unused input argument to a
709     // function).
710   }
711 
712   // Erase all the undefs.
713   for (LocMap::iterator I = locInts.begin(); I.valid();)
714     if (I.value().isUndef())
715       I.erase();
716     else
717       ++I;
718 
719   // The computed intervals may extend beyond the range of the debug
720   // location's lexical scope. In this case, splitting of an interval
721   // can result in an interval outside of the scope being created,
722   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
723   // this, trim the intervals to the lexical scope.
724 
725   LexicalScope *Scope = LS.findLexicalScope(dl);
726   if (!Scope)
727     return;
728 
729   SlotIndex PrevEnd;
730   LocMap::iterator I = locInts.begin();
731 
732   // Iterate over the lexical scope ranges. Each time round the loop
733   // we check the intervals for overlap with the end of the previous
734   // range and the start of the next. The first range is handled as
735   // a special case where there is no PrevEnd.
736   for (const InsnRange &Range : Scope->getRanges()) {
737     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
738     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
739 
740     // At the start of each iteration I has been advanced so that
741     // I.stop() >= PrevEnd. Check for overlap.
742     if (PrevEnd && I.start() < PrevEnd) {
743       SlotIndex IStop = I.stop();
744       DbgValueLocation Loc = I.value();
745 
746       // Stop overlaps previous end - trim the end of the interval to
747       // the scope range.
748       I.setStopUnchecked(PrevEnd);
749       ++I;
750 
751       // If the interval also overlaps the start of the "next" (i.e.
752       // current) range create a new interval for the remainder (which
753       // may be further trimmed).
754       if (RStart < IStop)
755         I.insert(RStart, IStop, Loc);
756     }
757 
758     // Advance I so that I.stop() >= RStart, and check for overlap.
759     I.advanceTo(RStart);
760     if (!I.valid())
761       return;
762 
763     if (I.start() < RStart) {
764       // Interval start overlaps range - trim to the scope range.
765       I.setStartUnchecked(RStart);
766       // Remember that this interval was trimmed.
767       trimmedDefs.insert(RStart);
768     }
769 
770     // The end of a lexical scope range is the last instruction in the
771     // range. To convert to an interval we need the index of the
772     // instruction after it.
773     REnd = REnd.getNextIndex();
774 
775     // Advance I to first interval outside current range.
776     I.advanceTo(REnd);
777     if (!I.valid())
778       return;
779 
780     PrevEnd = REnd;
781   }
782 
783   // Check for overlap with end of final range.
784   if (PrevEnd && I.start() < PrevEnd)
785     I.setStopUnchecked(PrevEnd);
786 }
787 
788 void LDVImpl::computeIntervals() {
789   LexicalScopes LS;
790   LS.initialize(*MF);
791 
792   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
793     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
794     userValues[i]->mapVirtRegs(this);
795   }
796 }
797 
798 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
799   clear();
800   MF = &mf;
801   LIS = &pass.getAnalysis<LiveIntervals>();
802   TRI = mf.getSubtarget().getRegisterInfo();
803   DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
804                << mf.getName() << " **********\n");
805 
806   bool Changed = collectDebugValues(mf);
807   computeIntervals();
808   DEBUG(print(dbgs()));
809   ModifiedMF = Changed;
810   return Changed;
811 }
812 
813 static void removeDebugValues(MachineFunction &mf) {
814   for (MachineBasicBlock &MBB : mf) {
815     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
816       if (!MBBI->isDebugValue()) {
817         ++MBBI;
818         continue;
819       }
820       MBBI = MBB.erase(MBBI);
821     }
822   }
823 }
824 
825 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
826   if (!EnableLDV)
827     return false;
828   if (!mf.getFunction()->getSubprogram()) {
829     removeDebugValues(mf);
830     return false;
831   }
832   if (!pImpl)
833     pImpl = new LDVImpl(this);
834   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
835 }
836 
837 void LiveDebugVariables::releaseMemory() {
838   if (pImpl)
839     static_cast<LDVImpl*>(pImpl)->clear();
840 }
841 
842 LiveDebugVariables::~LiveDebugVariables() {
843   if (pImpl)
844     delete static_cast<LDVImpl*>(pImpl);
845 }
846 
847 //===----------------------------------------------------------------------===//
848 //                           Live Range Splitting
849 //===----------------------------------------------------------------------===//
850 
851 bool
852 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
853                          LiveIntervals& LIS) {
854   DEBUG({
855     dbgs() << "Splitting Loc" << OldLocNo << '\t';
856     print(dbgs(), nullptr);
857   });
858   bool DidChange = false;
859   LocMap::iterator LocMapI;
860   LocMapI.setMap(locInts);
861   for (unsigned i = 0; i != NewRegs.size(); ++i) {
862     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
863     if (LI->empty())
864       continue;
865 
866     // Don't allocate the new LocNo until it is needed.
867     unsigned NewLocNo = UndefLocNo;
868 
869     // Iterate over the overlaps between locInts and LI.
870     LocMapI.find(LI->beginIndex());
871     if (!LocMapI.valid())
872       continue;
873     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
874     LiveInterval::iterator LIE = LI->end();
875     while (LocMapI.valid() && LII != LIE) {
876       // At this point, we know that LocMapI.stop() > LII->start.
877       LII = LI->advanceTo(LII, LocMapI.start());
878       if (LII == LIE)
879         break;
880 
881       // Now LII->end > LocMapI.start(). Do we have an overlap?
882       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
883         // Overlapping correct location. Allocate NewLocNo now.
884         if (NewLocNo == UndefLocNo) {
885           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
886           MO.setSubReg(locations[OldLocNo].getSubReg());
887           NewLocNo = getLocationNo(MO);
888           DidChange = true;
889         }
890 
891         SlotIndex LStart = LocMapI.start();
892         SlotIndex LStop  = LocMapI.stop();
893         DbgValueLocation OldLoc = LocMapI.value();
894 
895         // Trim LocMapI down to the LII overlap.
896         if (LStart < LII->start)
897           LocMapI.setStartUnchecked(LII->start);
898         if (LStop > LII->end)
899           LocMapI.setStopUnchecked(LII->end);
900 
901         // Change the value in the overlap. This may trigger coalescing.
902         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
903 
904         // Re-insert any removed OldLocNo ranges.
905         if (LStart < LocMapI.start()) {
906           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
907           ++LocMapI;
908           assert(LocMapI.valid() && "Unexpected coalescing");
909         }
910         if (LStop > LocMapI.stop()) {
911           ++LocMapI;
912           LocMapI.insert(LII->end, LStop, OldLoc);
913           --LocMapI;
914         }
915       }
916 
917       // Advance to the next overlap.
918       if (LII->end < LocMapI.stop()) {
919         if (++LII == LIE)
920           break;
921         LocMapI.advanceTo(LII->start);
922       } else {
923         ++LocMapI;
924         if (!LocMapI.valid())
925           break;
926         LII = LI->advanceTo(LII, LocMapI.start());
927       }
928     }
929   }
930 
931   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
932   locations.erase(locations.begin() + OldLocNo);
933   LocMapI.goToBegin();
934   while (LocMapI.valid()) {
935     DbgValueLocation v = LocMapI.value();
936     if (v.locNo() == OldLocNo) {
937       DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
938                    << LocMapI.stop() << ")\n");
939       LocMapI.erase();
940     } else {
941       if (v.locNo() > OldLocNo)
942         LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
943       ++LocMapI;
944     }
945   }
946 
947   DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);});
948   return DidChange;
949 }
950 
951 bool
952 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
953                          LiveIntervals &LIS) {
954   bool DidChange = false;
955   // Split locations referring to OldReg. Iterate backwards so splitLocation can
956   // safely erase unused locations.
957   for (unsigned i = locations.size(); i ; --i) {
958     unsigned LocNo = i-1;
959     const MachineOperand *Loc = &locations[LocNo];
960     if (!Loc->isReg() || Loc->getReg() != OldReg)
961       continue;
962     DidChange |= splitLocation(LocNo, NewRegs, LIS);
963   }
964   return DidChange;
965 }
966 
967 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
968   bool DidChange = false;
969   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
970     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
971 
972   if (!DidChange)
973     return;
974 
975   // Map all of the new virtual registers.
976   UserValue *UV = lookupVirtReg(OldReg);
977   for (unsigned i = 0; i != NewRegs.size(); ++i)
978     mapVirtReg(NewRegs[i], UV);
979 }
980 
981 void LiveDebugVariables::
982 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
983   if (pImpl)
984     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
985 }
986 
987 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
988                                  BitVector &SpilledLocations) {
989   // Build a set of new locations with new numbers so we can coalesce our
990   // IntervalMap if two vreg intervals collapse to the same physical location.
991   // Use MapVector instead of SetVector because MapVector::insert returns the
992   // position of the previously or newly inserted element. The boolean value
993   // tracks if the location was produced by a spill.
994   // FIXME: This will be problematic if we ever support direct and indirect
995   // frame index locations, i.e. expressing both variables in memory and
996   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
997   MapVector<MachineOperand, bool> NewLocations;
998   SmallVector<unsigned, 4> LocNoMap(locations.size());
999   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1000     bool Spilled = false;
1001     MachineOperand Loc = locations[I];
1002     // Only virtual registers are rewritten.
1003     if (Loc.isReg() && Loc.getReg() &&
1004         TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1005       unsigned VirtReg = Loc.getReg();
1006       if (VRM.isAssignedReg(VirtReg) &&
1007           TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1008         // This can create a %noreg operand in rare cases when the sub-register
1009         // index is no longer available. That means the user value is in a
1010         // non-existent sub-register, and %noreg is exactly what we want.
1011         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1012       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1013         // FIXME: Translate SubIdx to a stackslot offset.
1014         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1015         Spilled = true;
1016       } else {
1017         Loc.setReg(0);
1018         Loc.setSubReg(0);
1019       }
1020     }
1021 
1022     // Insert this location if it doesn't already exist and record a mapping
1023     // from the old number to the new number.
1024     auto InsertResult = NewLocations.insert({Loc, Spilled});
1025     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1026     LocNoMap[I] = NewLocNo;
1027   }
1028 
1029   // Rewrite the locations and record which ones were spill slots.
1030   locations.clear();
1031   SpilledLocations.clear();
1032   SpilledLocations.resize(NewLocations.size());
1033   for (auto &Pair : NewLocations) {
1034     locations.push_back(Pair.first);
1035     if (Pair.second) {
1036       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1037       SpilledLocations.set(NewLocNo);
1038     }
1039   }
1040 
1041   // Update the interval map, but only coalesce left, since intervals to the
1042   // right use the old location numbers. This should merge two contiguous
1043   // DBG_VALUE intervals with different vregs that were allocated to the same
1044   // physical register.
1045   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1046     DbgValueLocation Loc = I.value();
1047     unsigned NewLocNo = LocNoMap[Loc.locNo()];
1048     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1049     I.setStart(I.start());
1050   }
1051 }
1052 
1053 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE
1054 /// instruction.
1055 static MachineBasicBlock::iterator
1056 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1057                    LiveIntervals &LIS) {
1058   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1059   Idx = Idx.getBaseIndex();
1060 
1061   // Try to find an insert location by going backwards from Idx.
1062   MachineInstr *MI;
1063   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1064     // We've reached the beginning of MBB.
1065     if (Idx == Start) {
1066       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1067       return I;
1068     }
1069     Idx = Idx.getPrevIndex();
1070   }
1071 
1072   // Don't insert anything after the first terminator, though.
1073   return MI->isTerminator() ? MBB->getFirstTerminator() :
1074                               std::next(MachineBasicBlock::iterator(MI));
1075 }
1076 
1077 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx,
1078                                  DbgValueLocation Loc, bool Spilled,
1079                                  LiveIntervals &LIS,
1080                                  const TargetInstrInfo &TII) {
1081   MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1082   MachineOperand &MO = locations[Loc.locNo()];
1083   ++NumInsertedDebugValues;
1084 
1085   assert(cast<DILocalVariable>(Variable)
1086              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1087          "Expected inlined-at fields to agree");
1088 
1089   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1090   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1091   // that the original virtual register was a pointer.
1092   const DIExpression *Expr = Expression;
1093   bool IsIndirect = Loc.wasIndirect();
1094   if (Spilled) {
1095     if (IsIndirect)
1096       Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1097     IsIndirect = true;
1098   }
1099 
1100   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1101 
1102   MachineInstrBuilder MIB =
1103       BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE))
1104           .add(MO);
1105   if (IsIndirect)
1106     MIB.addImm(0U);
1107   else
1108     MIB.addReg(0U, RegState::Debug);
1109   MIB.addMetadata(Variable).addMetadata(Expr);
1110 }
1111 
1112 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1113                                 const TargetInstrInfo &TII,
1114                                 const BitVector &SpilledLocations) {
1115   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1116 
1117   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1118     SlotIndex Start = I.start();
1119     SlotIndex Stop = I.stop();
1120     DbgValueLocation Loc = I.value();
1121     bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false;
1122 
1123     // If the interval start was trimmed to the lexical scope insert the
1124     // DBG_VALUE at the previous index (otherwise it appears after the
1125     // first instruction in the range).
1126     if (trimmedDefs.count(Start))
1127       Start = Start.getPrevIndex();
1128 
1129     DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1130     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1131     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1132 
1133     DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
1134     insertDebugValue(&*MBB, Start, Loc, Spilled, LIS, TII);
1135     // This interval may span multiple basic blocks.
1136     // Insert a DBG_VALUE into each one.
1137     while(Stop > MBBEnd) {
1138       // Move to the next block.
1139       Start = MBBEnd;
1140       if (++MBB == MFEnd)
1141         break;
1142       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1143       DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
1144       insertDebugValue(&*MBB, Start, Loc, Spilled, LIS, TII);
1145     }
1146     DEBUG(dbgs() << '\n');
1147     if (MBB == MFEnd)
1148       break;
1149 
1150     ++I;
1151   }
1152 }
1153 
1154 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1155   DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1156   if (!MF)
1157     return;
1158   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1159   BitVector SpilledLocations;
1160   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1161     DEBUG(userValues[i]->print(dbgs(), TRI));
1162     userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations);
1163     userValues[i]->emitDebugValues(VRM, *LIS, *TII, SpilledLocations);
1164   }
1165   EmitDone = true;
1166 }
1167 
1168 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1169   if (pImpl)
1170     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1171 }
1172 
1173 bool LiveDebugVariables::doInitialization(Module &M) {
1174   return Pass::doInitialization(M);
1175 }
1176 
1177 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1178 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1179   if (pImpl)
1180     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1181 }
1182 #endif
1183