1 //===- InterleavedAccessPass.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Interleaved Access pass, which identifies 10 // interleaved memory accesses and transforms them into target specific 11 // intrinsics. 12 // 13 // An interleaved load reads data from memory into several vectors, with 14 // DE-interleaving the data on a factor. An interleaved store writes several 15 // vectors to memory with RE-interleaving the data on a factor. 16 // 17 // As interleaved accesses are difficult to identified in CodeGen (mainly 18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 19 // IR), we identify and transform them to intrinsics in this pass so the 20 // intrinsics can be easily matched into target specific instructions later in 21 // CodeGen. 22 // 23 // E.g. An interleaved load (Factor = 2): 24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> 26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> 27 // 28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 29 // intrinsic in ARM backend. 30 // 31 // In X86, this can be further optimized into a set of target 32 // specific loads followed by an optimized sequence of shuffles. 33 // 34 // E.g. An interleaved store (Factor = 3): 35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 37 // store <12 x i32> %i.vec, <12 x i32>* %ptr 38 // 39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 40 // intrinsic in ARM backend. 41 // 42 // Similarly, a set of interleaved stores can be transformed into an optimized 43 // sequence of shuffles followed by a set of target specific stores for X86. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SetVector.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/CodeGen/TargetLowering.h" 52 #include "llvm/CodeGen/TargetPassConfig.h" 53 #include "llvm/CodeGen/TargetSubtargetInfo.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstIterator.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include <cassert> 71 #include <utility> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "interleaved-access" 76 77 static cl::opt<bool> LowerInterleavedAccesses( 78 "lower-interleaved-accesses", 79 cl::desc("Enable lowering interleaved accesses to intrinsics"), 80 cl::init(true), cl::Hidden); 81 82 namespace { 83 84 class InterleavedAccess : public FunctionPass { 85 public: 86 static char ID; 87 88 InterleavedAccess() : FunctionPass(ID) { 89 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 90 } 91 92 StringRef getPassName() const override { return "Interleaved Access Pass"; } 93 94 bool runOnFunction(Function &F) override; 95 96 void getAnalysisUsage(AnalysisUsage &AU) const override { 97 AU.addRequired<DominatorTreeWrapperPass>(); 98 AU.setPreservesCFG(); 99 } 100 101 private: 102 DominatorTree *DT = nullptr; 103 const TargetLowering *TLI = nullptr; 104 105 /// The maximum supported interleave factor. 106 unsigned MaxFactor = 0u; 107 108 /// Transform an interleaved load into target specific intrinsics. 109 bool lowerInterleavedLoad(LoadInst *LI, 110 SmallVector<Instruction *, 32> &DeadInsts); 111 112 /// Transform an interleaved store into target specific intrinsics. 113 bool lowerInterleavedStore(StoreInst *SI, 114 SmallVector<Instruction *, 32> &DeadInsts); 115 116 /// Returns true if the uses of an interleaved load by the 117 /// extractelement instructions in \p Extracts can be replaced by uses of the 118 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 119 /// replacements are also performed. 120 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 121 ArrayRef<ShuffleVectorInst *> Shuffles); 122 123 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them 124 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an 125 /// interleaving load. Any newly created shuffles that operate on \p LI will 126 /// be added to \p Shuffles. Returns true, if any changes to the IR have been 127 /// made. 128 bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles, 129 SmallVectorImpl<ShuffleVectorInst *> &Shuffles, 130 LoadInst *LI); 131 }; 132 133 } // end anonymous namespace. 134 135 char InterleavedAccess::ID = 0; 136 137 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, 138 "Lower interleaved memory accesses to target specific intrinsics", false, 139 false) 140 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 141 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, 142 "Lower interleaved memory accesses to target specific intrinsics", false, 143 false) 144 145 FunctionPass *llvm::createInterleavedAccessPass() { 146 return new InterleavedAccess(); 147 } 148 149 /// Check if the mask is a DE-interleave mask of the given factor 150 /// \p Factor like: 151 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 152 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, 153 unsigned &Index) { 154 // Check all potential start indices from 0 to (Factor - 1). 155 for (Index = 0; Index < Factor; Index++) { 156 unsigned i = 0; 157 158 // Check that elements are in ascending order by Factor. Ignore undef 159 // elements. 160 for (; i < Mask.size(); i++) 161 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) 162 break; 163 164 if (i == Mask.size()) 165 return true; 166 } 167 168 return false; 169 } 170 171 /// Check if the mask is a DE-interleave mask for an interleaved load. 172 /// 173 /// E.g. DE-interleave masks (Factor = 2) could be: 174 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 175 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 176 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 177 unsigned &Index, unsigned MaxFactor, 178 unsigned NumLoadElements) { 179 if (Mask.size() < 2) 180 return false; 181 182 // Check potential Factors. 183 for (Factor = 2; Factor <= MaxFactor; Factor++) { 184 // Make sure we don't produce a load wider than the input load. 185 if (Mask.size() * Factor > NumLoadElements) 186 return false; 187 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 188 return true; 189 } 190 191 return false; 192 } 193 194 /// Check if the mask can be used in an interleaved store. 195 // 196 /// It checks for a more general pattern than the RE-interleave mask. 197 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> 198 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> 199 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 200 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> 201 /// 202 /// The particular case of an RE-interleave mask is: 203 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> 204 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> 205 static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor, 206 unsigned MaxFactor) { 207 unsigned NumElts = SVI->getShuffleMask().size(); 208 if (NumElts < 4) 209 return false; 210 211 // Check potential Factors. 212 for (Factor = 2; Factor <= MaxFactor; Factor++) { 213 if (SVI->isInterleave(Factor)) 214 return true; 215 } 216 217 return false; 218 } 219 220 bool InterleavedAccess::lowerInterleavedLoad( 221 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { 222 if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType())) 223 return false; 224 225 // Check if all users of this load are shufflevectors. If we encounter any 226 // users that are extractelement instructions or binary operators, we save 227 // them to later check if they can be modified to extract from one of the 228 // shufflevectors instead of the load. 229 230 SmallVector<ShuffleVectorInst *, 4> Shuffles; 231 SmallVector<ExtractElementInst *, 4> Extracts; 232 // BinOpShuffles need to be handled a single time in case both operands of the 233 // binop are the same load. 234 SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles; 235 236 for (auto *User : LI->users()) { 237 auto *Extract = dyn_cast<ExtractElementInst>(User); 238 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 239 Extracts.push_back(Extract); 240 continue; 241 } 242 if (auto *BI = dyn_cast<BinaryOperator>(User)) { 243 if (all_of(BI->users(), [](auto *U) { 244 auto *SVI = dyn_cast<ShuffleVectorInst>(U); 245 return SVI && isa<UndefValue>(SVI->getOperand(1)); 246 })) { 247 for (auto *SVI : BI->users()) 248 BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI)); 249 continue; 250 } 251 } 252 auto *SVI = dyn_cast<ShuffleVectorInst>(User); 253 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 254 return false; 255 256 Shuffles.push_back(SVI); 257 } 258 259 if (Shuffles.empty() && BinOpShuffles.empty()) 260 return false; 261 262 unsigned Factor, Index; 263 264 unsigned NumLoadElements = 265 cast<FixedVectorType>(LI->getType())->getNumElements(); 266 auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0]; 267 // Check if the first shufflevector is DE-interleave shuffle. 268 if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor, 269 NumLoadElements)) 270 return false; 271 272 // Holds the corresponding index for each DE-interleave shuffle. 273 SmallVector<unsigned, 4> Indices; 274 275 Type *VecTy = FirstSVI->getType(); 276 277 // Check if other shufflevectors are also DE-interleaved of the same type 278 // and factor as the first shufflevector. 279 for (auto *Shuffle : Shuffles) { 280 if (Shuffle->getType() != VecTy) 281 return false; 282 if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor, 283 Index)) 284 return false; 285 286 assert(Shuffle->getShuffleMask().size() <= NumLoadElements); 287 Indices.push_back(Index); 288 } 289 for (auto *Shuffle : BinOpShuffles) { 290 if (Shuffle->getType() != VecTy) 291 return false; 292 if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor, 293 Index)) 294 return false; 295 296 assert(Shuffle->getShuffleMask().size() <= NumLoadElements); 297 298 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI) 299 Indices.push_back(Index); 300 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI) 301 Indices.push_back(Index); 302 } 303 304 // Try and modify users of the load that are extractelement instructions to 305 // use the shufflevector instructions instead of the load. 306 if (!tryReplaceExtracts(Extracts, Shuffles)) 307 return false; 308 309 bool BinOpShuffleChanged = 310 replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI); 311 312 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 313 314 // Try to create target specific intrinsics to replace the load and shuffles. 315 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) { 316 // If Extracts is not empty, tryReplaceExtracts made changes earlier. 317 return !Extracts.empty() || BinOpShuffleChanged; 318 } 319 320 append_range(DeadInsts, Shuffles); 321 322 DeadInsts.push_back(LI); 323 return true; 324 } 325 326 bool InterleavedAccess::replaceBinOpShuffles( 327 ArrayRef<ShuffleVectorInst *> BinOpShuffles, 328 SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) { 329 for (auto *SVI : BinOpShuffles) { 330 BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0)); 331 Type *BIOp0Ty = BI->getOperand(0)->getType(); 332 ArrayRef<int> Mask = SVI->getShuffleMask(); 333 assert(all_of(Mask, [&](int Idx) { 334 return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements(); 335 })); 336 337 auto *NewSVI1 = 338 new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty), 339 Mask, SVI->getName(), SVI); 340 auto *NewSVI2 = new ShuffleVectorInst( 341 BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask, 342 SVI->getName(), SVI); 343 BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags( 344 BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), SVI); 345 SVI->replaceAllUsesWith(NewBI); 346 LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI 347 << "\n With : " << *NewSVI1 << "\n And : " 348 << *NewSVI2 << "\n And : " << *NewBI << "\n"); 349 RecursivelyDeleteTriviallyDeadInstructions(SVI); 350 if (NewSVI1->getOperand(0) == LI) 351 Shuffles.push_back(NewSVI1); 352 if (NewSVI2->getOperand(0) == LI) 353 Shuffles.push_back(NewSVI2); 354 } 355 356 return !BinOpShuffles.empty(); 357 } 358 359 bool InterleavedAccess::tryReplaceExtracts( 360 ArrayRef<ExtractElementInst *> Extracts, 361 ArrayRef<ShuffleVectorInst *> Shuffles) { 362 // If there aren't any extractelement instructions to modify, there's nothing 363 // to do. 364 if (Extracts.empty()) 365 return true; 366 367 // Maps extractelement instructions to vector-index pairs. The extractlement 368 // instructions will be modified to use the new vector and index operands. 369 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 370 371 for (auto *Extract : Extracts) { 372 // The vector index that is extracted. 373 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 374 auto Index = IndexOperand->getSExtValue(); 375 376 // Look for a suitable shufflevector instruction. The goal is to modify the 377 // extractelement instruction (which uses an interleaved load) to use one 378 // of the shufflevector instructions instead of the load. 379 for (auto *Shuffle : Shuffles) { 380 // If the shufflevector instruction doesn't dominate the extract, we 381 // can't create a use of it. 382 if (!DT->dominates(Shuffle, Extract)) 383 continue; 384 385 // Inspect the indices of the shufflevector instruction. If the shuffle 386 // selects the same index that is extracted, we can modify the 387 // extractelement instruction. 388 SmallVector<int, 4> Indices; 389 Shuffle->getShuffleMask(Indices); 390 for (unsigned I = 0; I < Indices.size(); ++I) 391 if (Indices[I] == Index) { 392 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 393 "Vector operations do not match"); 394 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 395 break; 396 } 397 398 // If we found a suitable shufflevector instruction, stop looking. 399 if (ReplacementMap.count(Extract)) 400 break; 401 } 402 403 // If we did not find a suitable shufflevector instruction, the 404 // extractelement instruction cannot be modified, so we must give up. 405 if (!ReplacementMap.count(Extract)) 406 return false; 407 } 408 409 // Finally, perform the replacements. 410 IRBuilder<> Builder(Extracts[0]->getContext()); 411 for (auto &Replacement : ReplacementMap) { 412 auto *Extract = Replacement.first; 413 auto *Vector = Replacement.second.first; 414 auto Index = Replacement.second.second; 415 Builder.SetInsertPoint(Extract); 416 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 417 Extract->eraseFromParent(); 418 } 419 420 return true; 421 } 422 423 bool InterleavedAccess::lowerInterleavedStore( 424 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { 425 if (!SI->isSimple()) 426 return false; 427 428 auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 429 if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType())) 430 return false; 431 432 // Check if the shufflevector is RE-interleave shuffle. 433 unsigned Factor; 434 if (!isReInterleaveMask(SVI, Factor, MaxFactor)) 435 return false; 436 437 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 438 439 // Try to create target specific intrinsics to replace the store and shuffle. 440 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 441 return false; 442 443 // Already have a new target specific interleaved store. Erase the old store. 444 DeadInsts.push_back(SI); 445 DeadInsts.push_back(SVI); 446 return true; 447 } 448 449 bool InterleavedAccess::runOnFunction(Function &F) { 450 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 451 if (!TPC || !LowerInterleavedAccesses) 452 return false; 453 454 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 455 456 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 457 auto &TM = TPC->getTM<TargetMachine>(); 458 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 459 MaxFactor = TLI->getMaxSupportedInterleaveFactor(); 460 461 // Holds dead instructions that will be erased later. 462 SmallVector<Instruction *, 32> DeadInsts; 463 bool Changed = false; 464 465 for (auto &I : instructions(F)) { 466 if (auto *LI = dyn_cast<LoadInst>(&I)) 467 Changed |= lowerInterleavedLoad(LI, DeadInsts); 468 469 if (auto *SI = dyn_cast<StoreInst>(&I)) 470 Changed |= lowerInterleavedStore(SI, DeadInsts); 471 } 472 473 for (auto *I : DeadInsts) 474 I->eraseFromParent(); 475 476 return Changed; 477 } 478