xref: /llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp (revision aab0ca3e794a212a2ac0a24a4a1a9ed18ad06267)
1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
12 //
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
16 //
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
22 //
23 // E.g. An interleaved load (Factor = 2):
24 //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26 //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
27 //
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
30 //
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
33 //
34 // E.g. An interleaved store (Factor = 3):
35 //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 //        store <12 x i32> %i.vec, <12 x i32>* %ptr
38 //
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
41 //
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/CodeGen/TargetLowering.h"
52 #include "llvm/CodeGen/TargetPassConfig.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstIterator.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include <cassert>
71 #include <utility>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "interleaved-access"
76 
77 static cl::opt<bool> LowerInterleavedAccesses(
78     "lower-interleaved-accesses",
79     cl::desc("Enable lowering interleaved accesses to intrinsics"),
80     cl::init(true), cl::Hidden);
81 
82 namespace {
83 
84 class InterleavedAccess : public FunctionPass {
85 public:
86   static char ID;
87 
88   InterleavedAccess() : FunctionPass(ID) {
89     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
90   }
91 
92   StringRef getPassName() const override { return "Interleaved Access Pass"; }
93 
94   bool runOnFunction(Function &F) override;
95 
96   void getAnalysisUsage(AnalysisUsage &AU) const override {
97     AU.addRequired<DominatorTreeWrapperPass>();
98     AU.setPreservesCFG();
99   }
100 
101 private:
102   DominatorTree *DT = nullptr;
103   const TargetLowering *TLI = nullptr;
104 
105   /// The maximum supported interleave factor.
106   unsigned MaxFactor = 0u;
107 
108   /// Transform an interleaved load into target specific intrinsics.
109   bool lowerInterleavedLoad(LoadInst *LI,
110                             SmallVector<Instruction *, 32> &DeadInsts);
111 
112   /// Transform an interleaved store into target specific intrinsics.
113   bool lowerInterleavedStore(StoreInst *SI,
114                              SmallVector<Instruction *, 32> &DeadInsts);
115 
116   /// Returns true if the uses of an interleaved load by the
117   /// extractelement instructions in \p Extracts can be replaced by uses of the
118   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
119   /// replacements are also performed.
120   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
121                           ArrayRef<ShuffleVectorInst *> Shuffles);
122 
123   /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
124   /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
125   /// interleaving load. Any newly created shuffles that operate on \p LI will
126   /// be added to \p Shuffles. Returns true, if any changes to the IR have been
127   /// made.
128   bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
129                             SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
130                             LoadInst *LI);
131 };
132 
133 } // end anonymous namespace.
134 
135 char InterleavedAccess::ID = 0;
136 
137 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
138     "Lower interleaved memory accesses to target specific intrinsics", false,
139     false)
140 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
141 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
142     "Lower interleaved memory accesses to target specific intrinsics", false,
143     false)
144 
145 FunctionPass *llvm::createInterleavedAccessPass() {
146   return new InterleavedAccess();
147 }
148 
149 /// Check if the mask is a DE-interleave mask of the given factor
150 /// \p Factor like:
151 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
152 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
153                                        unsigned &Index) {
154   // Check all potential start indices from 0 to (Factor - 1).
155   for (Index = 0; Index < Factor; Index++) {
156     unsigned i = 0;
157 
158     // Check that elements are in ascending order by Factor. Ignore undef
159     // elements.
160     for (; i < Mask.size(); i++)
161       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
162         break;
163 
164     if (i == Mask.size())
165       return true;
166   }
167 
168   return false;
169 }
170 
171 /// Check if the mask is a DE-interleave mask for an interleaved load.
172 ///
173 /// E.g. DE-interleave masks (Factor = 2) could be:
174 ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
175 ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
176 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
177                                unsigned &Index, unsigned MaxFactor,
178                                unsigned NumLoadElements) {
179   if (Mask.size() < 2)
180     return false;
181 
182   // Check potential Factors.
183   for (Factor = 2; Factor <= MaxFactor; Factor++) {
184     // Make sure we don't produce a load wider than the input load.
185     if (Mask.size() * Factor > NumLoadElements)
186       return false;
187     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
188       return true;
189   }
190 
191   return false;
192 }
193 
194 /// Check if the mask can be used in an interleaved store.
195 //
196 /// It checks for a more general pattern than the RE-interleave mask.
197 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
198 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
199 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
200 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
201 ///
202 /// The particular case of an RE-interleave mask is:
203 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
204 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
205 static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor,
206                                unsigned MaxFactor) {
207   unsigned NumElts = SVI->getShuffleMask().size();
208   if (NumElts < 4)
209     return false;
210 
211   // Check potential Factors.
212   for (Factor = 2; Factor <= MaxFactor; Factor++) {
213     if (SVI->isInterleave(Factor))
214       return true;
215   }
216 
217   return false;
218 }
219 
220 bool InterleavedAccess::lowerInterleavedLoad(
221     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
222   if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
223     return false;
224 
225   // Check if all users of this load are shufflevectors. If we encounter any
226   // users that are extractelement instructions or binary operators, we save
227   // them to later check if they can be modified to extract from one of the
228   // shufflevectors instead of the load.
229 
230   SmallVector<ShuffleVectorInst *, 4> Shuffles;
231   SmallVector<ExtractElementInst *, 4> Extracts;
232   // BinOpShuffles need to be handled a single time in case both operands of the
233   // binop are the same load.
234   SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
235 
236   for (auto *User : LI->users()) {
237     auto *Extract = dyn_cast<ExtractElementInst>(User);
238     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
239       Extracts.push_back(Extract);
240       continue;
241     }
242     if (auto *BI = dyn_cast<BinaryOperator>(User)) {
243       if (all_of(BI->users(), [](auto *U) {
244             auto *SVI = dyn_cast<ShuffleVectorInst>(U);
245             return SVI && isa<UndefValue>(SVI->getOperand(1));
246           })) {
247         for (auto *SVI : BI->users())
248           BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI));
249         continue;
250       }
251     }
252     auto *SVI = dyn_cast<ShuffleVectorInst>(User);
253     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
254       return false;
255 
256     Shuffles.push_back(SVI);
257   }
258 
259   if (Shuffles.empty() && BinOpShuffles.empty())
260     return false;
261 
262   unsigned Factor, Index;
263 
264   unsigned NumLoadElements =
265       cast<FixedVectorType>(LI->getType())->getNumElements();
266   auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
267   // Check if the first shufflevector is DE-interleave shuffle.
268   if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
269                           NumLoadElements))
270     return false;
271 
272   // Holds the corresponding index for each DE-interleave shuffle.
273   SmallVector<unsigned, 4> Indices;
274 
275   Type *VecTy = FirstSVI->getType();
276 
277   // Check if other shufflevectors are also DE-interleaved of the same type
278   // and factor as the first shufflevector.
279   for (auto *Shuffle : Shuffles) {
280     if (Shuffle->getType() != VecTy)
281       return false;
282     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
283                                     Index))
284       return false;
285 
286     assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
287     Indices.push_back(Index);
288   }
289   for (auto *Shuffle : BinOpShuffles) {
290     if (Shuffle->getType() != VecTy)
291       return false;
292     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
293                                     Index))
294       return false;
295 
296     assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
297 
298     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
299       Indices.push_back(Index);
300     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
301       Indices.push_back(Index);
302   }
303 
304   // Try and modify users of the load that are extractelement instructions to
305   // use the shufflevector instructions instead of the load.
306   if (!tryReplaceExtracts(Extracts, Shuffles))
307     return false;
308 
309   bool BinOpShuffleChanged =
310       replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
311 
312   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
313 
314   // Try to create target specific intrinsics to replace the load and shuffles.
315   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
316     // If Extracts is not empty, tryReplaceExtracts made changes earlier.
317     return !Extracts.empty() || BinOpShuffleChanged;
318   }
319 
320   append_range(DeadInsts, Shuffles);
321 
322   DeadInsts.push_back(LI);
323   return true;
324 }
325 
326 bool InterleavedAccess::replaceBinOpShuffles(
327     ArrayRef<ShuffleVectorInst *> BinOpShuffles,
328     SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
329   for (auto *SVI : BinOpShuffles) {
330     BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
331     Type *BIOp0Ty = BI->getOperand(0)->getType();
332     ArrayRef<int> Mask = SVI->getShuffleMask();
333     assert(all_of(Mask, [&](int Idx) {
334       return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
335     }));
336 
337     auto *NewSVI1 =
338         new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
339                               Mask, SVI->getName(), SVI);
340     auto *NewSVI2 = new ShuffleVectorInst(
341         BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
342         SVI->getName(), SVI);
343     BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags(
344         BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), SVI);
345     SVI->replaceAllUsesWith(NewBI);
346     LLVM_DEBUG(dbgs() << "  Replaced: " << *BI << "\n    And   : " << *SVI
347                       << "\n  With    : " << *NewSVI1 << "\n    And   : "
348                       << *NewSVI2 << "\n    And   : " << *NewBI << "\n");
349     RecursivelyDeleteTriviallyDeadInstructions(SVI);
350     if (NewSVI1->getOperand(0) == LI)
351       Shuffles.push_back(NewSVI1);
352     if (NewSVI2->getOperand(0) == LI)
353       Shuffles.push_back(NewSVI2);
354   }
355 
356   return !BinOpShuffles.empty();
357 }
358 
359 bool InterleavedAccess::tryReplaceExtracts(
360     ArrayRef<ExtractElementInst *> Extracts,
361     ArrayRef<ShuffleVectorInst *> Shuffles) {
362   // If there aren't any extractelement instructions to modify, there's nothing
363   // to do.
364   if (Extracts.empty())
365     return true;
366 
367   // Maps extractelement instructions to vector-index pairs. The extractlement
368   // instructions will be modified to use the new vector and index operands.
369   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
370 
371   for (auto *Extract : Extracts) {
372     // The vector index that is extracted.
373     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
374     auto Index = IndexOperand->getSExtValue();
375 
376     // Look for a suitable shufflevector instruction. The goal is to modify the
377     // extractelement instruction (which uses an interleaved load) to use one
378     // of the shufflevector instructions instead of the load.
379     for (auto *Shuffle : Shuffles) {
380       // If the shufflevector instruction doesn't dominate the extract, we
381       // can't create a use of it.
382       if (!DT->dominates(Shuffle, Extract))
383         continue;
384 
385       // Inspect the indices of the shufflevector instruction. If the shuffle
386       // selects the same index that is extracted, we can modify the
387       // extractelement instruction.
388       SmallVector<int, 4> Indices;
389       Shuffle->getShuffleMask(Indices);
390       for (unsigned I = 0; I < Indices.size(); ++I)
391         if (Indices[I] == Index) {
392           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
393                  "Vector operations do not match");
394           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
395           break;
396         }
397 
398       // If we found a suitable shufflevector instruction, stop looking.
399       if (ReplacementMap.count(Extract))
400         break;
401     }
402 
403     // If we did not find a suitable shufflevector instruction, the
404     // extractelement instruction cannot be modified, so we must give up.
405     if (!ReplacementMap.count(Extract))
406       return false;
407   }
408 
409   // Finally, perform the replacements.
410   IRBuilder<> Builder(Extracts[0]->getContext());
411   for (auto &Replacement : ReplacementMap) {
412     auto *Extract = Replacement.first;
413     auto *Vector = Replacement.second.first;
414     auto Index = Replacement.second.second;
415     Builder.SetInsertPoint(Extract);
416     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
417     Extract->eraseFromParent();
418   }
419 
420   return true;
421 }
422 
423 bool InterleavedAccess::lowerInterleavedStore(
424     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
425   if (!SI->isSimple())
426     return false;
427 
428   auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
429   if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
430     return false;
431 
432   // Check if the shufflevector is RE-interleave shuffle.
433   unsigned Factor;
434   if (!isReInterleaveMask(SVI, Factor, MaxFactor))
435     return false;
436 
437   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
438 
439   // Try to create target specific intrinsics to replace the store and shuffle.
440   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
441     return false;
442 
443   // Already have a new target specific interleaved store. Erase the old store.
444   DeadInsts.push_back(SI);
445   DeadInsts.push_back(SVI);
446   return true;
447 }
448 
449 bool InterleavedAccess::runOnFunction(Function &F) {
450   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
451   if (!TPC || !LowerInterleavedAccesses)
452     return false;
453 
454   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
455 
456   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
457   auto &TM = TPC->getTM<TargetMachine>();
458   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
459   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
460 
461   // Holds dead instructions that will be erased later.
462   SmallVector<Instruction *, 32> DeadInsts;
463   bool Changed = false;
464 
465   for (auto &I : instructions(F)) {
466     if (auto *LI = dyn_cast<LoadInst>(&I))
467       Changed |= lowerInterleavedLoad(LI, DeadInsts);
468 
469     if (auto *SI = dyn_cast<StoreInst>(&I))
470       Changed |= lowerInterleavedStore(SI, DeadInsts);
471   }
472 
473   for (auto *I : DeadInsts)
474     I->eraseFromParent();
475 
476   return Changed;
477 }
478