xref: /llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp (revision 735ab61ac828bd61398e6847d60e308fdf2b54ec)
1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
12 //
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
16 //
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
22 //
23 // E.g. An interleaved load (Factor = 2):
24 //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26 //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
27 //
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
30 //
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
33 //
34 // E.g. An interleaved store (Factor = 3):
35 //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 //        store <12 x i32> %i.vec, <12 x i32>* %ptr
38 //
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
41 //
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/CodeGen/InterleavedAccess.h"
52 #include "llvm/CodeGen/TargetLowering.h"
53 #include "llvm/CodeGen/TargetPassConfig.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstIterator.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include <cassert>
72 #include <utility>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "interleaved-access"
77 
78 static cl::opt<bool> LowerInterleavedAccesses(
79     "lower-interleaved-accesses",
80     cl::desc("Enable lowering interleaved accesses to intrinsics"),
81     cl::init(true), cl::Hidden);
82 
83 namespace {
84 
85 class InterleavedAccessImpl {
86   friend class InterleavedAccess;
87 
88 public:
89   InterleavedAccessImpl() = default;
90   InterleavedAccessImpl(DominatorTree *DT, const TargetLowering *TLI)
91       : DT(DT), TLI(TLI), MaxFactor(TLI->getMaxSupportedInterleaveFactor()) {}
92   bool runOnFunction(Function &F);
93 
94 private:
95   DominatorTree *DT = nullptr;
96   const TargetLowering *TLI = nullptr;
97 
98   /// The maximum supported interleave factor.
99   unsigned MaxFactor = 0u;
100 
101   /// Transform an interleaved load into target specific intrinsics.
102   bool lowerInterleavedLoad(LoadInst *LI,
103                             SmallVectorImpl<Instruction *> &DeadInsts);
104 
105   /// Transform an interleaved store into target specific intrinsics.
106   bool lowerInterleavedStore(StoreInst *SI,
107                              SmallVectorImpl<Instruction *> &DeadInsts);
108 
109   /// Transform a load and a deinterleave intrinsic into target specific
110   /// instructions.
111   bool lowerDeinterleaveIntrinsic(IntrinsicInst *II,
112                                   SmallVectorImpl<Instruction *> &DeadInsts);
113 
114   /// Transform an interleave intrinsic and a store into target specific
115   /// instructions.
116   bool lowerInterleaveIntrinsic(IntrinsicInst *II,
117                                 SmallVectorImpl<Instruction *> &DeadInsts);
118 
119   /// Returns true if the uses of an interleaved load by the
120   /// extractelement instructions in \p Extracts can be replaced by uses of the
121   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
122   /// replacements are also performed.
123   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
124                           ArrayRef<ShuffleVectorInst *> Shuffles);
125 
126   /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
127   /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
128   /// interleaving load. Any newly created shuffles that operate on \p LI will
129   /// be added to \p Shuffles. Returns true, if any changes to the IR have been
130   /// made.
131   bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
132                             SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
133                             LoadInst *LI);
134 };
135 
136 class InterleavedAccess : public FunctionPass {
137   InterleavedAccessImpl Impl;
138 
139 public:
140   static char ID;
141 
142   InterleavedAccess() : FunctionPass(ID) {
143     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
144   }
145 
146   StringRef getPassName() const override { return "Interleaved Access Pass"; }
147 
148   bool runOnFunction(Function &F) override;
149 
150   void getAnalysisUsage(AnalysisUsage &AU) const override {
151     AU.addRequired<DominatorTreeWrapperPass>();
152     AU.setPreservesCFG();
153   }
154 };
155 
156 } // end anonymous namespace.
157 
158 PreservedAnalyses InterleavedAccessPass::run(Function &F,
159                                              FunctionAnalysisManager &FAM) {
160   auto *DT = &FAM.getResult<DominatorTreeAnalysis>(F);
161   auto *TLI = TM->getSubtargetImpl(F)->getTargetLowering();
162   InterleavedAccessImpl Impl(DT, TLI);
163   bool Changed = Impl.runOnFunction(F);
164 
165   if (!Changed)
166     return PreservedAnalyses::all();
167 
168   PreservedAnalyses PA;
169   PA.preserveSet<CFGAnalyses>();
170   return PA;
171 }
172 
173 char InterleavedAccess::ID = 0;
174 
175 bool InterleavedAccess::runOnFunction(Function &F) {
176   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
177   if (!TPC || !LowerInterleavedAccesses)
178     return false;
179 
180   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
181 
182   Impl.DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
183   auto &TM = TPC->getTM<TargetMachine>();
184   Impl.TLI = TM.getSubtargetImpl(F)->getTargetLowering();
185   Impl.MaxFactor = Impl.TLI->getMaxSupportedInterleaveFactor();
186 
187   return Impl.runOnFunction(F);
188 }
189 
190 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
191     "Lower interleaved memory accesses to target specific intrinsics", false,
192     false)
193 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
194 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
195     "Lower interleaved memory accesses to target specific intrinsics", false,
196     false)
197 
198 FunctionPass *llvm::createInterleavedAccessPass() {
199   return new InterleavedAccess();
200 }
201 
202 /// Check if the mask is a DE-interleave mask for an interleaved load.
203 ///
204 /// E.g. DE-interleave masks (Factor = 2) could be:
205 ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
206 ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
207 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
208                                unsigned &Index, unsigned MaxFactor,
209                                unsigned NumLoadElements) {
210   if (Mask.size() < 2)
211     return false;
212 
213   // Check potential Factors.
214   for (Factor = 2; Factor <= MaxFactor; Factor++) {
215     // Make sure we don't produce a load wider than the input load.
216     if (Mask.size() * Factor > NumLoadElements)
217       return false;
218     if (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, Factor, Index))
219       return true;
220   }
221 
222   return false;
223 }
224 
225 /// Check if the mask can be used in an interleaved store.
226 //
227 /// It checks for a more general pattern than the RE-interleave mask.
228 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
229 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
230 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
231 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
232 ///
233 /// The particular case of an RE-interleave mask is:
234 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
235 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
236 static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor,
237                                unsigned MaxFactor) {
238   unsigned NumElts = SVI->getShuffleMask().size();
239   if (NumElts < 4)
240     return false;
241 
242   // Check potential Factors.
243   for (Factor = 2; Factor <= MaxFactor; Factor++) {
244     if (SVI->isInterleave(Factor))
245       return true;
246   }
247 
248   return false;
249 }
250 
251 bool InterleavedAccessImpl::lowerInterleavedLoad(
252     LoadInst *LI, SmallVectorImpl<Instruction *> &DeadInsts) {
253   if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
254     return false;
255 
256   // Check if all users of this load are shufflevectors. If we encounter any
257   // users that are extractelement instructions or binary operators, we save
258   // them to later check if they can be modified to extract from one of the
259   // shufflevectors instead of the load.
260 
261   SmallVector<ShuffleVectorInst *, 4> Shuffles;
262   SmallVector<ExtractElementInst *, 4> Extracts;
263   // BinOpShuffles need to be handled a single time in case both operands of the
264   // binop are the same load.
265   SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
266 
267   for (auto *User : LI->users()) {
268     auto *Extract = dyn_cast<ExtractElementInst>(User);
269     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
270       Extracts.push_back(Extract);
271       continue;
272     }
273     if (auto *BI = dyn_cast<BinaryOperator>(User)) {
274       if (!BI->user_empty() && all_of(BI->users(), [](auto *U) {
275             auto *SVI = dyn_cast<ShuffleVectorInst>(U);
276             return SVI && isa<UndefValue>(SVI->getOperand(1));
277           })) {
278         for (auto *SVI : BI->users())
279           BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI));
280         continue;
281       }
282     }
283     auto *SVI = dyn_cast<ShuffleVectorInst>(User);
284     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
285       return false;
286 
287     Shuffles.push_back(SVI);
288   }
289 
290   if (Shuffles.empty() && BinOpShuffles.empty())
291     return false;
292 
293   unsigned Factor, Index;
294 
295   unsigned NumLoadElements =
296       cast<FixedVectorType>(LI->getType())->getNumElements();
297   auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
298   // Check if the first shufflevector is DE-interleave shuffle.
299   if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
300                           NumLoadElements))
301     return false;
302 
303   // Holds the corresponding index for each DE-interleave shuffle.
304   SmallVector<unsigned, 4> Indices;
305 
306   Type *VecTy = FirstSVI->getType();
307 
308   // Check if other shufflevectors are also DE-interleaved of the same type
309   // and factor as the first shufflevector.
310   for (auto *Shuffle : Shuffles) {
311     if (Shuffle->getType() != VecTy)
312       return false;
313     if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor(
314             Shuffle->getShuffleMask(), Factor, Index))
315       return false;
316 
317     assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
318     Indices.push_back(Index);
319   }
320   for (auto *Shuffle : BinOpShuffles) {
321     if (Shuffle->getType() != VecTy)
322       return false;
323     if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor(
324             Shuffle->getShuffleMask(), Factor, Index))
325       return false;
326 
327     assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
328 
329     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
330       Indices.push_back(Index);
331     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
332       Indices.push_back(Index);
333   }
334 
335   // Try and modify users of the load that are extractelement instructions to
336   // use the shufflevector instructions instead of the load.
337   if (!tryReplaceExtracts(Extracts, Shuffles))
338     return false;
339 
340   bool BinOpShuffleChanged =
341       replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
342 
343   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
344 
345   // Try to create target specific intrinsics to replace the load and shuffles.
346   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
347     // If Extracts is not empty, tryReplaceExtracts made changes earlier.
348     return !Extracts.empty() || BinOpShuffleChanged;
349   }
350 
351   append_range(DeadInsts, Shuffles);
352 
353   DeadInsts.push_back(LI);
354   return true;
355 }
356 
357 bool InterleavedAccessImpl::replaceBinOpShuffles(
358     ArrayRef<ShuffleVectorInst *> BinOpShuffles,
359     SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
360   for (auto *SVI : BinOpShuffles) {
361     BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
362     Type *BIOp0Ty = BI->getOperand(0)->getType();
363     ArrayRef<int> Mask = SVI->getShuffleMask();
364     assert(all_of(Mask, [&](int Idx) {
365       return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
366     }));
367 
368     BasicBlock::iterator insertPos = SVI->getIterator();
369     auto *NewSVI1 =
370         new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
371                               Mask, SVI->getName(), insertPos);
372     auto *NewSVI2 = new ShuffleVectorInst(
373         BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
374         SVI->getName(), insertPos);
375     BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags(
376         BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), insertPos);
377     SVI->replaceAllUsesWith(NewBI);
378     LLVM_DEBUG(dbgs() << "  Replaced: " << *BI << "\n    And   : " << *SVI
379                       << "\n  With    : " << *NewSVI1 << "\n    And   : "
380                       << *NewSVI2 << "\n    And   : " << *NewBI << "\n");
381     RecursivelyDeleteTriviallyDeadInstructions(SVI);
382     if (NewSVI1->getOperand(0) == LI)
383       Shuffles.push_back(NewSVI1);
384     if (NewSVI2->getOperand(0) == LI)
385       Shuffles.push_back(NewSVI2);
386   }
387 
388   return !BinOpShuffles.empty();
389 }
390 
391 bool InterleavedAccessImpl::tryReplaceExtracts(
392     ArrayRef<ExtractElementInst *> Extracts,
393     ArrayRef<ShuffleVectorInst *> Shuffles) {
394   // If there aren't any extractelement instructions to modify, there's nothing
395   // to do.
396   if (Extracts.empty())
397     return true;
398 
399   // Maps extractelement instructions to vector-index pairs. The extractlement
400   // instructions will be modified to use the new vector and index operands.
401   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
402 
403   for (auto *Extract : Extracts) {
404     // The vector index that is extracted.
405     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
406     auto Index = IndexOperand->getSExtValue();
407 
408     // Look for a suitable shufflevector instruction. The goal is to modify the
409     // extractelement instruction (which uses an interleaved load) to use one
410     // of the shufflevector instructions instead of the load.
411     for (auto *Shuffle : Shuffles) {
412       // If the shufflevector instruction doesn't dominate the extract, we
413       // can't create a use of it.
414       if (!DT->dominates(Shuffle, Extract))
415         continue;
416 
417       // Inspect the indices of the shufflevector instruction. If the shuffle
418       // selects the same index that is extracted, we can modify the
419       // extractelement instruction.
420       SmallVector<int, 4> Indices;
421       Shuffle->getShuffleMask(Indices);
422       for (unsigned I = 0; I < Indices.size(); ++I)
423         if (Indices[I] == Index) {
424           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
425                  "Vector operations do not match");
426           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
427           break;
428         }
429 
430       // If we found a suitable shufflevector instruction, stop looking.
431       if (ReplacementMap.count(Extract))
432         break;
433     }
434 
435     // If we did not find a suitable shufflevector instruction, the
436     // extractelement instruction cannot be modified, so we must give up.
437     if (!ReplacementMap.count(Extract))
438       return false;
439   }
440 
441   // Finally, perform the replacements.
442   IRBuilder<> Builder(Extracts[0]->getContext());
443   for (auto &Replacement : ReplacementMap) {
444     auto *Extract = Replacement.first;
445     auto *Vector = Replacement.second.first;
446     auto Index = Replacement.second.second;
447     Builder.SetInsertPoint(Extract);
448     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
449     Extract->eraseFromParent();
450   }
451 
452   return true;
453 }
454 
455 bool InterleavedAccessImpl::lowerInterleavedStore(
456     StoreInst *SI, SmallVectorImpl<Instruction *> &DeadInsts) {
457   if (!SI->isSimple())
458     return false;
459 
460   auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
461   if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
462     return false;
463 
464   // Check if the shufflevector is RE-interleave shuffle.
465   unsigned Factor;
466   if (!isReInterleaveMask(SVI, Factor, MaxFactor))
467     return false;
468 
469   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
470 
471   // Try to create target specific intrinsics to replace the store and shuffle.
472   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
473     return false;
474 
475   // Already have a new target specific interleaved store. Erase the old store.
476   DeadInsts.push_back(SI);
477   DeadInsts.push_back(SVI);
478   return true;
479 }
480 
481 bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic(
482     IntrinsicInst *DI, SmallVectorImpl<Instruction *> &DeadInsts) {
483   LoadInst *LI = dyn_cast<LoadInst>(DI->getOperand(0));
484 
485   if (!LI || !LI->hasOneUse() || !LI->isSimple())
486     return false;
487 
488   LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI << "\n");
489 
490   // Try and match this with target specific intrinsics.
491   if (!TLI->lowerDeinterleaveIntrinsicToLoad(DI, LI, DeadInsts))
492     return false;
493 
494   // We now have a target-specific load, so delete the old one.
495   DeadInsts.push_back(DI);
496   DeadInsts.push_back(LI);
497   return true;
498 }
499 
500 bool InterleavedAccessImpl::lowerInterleaveIntrinsic(
501     IntrinsicInst *II, SmallVectorImpl<Instruction *> &DeadInsts) {
502   if (!II->hasOneUse())
503     return false;
504 
505   StoreInst *SI = dyn_cast<StoreInst>(*(II->users().begin()));
506 
507   if (!SI || !SI->isSimple())
508     return false;
509 
510   LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II << "\n");
511 
512   SmallVector<Instruction *, 4> InterleaveDeadInsts;
513   // Try and match this with target specific intrinsics.
514   if (!TLI->lowerInterleaveIntrinsicToStore(II, SI, InterleaveDeadInsts))
515     return false;
516 
517   // We now have a target-specific store, so delete the old one.
518   DeadInsts.push_back(SI);
519   DeadInsts.push_back(II);
520   DeadInsts.insert(DeadInsts.end(), InterleaveDeadInsts.begin(),
521                    InterleaveDeadInsts.end());
522   return true;
523 }
524 
525 bool InterleavedAccessImpl::runOnFunction(Function &F) {
526   // Holds dead instructions that will be erased later.
527   SmallVector<Instruction *, 32> DeadInsts;
528   bool Changed = false;
529 
530   for (auto &I : instructions(F)) {
531     if (auto *LI = dyn_cast<LoadInst>(&I))
532       Changed |= lowerInterleavedLoad(LI, DeadInsts);
533 
534     if (auto *SI = dyn_cast<StoreInst>(&I))
535       Changed |= lowerInterleavedStore(SI, DeadInsts);
536 
537     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
538       // At present, we only have intrinsics to represent (de)interleaving
539       // with a factor of 2.
540       if (II->getIntrinsicID() == Intrinsic::vector_deinterleave2)
541         Changed |= lowerDeinterleaveIntrinsic(II, DeadInsts);
542       else if (II->getIntrinsicID() == Intrinsic::vector_interleave2)
543         Changed |= lowerInterleaveIntrinsic(II, DeadInsts);
544     }
545   }
546 
547   for (auto *I : DeadInsts)
548     I->eraseFromParent();
549 
550   return Changed;
551 }
552