1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/LiveStacks.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineInstrBundle.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SlotIndexes.h" 39 #include "llvm/CodeGen/Spiller.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetOpcodes.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/VirtRegMap.h" 46 #include "llvm/Config/llvm-config.h" 47 #include "llvm/Support/BlockFrequency.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <cassert> 55 #include <iterator> 56 #include <tuple> 57 #include <utility> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "regalloc" 62 63 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 64 STATISTIC(NumSnippets, "Number of spilled snippets"); 65 STATISTIC(NumSpills, "Number of spills inserted"); 66 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 67 STATISTIC(NumReloads, "Number of reloads inserted"); 68 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 69 STATISTIC(NumFolded, "Number of folded stack accesses"); 70 STATISTIC(NumFoldedLoads, "Number of folded loads"); 71 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 72 73 static cl::opt<bool> 74 RestrictStatepointRemat("restrict-statepoint-remat", 75 cl::init(false), cl::Hidden, 76 cl::desc("Restrict remat for statepoint operands")); 77 78 namespace { 79 80 class HoistSpillHelper : private LiveRangeEdit::Delegate { 81 MachineFunction &MF; 82 LiveIntervals &LIS; 83 LiveStacks &LSS; 84 MachineDominatorTree &MDT; 85 VirtRegMap &VRM; 86 MachineRegisterInfo &MRI; 87 const TargetInstrInfo &TII; 88 const TargetRegisterInfo &TRI; 89 const MachineBlockFrequencyInfo &MBFI; 90 91 InsertPointAnalysis IPA; 92 93 // Map from StackSlot to the LiveInterval of the original register. 94 // Note the LiveInterval of the original register may have been deleted 95 // after it is spilled. We keep a copy here to track the range where 96 // spills can be moved. 97 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 98 99 // Map from pair of (StackSlot and Original VNI) to a set of spills which 100 // have the same stackslot and have equal values defined by Original VNI. 101 // These spills are mergeable and are hoist candidates. 102 using MergeableSpillsMap = 103 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 104 MergeableSpillsMap MergeableSpills; 105 106 /// This is the map from original register to a set containing all its 107 /// siblings. To hoist a spill to another BB, we need to find out a live 108 /// sibling there and use it as the source of the new spill. 109 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 110 111 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 112 MachineBasicBlock &BB, Register &LiveReg); 113 114 void rmRedundantSpills( 115 SmallPtrSet<MachineInstr *, 16> &Spills, 116 SmallVectorImpl<MachineInstr *> &SpillsToRm, 117 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 118 119 void getVisitOrders( 120 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 121 SmallVectorImpl<MachineDomTreeNode *> &Orders, 122 SmallVectorImpl<MachineInstr *> &SpillsToRm, 123 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 124 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 125 126 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 127 SmallPtrSet<MachineInstr *, 16> &Spills, 128 SmallVectorImpl<MachineInstr *> &SpillsToRm, 129 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 130 131 public: 132 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 133 VirtRegMap &vrm) 134 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 135 LSS(pass.getAnalysis<LiveStacks>()), 136 MDT(pass.getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()), 137 VRM(vrm), MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 138 TRI(*mf.getSubtarget().getRegisterInfo()), 139 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 140 IPA(LIS, mf.getNumBlockIDs()) {} 141 142 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 143 unsigned Original); 144 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 145 void hoistAllSpills(); 146 void LRE_DidCloneVirtReg(Register, Register) override; 147 }; 148 149 class InlineSpiller : public Spiller { 150 MachineFunction &MF; 151 LiveIntervals &LIS; 152 LiveStacks &LSS; 153 MachineDominatorTree &MDT; 154 VirtRegMap &VRM; 155 MachineRegisterInfo &MRI; 156 const TargetInstrInfo &TII; 157 const TargetRegisterInfo &TRI; 158 const MachineBlockFrequencyInfo &MBFI; 159 160 // Variables that are valid during spill(), but used by multiple methods. 161 LiveRangeEdit *Edit = nullptr; 162 LiveInterval *StackInt = nullptr; 163 int StackSlot; 164 Register Original; 165 166 // All registers to spill to StackSlot, including the main register. 167 SmallVector<Register, 8> RegsToSpill; 168 169 // All COPY instructions to/from snippets. 170 // They are ignored since both operands refer to the same stack slot. 171 // For bundled copies, this will only include the first header copy. 172 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 173 174 // Values that failed to remat at some point. 175 SmallPtrSet<VNInfo*, 8> UsedValues; 176 177 // Dead defs generated during spilling. 178 SmallVector<MachineInstr*, 8> DeadDefs; 179 180 // Object records spills information and does the hoisting. 181 HoistSpillHelper HSpiller; 182 183 // Live range weight calculator. 184 VirtRegAuxInfo &VRAI; 185 186 ~InlineSpiller() override = default; 187 188 public: 189 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, 190 VirtRegAuxInfo &VRAI) 191 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()), 192 LSS(Pass.getAnalysis<LiveStacks>()), 193 MDT(Pass.getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()), 194 VRM(VRM), MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), 195 TRI(*MF.getSubtarget().getRegisterInfo()), 196 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()), 197 HSpiller(Pass, MF, VRM), VRAI(VRAI) {} 198 199 void spill(LiveRangeEdit &) override; 200 void postOptimization() override; 201 202 private: 203 bool isSnippet(const LiveInterval &SnipLI); 204 void collectRegsToSpill(); 205 206 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 207 208 bool isSibling(Register Reg); 209 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 210 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 211 212 void markValueUsed(LiveInterval*, VNInfo*); 213 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 214 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 215 void reMaterializeAll(); 216 217 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 218 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 219 MachineInstr *LoadMI = nullptr); 220 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 221 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 222 223 void spillAroundUses(Register Reg); 224 void spillAll(); 225 }; 226 227 } // end anonymous namespace 228 229 Spiller::~Spiller() = default; 230 231 void Spiller::anchor() {} 232 233 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, 234 MachineFunction &MF, VirtRegMap &VRM, 235 VirtRegAuxInfo &VRAI) { 236 return new InlineSpiller(Pass, MF, VRM, VRAI); 237 } 238 239 //===----------------------------------------------------------------------===// 240 // Snippets 241 //===----------------------------------------------------------------------===// 242 243 // When spilling a virtual register, we also spill any snippets it is connected 244 // to. The snippets are small live ranges that only have a single real use, 245 // leftovers from live range splitting. Spilling them enables memory operand 246 // folding or tightens the live range around the single use. 247 // 248 // This minimizes register pressure and maximizes the store-to-load distance for 249 // spill slots which can be important in tight loops. 250 251 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 252 /// otherwise return 0. 253 static Register isCopyOf(const MachineInstr &MI, Register Reg, 254 const TargetInstrInfo &TII) { 255 if (!TII.isCopyInstr(MI)) 256 return Register(); 257 258 const MachineOperand &DstOp = MI.getOperand(0); 259 const MachineOperand &SrcOp = MI.getOperand(1); 260 261 // TODO: Probably only worth allowing subreg copies with undef dests. 262 if (DstOp.getSubReg() != SrcOp.getSubReg()) 263 return Register(); 264 if (DstOp.getReg() == Reg) 265 return SrcOp.getReg(); 266 if (SrcOp.getReg() == Reg) 267 return DstOp.getReg(); 268 return Register(); 269 } 270 271 /// Check for a copy bundle as formed by SplitKit. 272 static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg, 273 const TargetInstrInfo &TII) { 274 if (!FirstMI.isBundled()) 275 return isCopyOf(FirstMI, Reg, TII); 276 277 assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() && 278 "expected to see first instruction in bundle"); 279 280 Register SnipReg; 281 MachineBasicBlock::const_instr_iterator I = FirstMI.getIterator(); 282 while (I->isBundledWithSucc()) { 283 const MachineInstr &MI = *I; 284 auto CopyInst = TII.isCopyInstr(MI); 285 if (!CopyInst) 286 return Register(); 287 288 const MachineOperand &DstOp = *CopyInst->Destination; 289 const MachineOperand &SrcOp = *CopyInst->Source; 290 if (DstOp.getReg() == Reg) { 291 if (!SnipReg) 292 SnipReg = SrcOp.getReg(); 293 else if (SnipReg != SrcOp.getReg()) 294 return Register(); 295 } else if (SrcOp.getReg() == Reg) { 296 if (!SnipReg) 297 SnipReg = DstOp.getReg(); 298 else if (SnipReg != DstOp.getReg()) 299 return Register(); 300 } 301 302 ++I; 303 } 304 305 return Register(); 306 } 307 308 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 309 for (const MachineOperand &MO : MI.all_defs()) 310 if (MO.getReg().isVirtual()) 311 LIS.getInterval(MO.getReg()); 312 } 313 314 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 315 /// It is assumed that SnipLI is a virtual register with the same original as 316 /// Edit->getReg(). 317 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 318 Register Reg = Edit->getReg(); 319 320 // A snippet is a tiny live range with only a single instruction using it 321 // besides copies to/from Reg or spills/fills. 322 // Exception is done for statepoint instructions which will fold fills 323 // into their operands. 324 // We accept: 325 // 326 // %snip = COPY %Reg / FILL fi# 327 // %snip = USE %snip 328 // %snip = STATEPOINT %snip in var arg area 329 // %Reg = COPY %snip / SPILL %snip, fi# 330 // 331 if (!LIS.intervalIsInOneMBB(SnipLI)) 332 return false; 333 334 // Number of defs should not exceed 2 not accounting defs coming from 335 // statepoint instructions. 336 unsigned NumValNums = SnipLI.getNumValNums(); 337 for (auto *VNI : SnipLI.vnis()) { 338 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 339 if (MI->getOpcode() == TargetOpcode::STATEPOINT) 340 --NumValNums; 341 } 342 if (NumValNums > 2) 343 return false; 344 345 MachineInstr *UseMI = nullptr; 346 347 // Check that all uses satisfy our criteria. 348 for (MachineRegisterInfo::reg_bundle_nodbg_iterator 349 RI = MRI.reg_bundle_nodbg_begin(SnipLI.reg()), 350 E = MRI.reg_bundle_nodbg_end(); 351 RI != E;) { 352 MachineInstr &MI = *RI++; 353 354 // Allow copies to/from Reg. 355 if (isCopyOfBundle(MI, Reg, TII)) 356 continue; 357 358 // Allow stack slot loads. 359 int FI; 360 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 361 continue; 362 363 // Allow stack slot stores. 364 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 365 continue; 366 367 if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg())) 368 continue; 369 370 // Allow a single additional instruction. 371 if (UseMI && &MI != UseMI) 372 return false; 373 UseMI = &MI; 374 } 375 return true; 376 } 377 378 /// collectRegsToSpill - Collect live range snippets that only have a single 379 /// real use. 380 void InlineSpiller::collectRegsToSpill() { 381 Register Reg = Edit->getReg(); 382 383 // Main register always spills. 384 RegsToSpill.assign(1, Reg); 385 SnippetCopies.clear(); 386 387 // Snippets all have the same original, so there can't be any for an original 388 // register. 389 if (Original == Reg) 390 return; 391 392 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 393 Register SnipReg = isCopyOfBundle(MI, Reg, TII); 394 if (!isSibling(SnipReg)) 395 continue; 396 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 397 if (!isSnippet(SnipLI)) 398 continue; 399 SnippetCopies.insert(&MI); 400 if (isRegToSpill(SnipReg)) 401 continue; 402 RegsToSpill.push_back(SnipReg); 403 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 404 ++NumSnippets; 405 } 406 } 407 408 bool InlineSpiller::isSibling(Register Reg) { 409 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 410 } 411 412 /// It is beneficial to spill to earlier place in the same BB in case 413 /// as follows: 414 /// There is an alternative def earlier in the same MBB. 415 /// Hoist the spill as far as possible in SpillMBB. This can ease 416 /// register pressure: 417 /// 418 /// x = def 419 /// y = use x 420 /// s = copy x 421 /// 422 /// Hoisting the spill of s to immediately after the def removes the 423 /// interference between x and y: 424 /// 425 /// x = def 426 /// spill x 427 /// y = use killed x 428 /// 429 /// This hoist only helps when the copy kills its source. 430 /// 431 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 432 MachineInstr &CopyMI) { 433 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 434 #ifndef NDEBUG 435 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 436 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 437 #endif 438 439 Register SrcReg = CopyMI.getOperand(1).getReg(); 440 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 441 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 442 LiveQueryResult SrcQ = SrcLI.Query(Idx); 443 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 444 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 445 return false; 446 447 // Conservatively extend the stack slot range to the range of the original 448 // value. We may be able to do better with stack slot coloring by being more 449 // careful here. 450 assert(StackInt && "No stack slot assigned yet."); 451 LiveInterval &OrigLI = LIS.getInterval(Original); 452 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 453 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 454 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 455 << *StackInt << '\n'); 456 457 // We are going to spill SrcVNI immediately after its def, so clear out 458 // any later spills of the same value. 459 eliminateRedundantSpills(SrcLI, SrcVNI); 460 461 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 462 MachineBasicBlock::iterator MII; 463 if (SrcVNI->isPHIDef()) 464 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin(), SrcReg); 465 else { 466 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 467 assert(DefMI && "Defining instruction disappeared"); 468 MII = DefMI; 469 ++MII; 470 } 471 MachineInstrSpan MIS(MII, MBB); 472 // Insert spill without kill flag immediately after def. 473 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 474 MRI.getRegClass(SrcReg), &TRI, Register()); 475 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 476 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 477 getVDefInterval(MI, LIS); 478 --MII; // Point to store instruction. 479 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 480 481 // If there is only 1 store instruction is required for spill, add it 482 // to mergeable list. In X86 AMX, 2 intructions are required to store. 483 // We disable the merge for this case. 484 if (MIS.begin() == MII) 485 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 486 ++NumSpills; 487 return true; 488 } 489 490 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 491 /// redundant spills of this value in SLI.reg and sibling copies. 492 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 493 assert(VNI && "Missing value"); 494 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 495 WorkList.push_back(std::make_pair(&SLI, VNI)); 496 assert(StackInt && "No stack slot assigned yet."); 497 498 do { 499 LiveInterval *LI; 500 std::tie(LI, VNI) = WorkList.pop_back_val(); 501 Register Reg = LI->reg(); 502 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 503 << VNI->def << " in " << *LI << '\n'); 504 505 // Regs to spill are taken care of. 506 if (isRegToSpill(Reg)) 507 continue; 508 509 // Add all of VNI's live range to StackInt. 510 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 511 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 512 513 // Find all spills and copies of VNI. 514 for (MachineInstr &MI : 515 llvm::make_early_inc_range(MRI.use_nodbg_bundles(Reg))) { 516 if (!MI.mayStore() && !TII.isCopyInstr(MI)) 517 continue; 518 SlotIndex Idx = LIS.getInstructionIndex(MI); 519 if (LI->getVNInfoAt(Idx) != VNI) 520 continue; 521 522 // Follow sibling copies down the dominator tree. 523 if (Register DstReg = isCopyOfBundle(MI, Reg, TII)) { 524 if (isSibling(DstReg)) { 525 LiveInterval &DstLI = LIS.getInterval(DstReg); 526 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 527 assert(DstVNI && "Missing defined value"); 528 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 529 530 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 531 } 532 continue; 533 } 534 535 // Erase spills. 536 int FI; 537 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 538 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 539 // eliminateDeadDefs won't normally remove stores, so switch opcode. 540 MI.setDesc(TII.get(TargetOpcode::KILL)); 541 DeadDefs.push_back(&MI); 542 ++NumSpillsRemoved; 543 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 544 --NumSpills; 545 } 546 } 547 } while (!WorkList.empty()); 548 } 549 550 //===----------------------------------------------------------------------===// 551 // Rematerialization 552 //===----------------------------------------------------------------------===// 553 554 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 555 /// instruction cannot be eliminated. See through snippet copies 556 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 557 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 558 WorkList.push_back(std::make_pair(LI, VNI)); 559 do { 560 std::tie(LI, VNI) = WorkList.pop_back_val(); 561 if (!UsedValues.insert(VNI).second) 562 continue; 563 564 if (VNI->isPHIDef()) { 565 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 566 for (MachineBasicBlock *P : MBB->predecessors()) { 567 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 568 if (PVNI) 569 WorkList.push_back(std::make_pair(LI, PVNI)); 570 } 571 continue; 572 } 573 574 // Follow snippet copies. 575 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 576 if (!SnippetCopies.count(MI)) 577 continue; 578 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 579 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 580 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 581 assert(SnipVNI && "Snippet undefined before copy"); 582 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 583 } while (!WorkList.empty()); 584 } 585 586 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 587 MachineInstr &MI) { 588 if (!RestrictStatepointRemat) 589 return true; 590 // Here's a quick explanation of the problem we're trying to handle here: 591 // * There are some pseudo instructions with more vreg uses than there are 592 // physical registers on the machine. 593 // * This is normally handled by spilling the vreg, and folding the reload 594 // into the user instruction. (Thus decreasing the number of used vregs 595 // until the remainder can be assigned to physregs.) 596 // * However, since we may try to spill vregs in any order, we can end up 597 // trying to spill each operand to the instruction, and then rematting it 598 // instead. When that happens, the new live intervals (for the remats) are 599 // expected to be trivially assignable (i.e. RS_Done). However, since we 600 // may have more remats than physregs, we're guaranteed to fail to assign 601 // one. 602 // At the moment, we only handle this for STATEPOINTs since they're the only 603 // pseudo op where we've seen this. If we start seeing other instructions 604 // with the same problem, we need to revisit this. 605 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 606 return true; 607 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 608 // that number of physical registers is enough to cover all fixed arguments. 609 // If it is not true we need to revisit it. 610 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 611 EndIdx = MI.getNumOperands(); 612 Idx < EndIdx; ++Idx) { 613 MachineOperand &MO = MI.getOperand(Idx); 614 if (MO.isReg() && MO.getReg() == VReg) 615 return false; 616 } 617 return true; 618 } 619 620 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 621 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 622 // Analyze instruction 623 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 624 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 625 626 if (!RI.Reads) 627 return false; 628 629 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 630 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 631 632 if (!ParentVNI) { 633 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 634 for (MachineOperand &MO : MI.all_uses()) 635 if (MO.getReg() == VirtReg.reg()) 636 MO.setIsUndef(); 637 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 638 return true; 639 } 640 641 if (SnippetCopies.count(&MI)) 642 return false; 643 644 LiveInterval &OrigLI = LIS.getInterval(Original); 645 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 646 LiveRangeEdit::Remat RM(ParentVNI); 647 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 648 649 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 650 markValueUsed(&VirtReg, ParentVNI); 651 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 652 return false; 653 } 654 655 // If the instruction also writes VirtReg.reg, it had better not require the 656 // same register for uses and defs. 657 if (RI.Tied) { 658 markValueUsed(&VirtReg, ParentVNI); 659 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 660 return false; 661 } 662 663 // Before rematerializing into a register for a single instruction, try to 664 // fold a load into the instruction. That avoids allocating a new register. 665 if (RM.OrigMI->canFoldAsLoad() && 666 foldMemoryOperand(Ops, RM.OrigMI)) { 667 Edit->markRematerialized(RM.ParentVNI); 668 ++NumFoldedLoads; 669 return true; 670 } 671 672 // If we can't guarantee that we'll be able to actually assign the new vreg, 673 // we can't remat. 674 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 675 markValueUsed(&VirtReg, ParentVNI); 676 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 677 return false; 678 } 679 680 // Allocate a new register for the remat. 681 Register NewVReg = Edit->createFrom(Original); 682 683 // Finally we can rematerialize OrigMI before MI. 684 SlotIndex DefIdx = 685 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 686 687 // We take the DebugLoc from MI, since OrigMI may be attributed to a 688 // different source location. 689 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 690 NewMI->setDebugLoc(MI.getDebugLoc()); 691 692 (void)DefIdx; 693 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 694 << *LIS.getInstructionFromIndex(DefIdx)); 695 696 // Replace operands 697 for (const auto &OpPair : Ops) { 698 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 699 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 700 MO.setReg(NewVReg); 701 MO.setIsKill(); 702 } 703 } 704 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 705 706 ++NumRemats; 707 return true; 708 } 709 710 /// reMaterializeAll - Try to rematerialize as many uses as possible, 711 /// and trim the live ranges after. 712 void InlineSpiller::reMaterializeAll() { 713 if (!Edit->anyRematerializable()) 714 return; 715 716 UsedValues.clear(); 717 718 // Try to remat before all uses of snippets. 719 bool anyRemat = false; 720 for (Register Reg : RegsToSpill) { 721 LiveInterval &LI = LIS.getInterval(Reg); 722 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 723 // Debug values are not allowed to affect codegen. 724 if (MI.isDebugValue()) 725 continue; 726 727 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 728 "instruction that isn't a DBG_VALUE"); 729 730 anyRemat |= reMaterializeFor(LI, MI); 731 } 732 } 733 if (!anyRemat) 734 return; 735 736 // Remove any values that were completely rematted. 737 for (Register Reg : RegsToSpill) { 738 LiveInterval &LI = LIS.getInterval(Reg); 739 for (VNInfo *VNI : LI.vnis()) { 740 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 741 continue; 742 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 743 MI->addRegisterDead(Reg, &TRI); 744 if (!MI->allDefsAreDead()) 745 continue; 746 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 747 DeadDefs.push_back(MI); 748 // If MI is a bundle header, also try removing copies inside the bundle, 749 // otherwise the verifier would complain "live range continues after dead 750 // def flag". 751 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) { 752 MachineBasicBlock::instr_iterator BeginIt = MI->getIterator(), 753 EndIt = MI->getParent()->instr_end(); 754 ++BeginIt; // Skip MI that was already handled. 755 756 bool OnlyDeadCopies = true; 757 for (MachineBasicBlock::instr_iterator It = BeginIt; 758 It != EndIt && It->isBundledWithPred(); ++It) { 759 760 auto DestSrc = TII.isCopyInstr(*It); 761 bool IsCopyToDeadReg = 762 DestSrc && DestSrc->Destination->getReg() == Reg; 763 if (!IsCopyToDeadReg) { 764 OnlyDeadCopies = false; 765 break; 766 } 767 } 768 if (OnlyDeadCopies) { 769 for (MachineBasicBlock::instr_iterator It = BeginIt; 770 It != EndIt && It->isBundledWithPred(); ++It) { 771 It->addRegisterDead(Reg, &TRI); 772 LLVM_DEBUG(dbgs() << "All defs dead: " << *It); 773 DeadDefs.push_back(&*It); 774 } 775 } 776 } 777 } 778 } 779 780 // Eliminate dead code after remat. Note that some snippet copies may be 781 // deleted here. 782 if (DeadDefs.empty()) 783 return; 784 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 785 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 786 787 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 788 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 789 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 790 // removed, PHI VNI are still left in the LiveInterval. 791 // So to get rid of unused reg, we need to check whether it has non-dbg 792 // reference instead of whether it has non-empty interval. 793 unsigned ResultPos = 0; 794 for (Register Reg : RegsToSpill) { 795 if (MRI.reg_nodbg_empty(Reg)) { 796 Edit->eraseVirtReg(Reg); 797 continue; 798 } 799 800 assert(LIS.hasInterval(Reg) && 801 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 802 "Empty and not used live-range?!"); 803 804 RegsToSpill[ResultPos++] = Reg; 805 } 806 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 807 LLVM_DEBUG(dbgs() << RegsToSpill.size() 808 << " registers to spill after remat.\n"); 809 } 810 811 //===----------------------------------------------------------------------===// 812 // Spilling 813 //===----------------------------------------------------------------------===// 814 815 /// If MI is a load or store of StackSlot, it can be removed. 816 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 817 int FI = 0; 818 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 819 bool IsLoad = InstrReg; 820 if (!IsLoad) 821 InstrReg = TII.isStoreToStackSlot(*MI, FI); 822 823 // We have a stack access. Is it the right register and slot? 824 if (InstrReg != Reg || FI != StackSlot) 825 return false; 826 827 if (!IsLoad) 828 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 829 830 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 831 LIS.RemoveMachineInstrFromMaps(*MI); 832 MI->eraseFromParent(); 833 834 if (IsLoad) { 835 ++NumReloadsRemoved; 836 --NumReloads; 837 } else { 838 ++NumSpillsRemoved; 839 --NumSpills; 840 } 841 842 return true; 843 } 844 845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 846 LLVM_DUMP_METHOD 847 // Dump the range of instructions from B to E with their slot indexes. 848 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 849 MachineBasicBlock::iterator E, 850 LiveIntervals const &LIS, 851 const char *const header, 852 Register VReg = Register()) { 853 char NextLine = '\n'; 854 char SlotIndent = '\t'; 855 856 if (std::next(B) == E) { 857 NextLine = ' '; 858 SlotIndent = ' '; 859 } 860 861 dbgs() << '\t' << header << ": " << NextLine; 862 863 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 864 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 865 866 // If a register was passed in and this instruction has it as a 867 // destination that is marked as an early clobber, print the 868 // early-clobber slot index. 869 if (VReg) { 870 MachineOperand *MO = I->findRegisterDefOperand(VReg, /*TRI=*/nullptr); 871 if (MO && MO->isEarlyClobber()) 872 Idx = Idx.getRegSlot(true); 873 } 874 875 dbgs() << SlotIndent << Idx << '\t' << *I; 876 } 877 } 878 #endif 879 880 /// foldMemoryOperand - Try folding stack slot references in Ops into their 881 /// instructions. 882 /// 883 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 884 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 885 /// @return True on success. 886 bool InlineSpiller:: 887 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 888 MachineInstr *LoadMI) { 889 if (Ops.empty()) 890 return false; 891 // Don't attempt folding in bundles. 892 MachineInstr *MI = Ops.front().first; 893 if (Ops.back().first != MI || MI->isBundled()) 894 return false; 895 896 bool WasCopy = TII.isCopyInstr(*MI).has_value(); 897 Register ImpReg; 898 899 // TII::foldMemoryOperand will do what we need here for statepoint 900 // (fold load into use and remove corresponding def). We will replace 901 // uses of removed def with loads (spillAroundUses). 902 // For that to work we need to untie def and use to pass it through 903 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 904 // fold them. 905 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 906 907 // Spill subregs if the target allows it. 908 // We always want to spill subregs for stackmap/patchpoint pseudos. 909 bool SpillSubRegs = TII.isSubregFoldable() || 910 MI->getOpcode() == TargetOpcode::STATEPOINT || 911 MI->getOpcode() == TargetOpcode::PATCHPOINT || 912 MI->getOpcode() == TargetOpcode::STACKMAP; 913 914 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 915 // operands. 916 SmallVector<unsigned, 8> FoldOps; 917 for (const auto &OpPair : Ops) { 918 unsigned Idx = OpPair.second; 919 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 920 MachineOperand &MO = MI->getOperand(Idx); 921 922 // No point restoring an undef read, and we'll produce an invalid live 923 // interval. 924 // TODO: Is this really the correct way to handle undef tied uses? 925 if (MO.isUse() && !MO.readsReg() && !MO.isTied()) 926 continue; 927 928 if (MO.isImplicit()) { 929 ImpReg = MO.getReg(); 930 continue; 931 } 932 933 if (!SpillSubRegs && MO.getSubReg()) 934 return false; 935 // We cannot fold a load instruction into a def. 936 if (LoadMI && MO.isDef()) 937 return false; 938 // Tied use operands should not be passed to foldMemoryOperand. 939 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 940 FoldOps.push_back(Idx); 941 } 942 943 // If we only have implicit uses, we won't be able to fold that. 944 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 945 if (FoldOps.empty()) 946 return false; 947 948 MachineInstrSpan MIS(MI, MI->getParent()); 949 950 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 951 if (UntieRegs) 952 for (unsigned Idx : FoldOps) { 953 MachineOperand &MO = MI->getOperand(Idx); 954 if (!MO.isTied()) 955 continue; 956 unsigned Tied = MI->findTiedOperandIdx(Idx); 957 if (MO.isUse()) 958 TiedOps.emplace_back(Tied, Idx); 959 else { 960 assert(MO.isDef() && "Tied to not use and def?"); 961 TiedOps.emplace_back(Idx, Tied); 962 } 963 MI->untieRegOperand(Idx); 964 } 965 966 MachineInstr *FoldMI = 967 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 968 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 969 if (!FoldMI) { 970 // Re-tie operands. 971 for (auto Tied : TiedOps) 972 MI->tieOperands(Tied.first, Tied.second); 973 return false; 974 } 975 976 // Remove LIS for any dead defs in the original MI not in FoldMI. 977 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 978 if (!MO->isReg()) 979 continue; 980 Register Reg = MO->getReg(); 981 if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) { 982 continue; 983 } 984 // Skip non-Defs, including undef uses and internal reads. 985 if (MO->isUse()) 986 continue; 987 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 988 if (RI.FullyDefined) 989 continue; 990 // FoldMI does not define this physreg. Remove the LI segment. 991 assert(MO->isDead() && "Cannot fold physreg def"); 992 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 993 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 994 } 995 996 int FI; 997 if (TII.isStoreToStackSlot(*MI, FI) && 998 HSpiller.rmFromMergeableSpills(*MI, FI)) 999 --NumSpills; 1000 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 1001 // Update the call site info. 1002 if (MI->isCandidateForCallSiteEntry()) 1003 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 1004 1005 // If we've folded a store into an instruction labelled with debug-info, 1006 // record a substitution from the old operand to the memory operand. Handle 1007 // the simple common case where operand 0 is the one being folded, plus when 1008 // the destination operand is also a tied def. More values could be 1009 // substituted / preserved with more analysis. 1010 if (MI->peekDebugInstrNum() && Ops[0].second == 0) { 1011 // Helper lambda. 1012 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { 1013 // Substitute old operand zero to the new instructions memory operand. 1014 unsigned OldOperandNum = Ops[0].second; 1015 unsigned NewNum = FoldMI->getDebugInstrNum(); 1016 unsigned OldNum = MI->getDebugInstrNum(); 1017 MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, 1018 {NewNum, MachineFunction::DebugOperandMemNumber}); 1019 }; 1020 1021 const MachineOperand &Op0 = MI->getOperand(Ops[0].second); 1022 if (Ops.size() == 1 && Op0.isDef()) { 1023 MakeSubstitution(); 1024 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() && 1025 Op0.getReg() == MI->getOperand(1).getReg()) { 1026 MakeSubstitution(); 1027 } 1028 } else if (MI->peekDebugInstrNum()) { 1029 // This is a debug-labelled instruction, but the operand being folded isn't 1030 // at operand zero. Most likely this means it's a load being folded in. 1031 // Substitute any register defs from operand zero up to the one being 1032 // folded -- past that point, we don't know what the new operand indexes 1033 // will be. 1034 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second); 1035 } 1036 1037 MI->eraseFromParent(); 1038 1039 // Insert any new instructions other than FoldMI into the LIS maps. 1040 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 1041 for (MachineInstr &MI : MIS) 1042 if (&MI != FoldMI) 1043 LIS.InsertMachineInstrInMaps(MI); 1044 1045 // TII.foldMemoryOperand may have left some implicit operands on the 1046 // instruction. Strip them. 1047 if (ImpReg) 1048 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 1049 MachineOperand &MO = FoldMI->getOperand(i - 1); 1050 if (!MO.isReg() || !MO.isImplicit()) 1051 break; 1052 if (MO.getReg() == ImpReg) 1053 FoldMI->removeOperand(i - 1); 1054 } 1055 1056 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 1057 "folded")); 1058 1059 if (!WasCopy) 1060 ++NumFolded; 1061 else if (Ops.front().second == 0) { 1062 ++NumSpills; 1063 // If there is only 1 store instruction is required for spill, add it 1064 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1065 // We disable the merge for this case. 1066 if (std::distance(MIS.begin(), MIS.end()) <= 1) 1067 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 1068 } else 1069 ++NumReloads; 1070 return true; 1071 } 1072 1073 void InlineSpiller::insertReload(Register NewVReg, 1074 SlotIndex Idx, 1075 MachineBasicBlock::iterator MI) { 1076 MachineBasicBlock &MBB = *MI->getParent(); 1077 1078 MachineInstrSpan MIS(MI, &MBB); 1079 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1080 MRI.getRegClass(NewVReg), &TRI, Register()); 1081 1082 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1083 1084 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1085 NewVReg)); 1086 ++NumReloads; 1087 } 1088 1089 /// Check if \p Def fully defines a VReg with an undefined value. 1090 /// If that's the case, that means the value of VReg is actually 1091 /// not relevant. 1092 static bool isRealSpill(const MachineInstr &Def) { 1093 if (!Def.isImplicitDef()) 1094 return true; 1095 1096 // We can say that the VReg defined by Def is undef, only if it is 1097 // fully defined by Def. Otherwise, some of the lanes may not be 1098 // undef and the value of the VReg matters. 1099 return Def.getOperand(0).getSubReg(); 1100 } 1101 1102 /// insertSpill - Insert a spill of NewVReg after MI. 1103 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 1104 MachineBasicBlock::iterator MI) { 1105 // Spill are not terminators, so inserting spills after terminators will 1106 // violate invariants in MachineVerifier. 1107 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 1108 MachineBasicBlock &MBB = *MI->getParent(); 1109 1110 MachineInstrSpan MIS(MI, &MBB); 1111 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1112 bool IsRealSpill = isRealSpill(*MI); 1113 1114 if (IsRealSpill) 1115 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1116 MRI.getRegClass(NewVReg), &TRI, Register()); 1117 else 1118 // Don't spill undef value. 1119 // Anything works for undef, in particular keeping the memory 1120 // uninitialized is a viable option and it saves code size and 1121 // run time. 1122 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1123 .addReg(NewVReg, getKillRegState(isKill)); 1124 1125 MachineBasicBlock::iterator Spill = std::next(MI); 1126 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1127 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1128 getVDefInterval(MI, LIS); 1129 1130 LLVM_DEBUG( 1131 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1132 ++NumSpills; 1133 // If there is only 1 store instruction is required for spill, add it 1134 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1135 // We disable the merge for this case. 1136 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1137 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1138 } 1139 1140 /// spillAroundUses - insert spill code around each use of Reg. 1141 void InlineSpiller::spillAroundUses(Register Reg) { 1142 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1143 LiveInterval &OldLI = LIS.getInterval(Reg); 1144 1145 // Iterate over instructions using Reg. 1146 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 1147 // Debug values are not allowed to affect codegen. 1148 if (MI.isDebugValue()) { 1149 // Modify DBG_VALUE now that the value is in a spill slot. 1150 MachineBasicBlock *MBB = MI.getParent(); 1151 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI); 1152 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg); 1153 MBB->erase(MI); 1154 continue; 1155 } 1156 1157 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 1158 "instruction that isn't a DBG_VALUE"); 1159 1160 // Ignore copies to/from snippets. We'll delete them. 1161 if (SnippetCopies.count(&MI)) 1162 continue; 1163 1164 // Stack slot accesses may coalesce away. 1165 if (coalesceStackAccess(&MI, Reg)) 1166 continue; 1167 1168 // Analyze instruction. 1169 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1170 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops); 1171 1172 // Find the slot index where this instruction reads and writes OldLI. 1173 // This is usually the def slot, except for tied early clobbers. 1174 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1175 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1176 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1177 Idx = VNI->def; 1178 1179 // Check for a sibling copy. 1180 Register SibReg = isCopyOfBundle(MI, Reg, TII); 1181 if (SibReg && isSibling(SibReg)) { 1182 // This may actually be a copy between snippets. 1183 if (isRegToSpill(SibReg)) { 1184 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI); 1185 SnippetCopies.insert(&MI); 1186 continue; 1187 } 1188 if (RI.Writes) { 1189 if (hoistSpillInsideBB(OldLI, MI)) { 1190 // This COPY is now dead, the value is already in the stack slot. 1191 MI.getOperand(0).setIsDead(); 1192 DeadDefs.push_back(&MI); 1193 continue; 1194 } 1195 } else { 1196 // This is a reload for a sib-reg copy. Drop spills downstream. 1197 LiveInterval &SibLI = LIS.getInterval(SibReg); 1198 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1199 // The COPY will fold to a reload below. 1200 } 1201 } 1202 1203 // Attempt to fold memory ops. 1204 if (foldMemoryOperand(Ops)) 1205 continue; 1206 1207 // Create a new virtual register for spill/fill. 1208 // FIXME: Infer regclass from instruction alone. 1209 Register NewVReg = Edit->createFrom(Reg); 1210 1211 if (RI.Reads) 1212 insertReload(NewVReg, Idx, &MI); 1213 1214 // Rewrite instruction operands. 1215 bool hasLiveDef = false; 1216 for (const auto &OpPair : Ops) { 1217 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1218 MO.setReg(NewVReg); 1219 if (MO.isUse()) { 1220 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1221 MO.setIsKill(); 1222 } else { 1223 if (!MO.isDead()) 1224 hasLiveDef = true; 1225 } 1226 } 1227 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n'); 1228 1229 // FIXME: Use a second vreg if instruction has no tied ops. 1230 if (RI.Writes) 1231 if (hasLiveDef) 1232 insertSpill(NewVReg, true, &MI); 1233 } 1234 } 1235 1236 /// spillAll - Spill all registers remaining after rematerialization. 1237 void InlineSpiller::spillAll() { 1238 // Update LiveStacks now that we are committed to spilling. 1239 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1240 StackSlot = VRM.assignVirt2StackSlot(Original); 1241 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1242 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1243 } else 1244 StackInt = &LSS.getInterval(StackSlot); 1245 1246 if (Original != Edit->getReg()) 1247 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1248 1249 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1250 for (Register Reg : RegsToSpill) 1251 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1252 StackInt->getValNumInfo(0)); 1253 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1254 1255 // Spill around uses of all RegsToSpill. 1256 for (Register Reg : RegsToSpill) 1257 spillAroundUses(Reg); 1258 1259 // Hoisted spills may cause dead code. 1260 if (!DeadDefs.empty()) { 1261 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1262 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 1263 } 1264 1265 // Finally delete the SnippetCopies. 1266 for (Register Reg : RegsToSpill) { 1267 for (MachineInstr &MI : 1268 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 1269 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1270 // FIXME: Do this with a LiveRangeEdit callback. 1271 LIS.getSlotIndexes()->removeSingleMachineInstrFromMaps(MI); 1272 MI.eraseFromBundle(); 1273 } 1274 } 1275 1276 // Delete all spilled registers. 1277 for (Register Reg : RegsToSpill) 1278 Edit->eraseVirtReg(Reg); 1279 } 1280 1281 void InlineSpiller::spill(LiveRangeEdit &edit) { 1282 ++NumSpilledRanges; 1283 Edit = &edit; 1284 assert(!Register::isStackSlot(edit.getReg()) && 1285 "Trying to spill a stack slot."); 1286 // Share a stack slot among all descendants of Original. 1287 Original = VRM.getOriginal(edit.getReg()); 1288 StackSlot = VRM.getStackSlot(Original); 1289 StackInt = nullptr; 1290 1291 LLVM_DEBUG(dbgs() << "Inline spilling " 1292 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1293 << ':' << edit.getParent() << "\nFrom original " 1294 << printReg(Original) << '\n'); 1295 assert(edit.getParent().isSpillable() && 1296 "Attempting to spill already spilled value."); 1297 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1298 1299 collectRegsToSpill(); 1300 reMaterializeAll(); 1301 1302 // Remat may handle everything. 1303 if (!RegsToSpill.empty()) 1304 spillAll(); 1305 1306 Edit->calculateRegClassAndHint(MF, VRAI); 1307 } 1308 1309 /// Optimizations after all the reg selections and spills are done. 1310 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1311 1312 /// When a spill is inserted, add the spill to MergeableSpills map. 1313 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1314 unsigned Original) { 1315 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1316 LiveInterval &OrigLI = LIS.getInterval(Original); 1317 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1318 // LiveInterval may be cleared after all its references are spilled. 1319 if (!StackSlotToOrigLI.contains(StackSlot)) { 1320 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1321 LI->assign(OrigLI, Allocator); 1322 StackSlotToOrigLI[StackSlot] = std::move(LI); 1323 } 1324 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1325 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1326 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1327 MergeableSpills[MIdx].insert(&Spill); 1328 } 1329 1330 /// When a spill is removed, remove the spill from MergeableSpills map. 1331 /// Return true if the spill is removed successfully. 1332 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1333 int StackSlot) { 1334 auto It = StackSlotToOrigLI.find(StackSlot); 1335 if (It == StackSlotToOrigLI.end()) 1336 return false; 1337 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1338 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1339 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1340 return MergeableSpills[MIdx].erase(&Spill); 1341 } 1342 1343 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1344 /// i.e., there should be a living sibling of OrigReg at the insert point. 1345 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1346 MachineBasicBlock &BB, Register &LiveReg) { 1347 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); 1348 // The original def could be after the last insert point in the root block, 1349 // we can't hoist to here. 1350 if (Idx < OrigVNI.def) { 1351 // TODO: We could be better here. If LI is not alive in landing pad 1352 // we could hoist spill after LIP. 1353 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n"); 1354 return false; 1355 } 1356 Register OrigReg = OrigLI.reg(); 1357 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1358 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1359 1360 for (const Register &SibReg : Siblings) { 1361 LiveInterval &LI = LIS.getInterval(SibReg); 1362 VNInfo *VNI = LI.getVNInfoAt(Idx); 1363 if (VNI) { 1364 LiveReg = SibReg; 1365 return true; 1366 } 1367 } 1368 return false; 1369 } 1370 1371 /// Remove redundant spills in the same BB. Save those redundant spills in 1372 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1373 void HoistSpillHelper::rmRedundantSpills( 1374 SmallPtrSet<MachineInstr *, 16> &Spills, 1375 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1376 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1377 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1378 // another spill inside. If a BB contains more than one spill, only keep the 1379 // earlier spill with smaller SlotIndex. 1380 for (auto *const CurrentSpill : Spills) { 1381 MachineBasicBlock *Block = CurrentSpill->getParent(); 1382 MachineDomTreeNode *Node = MDT.getNode(Block); 1383 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1384 if (PrevSpill) { 1385 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1386 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1387 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1388 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1389 SpillsToRm.push_back(SpillToRm); 1390 SpillBBToSpill[MDT.getNode(Block)] = SpillToKeep; 1391 } else { 1392 SpillBBToSpill[MDT.getNode(Block)] = CurrentSpill; 1393 } 1394 } 1395 for (auto *const SpillToRm : SpillsToRm) 1396 Spills.erase(SpillToRm); 1397 } 1398 1399 /// Starting from \p Root find a top-down traversal order of the dominator 1400 /// tree to visit all basic blocks containing the elements of \p Spills. 1401 /// Redundant spills will be found and put into \p SpillsToRm at the same 1402 /// time. \p SpillBBToSpill will be populated as part of the process and 1403 /// maps a basic block to the first store occurring in the basic block. 1404 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1405 void HoistSpillHelper::getVisitOrders( 1406 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1407 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1408 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1409 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1410 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1411 // The set contains all the possible BB nodes to which we may hoist 1412 // original spills. 1413 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1414 // Save the BB nodes on the path from the first BB node containing 1415 // non-redundant spill to the Root node. 1416 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1417 // All the spills to be hoisted must originate from a single def instruction 1418 // to the OrigReg. It means the def instruction should dominate all the spills 1419 // to be hoisted. We choose the BB where the def instruction is located as 1420 // the Root. 1421 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1422 // For every node on the dominator tree with spill, walk up on the dominator 1423 // tree towards the Root node until it is reached. If there is other node 1424 // containing spill in the middle of the path, the previous spill saw will 1425 // be redundant and the node containing it will be removed. All the nodes on 1426 // the path starting from the first node with non-redundant spill to the Root 1427 // node will be added to the WorkSet, which will contain all the possible 1428 // locations where spills may be hoisted to after the loop below is done. 1429 for (auto *const Spill : Spills) { 1430 MachineBasicBlock *Block = Spill->getParent(); 1431 MachineDomTreeNode *Node = MDT[Block]; 1432 MachineInstr *SpillToRm = nullptr; 1433 while (Node != RootIDomNode) { 1434 // If Node dominates Block, and it already contains a spill, the spill in 1435 // Block will be redundant. 1436 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1437 SpillToRm = SpillBBToSpill[MDT[Block]]; 1438 break; 1439 /// If we see the Node already in WorkSet, the path from the Node to 1440 /// the Root node must already be traversed by another spill. 1441 /// Then no need to repeat. 1442 } else if (WorkSet.count(Node)) { 1443 break; 1444 } else { 1445 NodesOnPath.insert(Node); 1446 } 1447 Node = Node->getIDom(); 1448 } 1449 if (SpillToRm) { 1450 SpillsToRm.push_back(SpillToRm); 1451 } else { 1452 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1453 // set the initial status before hoisting start. The value of BBs 1454 // containing original spills is set to 0, in order to descriminate 1455 // with BBs containing hoisted spills which will be inserted to 1456 // SpillsToKeep later during hoisting. 1457 SpillsToKeep[MDT[Block]] = 0; 1458 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1459 } 1460 NodesOnPath.clear(); 1461 } 1462 1463 // Sort the nodes in WorkSet in top-down order and save the nodes 1464 // in Orders. Orders will be used for hoisting in runHoistSpills. 1465 unsigned idx = 0; 1466 Orders.push_back(MDT.getNode(Root)); 1467 do { 1468 MachineDomTreeNode *Node = Orders[idx++]; 1469 for (MachineDomTreeNode *Child : Node->children()) { 1470 if (WorkSet.count(Child)) 1471 Orders.push_back(Child); 1472 } 1473 } while (idx != Orders.size()); 1474 assert(Orders.size() == WorkSet.size() && 1475 "Orders have different size with WorkSet"); 1476 1477 #ifndef NDEBUG 1478 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1479 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1480 for (; RIt != Orders.rend(); RIt++) 1481 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1482 LLVM_DEBUG(dbgs() << "\n"); 1483 #endif 1484 } 1485 1486 /// Try to hoist spills according to BB hotness. The spills to removed will 1487 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1488 /// \p SpillsToIns. 1489 void HoistSpillHelper::runHoistSpills( 1490 LiveInterval &OrigLI, VNInfo &OrigVNI, 1491 SmallPtrSet<MachineInstr *, 16> &Spills, 1492 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1493 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1494 // Visit order of dominator tree nodes. 1495 SmallVector<MachineDomTreeNode *, 32> Orders; 1496 // SpillsToKeep contains all the nodes where spills are to be inserted 1497 // during hoisting. If the spill to be inserted is an original spill 1498 // (not a hoisted one), the value of the map entry is 0. If the spill 1499 // is a hoisted spill, the value of the map entry is the VReg to be used 1500 // as the source of the spill. 1501 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1502 // Map from BB to the first spill inside of it. 1503 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1504 1505 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1506 1507 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1508 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1509 SpillBBToSpill); 1510 1511 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1512 // nodes set and the cost of all the spills inside those nodes. 1513 // The nodes set are the locations where spills are to be inserted 1514 // in the subtree of current node. 1515 using NodesCostPair = 1516 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1517 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1518 1519 // Iterate Orders set in reverse order, which will be a bottom-up order 1520 // in the dominator tree. Once we visit a dom tree node, we know its 1521 // children have already been visited and the spill locations in the 1522 // subtrees of all the children have been determined. 1523 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1524 for (; RIt != Orders.rend(); RIt++) { 1525 MachineBasicBlock *Block = (*RIt)->getBlock(); 1526 1527 // If Block contains an original spill, simply continue. 1528 if (SpillsToKeep.contains(*RIt) && !SpillsToKeep[*RIt]) { 1529 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1530 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1531 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1532 continue; 1533 } 1534 1535 // Collect spills in subtree of current node (*RIt) to 1536 // SpillsInSubTreeMap[*RIt].first. 1537 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1538 if (!SpillsInSubTreeMap.contains(Child)) 1539 continue; 1540 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1541 // should be placed before getting the begin and end iterators of 1542 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1543 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1544 // and the map grows and then the original buckets in the map are moved. 1545 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1546 SpillsInSubTreeMap[*RIt].first; 1547 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1548 SubTreeCost += SpillsInSubTreeMap[Child].second; 1549 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1550 auto EI = SpillsInSubTreeMap[Child].first.end(); 1551 SpillsInSubTree.insert(BI, EI); 1552 SpillsInSubTreeMap.erase(Child); 1553 } 1554 1555 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1556 SpillsInSubTreeMap[*RIt].first; 1557 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1558 // No spills in subtree, simply continue. 1559 if (SpillsInSubTree.empty()) 1560 continue; 1561 1562 // Check whether Block is a possible candidate to insert spill. 1563 Register LiveReg; 1564 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1565 continue; 1566 1567 // If there are multiple spills that could be merged, bias a little 1568 // to hoist the spill. 1569 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1570 ? BranchProbability(9, 10) 1571 : BranchProbability(1, 1); 1572 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1573 // Hoist: Move spills to current Block. 1574 for (auto *const SpillBB : SpillsInSubTree) { 1575 // When SpillBB is a BB contains original spill, insert the spill 1576 // to SpillsToRm. 1577 if (SpillsToKeep.contains(SpillBB) && !SpillsToKeep[SpillBB]) { 1578 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1579 SpillsToRm.push_back(SpillToRm); 1580 } 1581 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1582 SpillsToKeep.erase(SpillBB); 1583 } 1584 // Current Block is the BB containing the new hoisted spill. Add it to 1585 // SpillsToKeep. LiveReg is the source of the new spill. 1586 SpillsToKeep[*RIt] = LiveReg; 1587 LLVM_DEBUG({ 1588 dbgs() << "spills in BB: "; 1589 for (const auto Rspill : SpillsInSubTree) 1590 dbgs() << Rspill->getBlock()->getNumber() << " "; 1591 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1592 << "\n"; 1593 }); 1594 SpillsInSubTree.clear(); 1595 SpillsInSubTree.insert(*RIt); 1596 SubTreeCost = MBFI.getBlockFreq(Block); 1597 } 1598 } 1599 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1600 // save them to SpillsToIns. 1601 for (const auto &Ent : SpillsToKeep) { 1602 if (Ent.second) 1603 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1604 } 1605 } 1606 1607 /// For spills with equal values, remove redundant spills and hoist those left 1608 /// to less hot spots. 1609 /// 1610 /// Spills with equal values will be collected into the same set in 1611 /// MergeableSpills when spill is inserted. These equal spills are originated 1612 /// from the same defining instruction and are dominated by the instruction. 1613 /// Before hoisting all the equal spills, redundant spills inside in the same 1614 /// BB are first marked to be deleted. Then starting from the spills left, walk 1615 /// up on the dominator tree towards the Root node where the define instruction 1616 /// is located, mark the dominated spills to be deleted along the way and 1617 /// collect the BB nodes on the path from non-dominated spills to the define 1618 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1619 /// where we are considering to hoist the spills. We iterate the WorkSet in 1620 /// bottom-up order, and for each node, we will decide whether to hoist spills 1621 /// inside its subtree to that node. In this way, we can get benefit locally 1622 /// even if hoisting all the equal spills to one cold place is impossible. 1623 void HoistSpillHelper::hoistAllSpills() { 1624 SmallVector<Register, 4> NewVRegs; 1625 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1626 1627 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1628 Register Reg = Register::index2VirtReg(i); 1629 Register Original = VRM.getPreSplitReg(Reg); 1630 if (!MRI.def_empty(Reg)) 1631 Virt2SiblingsMap[Original].insert(Reg); 1632 } 1633 1634 // Each entry in MergeableSpills contains a spill set with equal values. 1635 for (auto &Ent : MergeableSpills) { 1636 int Slot = Ent.first.first; 1637 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1638 VNInfo *OrigVNI = Ent.first.second; 1639 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1640 if (Ent.second.empty()) 1641 continue; 1642 1643 LLVM_DEBUG({ 1644 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1645 << "Equal spills in BB: "; 1646 for (const auto spill : EqValSpills) 1647 dbgs() << spill->getParent()->getNumber() << " "; 1648 dbgs() << "\n"; 1649 }); 1650 1651 // SpillsToRm is the spill set to be removed from EqValSpills. 1652 SmallVector<MachineInstr *, 16> SpillsToRm; 1653 // SpillsToIns is the spill set to be newly inserted after hoisting. 1654 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1655 1656 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1657 1658 LLVM_DEBUG({ 1659 dbgs() << "Finally inserted spills in BB: "; 1660 for (const auto &Ispill : SpillsToIns) 1661 dbgs() << Ispill.first->getNumber() << " "; 1662 dbgs() << "\nFinally removed spills in BB: "; 1663 for (const auto Rspill : SpillsToRm) 1664 dbgs() << Rspill->getParent()->getNumber() << " "; 1665 dbgs() << "\n"; 1666 }); 1667 1668 // Stack live range update. 1669 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1670 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1671 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1672 StackIntvl.getValNumInfo(0)); 1673 1674 // Insert hoisted spills. 1675 for (auto const &Insert : SpillsToIns) { 1676 MachineBasicBlock *BB = Insert.first; 1677 Register LiveReg = Insert.second; 1678 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1679 MachineInstrSpan MIS(MII, BB); 1680 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1681 MRI.getRegClass(LiveReg), &TRI, Register()); 1682 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1683 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1684 getVDefInterval(MI, LIS); 1685 ++NumSpills; 1686 } 1687 1688 // Remove redundant spills or change them to dead instructions. 1689 NumSpills -= SpillsToRm.size(); 1690 for (auto *const RMEnt : SpillsToRm) { 1691 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1692 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1693 MachineOperand &MO = RMEnt->getOperand(i - 1); 1694 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1695 RMEnt->removeOperand(i - 1); 1696 } 1697 } 1698 Edit.eliminateDeadDefs(SpillsToRm, std::nullopt); 1699 } 1700 } 1701 1702 /// For VirtReg clone, the \p New register should have the same physreg or 1703 /// stackslot as the \p old register. 1704 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1705 if (VRM.hasPhys(Old)) 1706 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1707 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1708 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1709 else 1710 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1711 if (VRM.hasShape(Old)) 1712 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1713 } 1714