1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/LiveStacks.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineInstrBundle.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/SlotIndexes.h" 40 #include "llvm/CodeGen/Spiller.h" 41 #include "llvm/CodeGen/StackMaps.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/Support/BlockFrequency.h" 49 #include "llvm/Support/BranchProbability.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include <cassert> 56 #include <iterator> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 66 STATISTIC(NumSnippets, "Number of spilled snippets"); 67 STATISTIC(NumSpills, "Number of spills inserted"); 68 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 69 STATISTIC(NumReloads, "Number of reloads inserted"); 70 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 71 STATISTIC(NumFolded, "Number of folded stack accesses"); 72 STATISTIC(NumFoldedLoads, "Number of folded loads"); 73 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 74 75 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 76 cl::desc("Disable inline spill hoisting")); 77 static cl::opt<bool> 78 RestrictStatepointRemat("restrict-statepoint-remat", 79 cl::init(false), cl::Hidden, 80 cl::desc("Restrict remat for statepoint operands")); 81 82 namespace { 83 84 class HoistSpillHelper : private LiveRangeEdit::Delegate { 85 MachineFunction &MF; 86 LiveIntervals &LIS; 87 LiveStacks &LSS; 88 MachineDominatorTree &MDT; 89 MachineLoopInfo &Loops; 90 VirtRegMap &VRM; 91 MachineRegisterInfo &MRI; 92 const TargetInstrInfo &TII; 93 const TargetRegisterInfo &TRI; 94 const MachineBlockFrequencyInfo &MBFI; 95 96 InsertPointAnalysis IPA; 97 98 // Map from StackSlot to the LiveInterval of the original register. 99 // Note the LiveInterval of the original register may have been deleted 100 // after it is spilled. We keep a copy here to track the range where 101 // spills can be moved. 102 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 103 104 // Map from pair of (StackSlot and Original VNI) to a set of spills which 105 // have the same stackslot and have equal values defined by Original VNI. 106 // These spills are mergeable and are hoist candidates. 107 using MergeableSpillsMap = 108 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 109 MergeableSpillsMap MergeableSpills; 110 111 /// This is the map from original register to a set containing all its 112 /// siblings. To hoist a spill to another BB, we need to find out a live 113 /// sibling there and use it as the source of the new spill. 114 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 115 116 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 117 MachineBasicBlock &BB, Register &LiveReg); 118 119 void rmRedundantSpills( 120 SmallPtrSet<MachineInstr *, 16> &Spills, 121 SmallVectorImpl<MachineInstr *> &SpillsToRm, 122 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 123 124 void getVisitOrders( 125 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 126 SmallVectorImpl<MachineDomTreeNode *> &Orders, 127 SmallVectorImpl<MachineInstr *> &SpillsToRm, 128 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 129 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 130 131 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 132 SmallPtrSet<MachineInstr *, 16> &Spills, 133 SmallVectorImpl<MachineInstr *> &SpillsToRm, 134 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 135 136 public: 137 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 138 VirtRegMap &vrm) 139 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 140 LSS(pass.getAnalysis<LiveStacks>()), 141 MDT(pass.getAnalysis<MachineDominatorTree>()), 142 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 143 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 144 TRI(*mf.getSubtarget().getRegisterInfo()), 145 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 146 IPA(LIS, mf.getNumBlockIDs()) {} 147 148 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 149 unsigned Original); 150 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 151 void hoistAllSpills(); 152 void LRE_DidCloneVirtReg(Register, Register) override; 153 }; 154 155 class InlineSpiller : public Spiller { 156 MachineFunction &MF; 157 LiveIntervals &LIS; 158 LiveStacks &LSS; 159 MachineDominatorTree &MDT; 160 MachineLoopInfo &Loops; 161 VirtRegMap &VRM; 162 MachineRegisterInfo &MRI; 163 const TargetInstrInfo &TII; 164 const TargetRegisterInfo &TRI; 165 const MachineBlockFrequencyInfo &MBFI; 166 167 // Variables that are valid during spill(), but used by multiple methods. 168 LiveRangeEdit *Edit = nullptr; 169 LiveInterval *StackInt = nullptr; 170 int StackSlot; 171 Register Original; 172 173 // All registers to spill to StackSlot, including the main register. 174 SmallVector<Register, 8> RegsToSpill; 175 176 // All COPY instructions to/from snippets. 177 // They are ignored since both operands refer to the same stack slot. 178 // For bundled copies, this will only include the first header copy. 179 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 180 181 // Values that failed to remat at some point. 182 SmallPtrSet<VNInfo*, 8> UsedValues; 183 184 // Dead defs generated during spilling. 185 SmallVector<MachineInstr*, 8> DeadDefs; 186 187 // Object records spills information and does the hoisting. 188 HoistSpillHelper HSpiller; 189 190 // Live range weight calculator. 191 VirtRegAuxInfo &VRAI; 192 193 ~InlineSpiller() override = default; 194 195 public: 196 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, 197 VirtRegAuxInfo &VRAI) 198 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()), 199 LSS(Pass.getAnalysis<LiveStacks>()), 200 MDT(Pass.getAnalysis<MachineDominatorTree>()), 201 Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM), 202 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), 203 TRI(*MF.getSubtarget().getRegisterInfo()), 204 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()), 205 HSpiller(Pass, MF, VRM), VRAI(VRAI) {} 206 207 void spill(LiveRangeEdit &) override; 208 void postOptimization() override; 209 210 private: 211 bool isSnippet(const LiveInterval &SnipLI); 212 void collectRegsToSpill(); 213 214 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 215 216 bool isSibling(Register Reg); 217 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 218 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 219 220 void markValueUsed(LiveInterval*, VNInfo*); 221 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 222 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 223 void reMaterializeAll(); 224 225 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 226 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 227 MachineInstr *LoadMI = nullptr); 228 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 229 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 230 231 void spillAroundUses(Register Reg); 232 void spillAll(); 233 }; 234 235 } // end anonymous namespace 236 237 Spiller::~Spiller() = default; 238 239 void Spiller::anchor() {} 240 241 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, 242 MachineFunction &MF, VirtRegMap &VRM, 243 VirtRegAuxInfo &VRAI) { 244 return new InlineSpiller(Pass, MF, VRM, VRAI); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Snippets 249 //===----------------------------------------------------------------------===// 250 251 // When spilling a virtual register, we also spill any snippets it is connected 252 // to. The snippets are small live ranges that only have a single real use, 253 // leftovers from live range splitting. Spilling them enables memory operand 254 // folding or tightens the live range around the single use. 255 // 256 // This minimizes register pressure and maximizes the store-to-load distance for 257 // spill slots which can be important in tight loops. 258 259 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 260 /// otherwise return 0. 261 static Register isCopyOf(const MachineInstr &MI, Register Reg, 262 const TargetInstrInfo &TII) { 263 if (!TII.isCopyInstr(MI)) 264 return Register(); 265 266 const MachineOperand &DstOp = MI.getOperand(0); 267 const MachineOperand &SrcOp = MI.getOperand(1); 268 269 // TODO: Probably only worth allowing subreg copies with undef dests. 270 if (DstOp.getSubReg() != SrcOp.getSubReg()) 271 return Register(); 272 if (DstOp.getReg() == Reg) 273 return SrcOp.getReg(); 274 if (SrcOp.getReg() == Reg) 275 return DstOp.getReg(); 276 return Register(); 277 } 278 279 /// Check for a copy bundle as formed by SplitKit. 280 static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg, 281 const TargetInstrInfo &TII) { 282 if (!FirstMI.isBundled()) 283 return isCopyOf(FirstMI, Reg, TII); 284 285 assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() && 286 "expected to see first instruction in bundle"); 287 288 Register SnipReg; 289 MachineBasicBlock::const_instr_iterator I = FirstMI.getIterator(); 290 while (I->isBundledWithSucc()) { 291 const MachineInstr &MI = *I; 292 if (!TII.isCopyInstr(FirstMI)) 293 return Register(); 294 295 const MachineOperand &DstOp = MI.getOperand(0); 296 const MachineOperand &SrcOp = MI.getOperand(1); 297 if (DstOp.getReg() == Reg) { 298 if (!SnipReg) 299 SnipReg = SrcOp.getReg(); 300 else if (SnipReg != SrcOp.getReg()) 301 return Register(); 302 } else if (SrcOp.getReg() == Reg) { 303 if (!SnipReg) 304 SnipReg = DstOp.getReg(); 305 else if (SnipReg != DstOp.getReg()) 306 return Register(); 307 } 308 309 ++I; 310 } 311 312 return Register(); 313 } 314 315 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 316 for (const MachineOperand &MO : MI.all_defs()) 317 if (MO.getReg().isVirtual()) 318 LIS.getInterval(MO.getReg()); 319 } 320 321 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 322 /// It is assumed that SnipLI is a virtual register with the same original as 323 /// Edit->getReg(). 324 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 325 Register Reg = Edit->getReg(); 326 327 // A snippet is a tiny live range with only a single instruction using it 328 // besides copies to/from Reg or spills/fills. 329 // Exception is done for statepoint instructions which will fold fills 330 // into their operands. 331 // We accept: 332 // 333 // %snip = COPY %Reg / FILL fi# 334 // %snip = USE %snip 335 // %snip = STATEPOINT %snip in var arg area 336 // %Reg = COPY %snip / SPILL %snip, fi# 337 // 338 if (!LIS.intervalIsInOneMBB(SnipLI)) 339 return false; 340 341 // Number of defs should not exceed 2 not accounting defs coming from 342 // statepoint instructions. 343 unsigned NumValNums = SnipLI.getNumValNums(); 344 for (auto *VNI : SnipLI.vnis()) { 345 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 346 if (MI->getOpcode() == TargetOpcode::STATEPOINT) 347 --NumValNums; 348 } 349 if (NumValNums > 2) 350 return false; 351 352 MachineInstr *UseMI = nullptr; 353 354 // Check that all uses satisfy our criteria. 355 for (MachineRegisterInfo::reg_bundle_nodbg_iterator 356 RI = MRI.reg_bundle_nodbg_begin(SnipLI.reg()), 357 E = MRI.reg_bundle_nodbg_end(); 358 RI != E;) { 359 MachineInstr &MI = *RI++; 360 361 // Allow copies to/from Reg. 362 if (isCopyOfBundle(MI, Reg, TII)) 363 continue; 364 365 // Allow stack slot loads. 366 int FI; 367 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 368 continue; 369 370 // Allow stack slot stores. 371 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 372 continue; 373 374 if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg())) 375 continue; 376 377 // Allow a single additional instruction. 378 if (UseMI && &MI != UseMI) 379 return false; 380 UseMI = &MI; 381 } 382 return true; 383 } 384 385 /// collectRegsToSpill - Collect live range snippets that only have a single 386 /// real use. 387 void InlineSpiller::collectRegsToSpill() { 388 Register Reg = Edit->getReg(); 389 390 // Main register always spills. 391 RegsToSpill.assign(1, Reg); 392 SnippetCopies.clear(); 393 394 // Snippets all have the same original, so there can't be any for an original 395 // register. 396 if (Original == Reg) 397 return; 398 399 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 400 Register SnipReg = isCopyOfBundle(MI, Reg, TII); 401 if (!isSibling(SnipReg)) 402 continue; 403 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 404 if (!isSnippet(SnipLI)) 405 continue; 406 SnippetCopies.insert(&MI); 407 if (isRegToSpill(SnipReg)) 408 continue; 409 RegsToSpill.push_back(SnipReg); 410 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 411 ++NumSnippets; 412 } 413 } 414 415 bool InlineSpiller::isSibling(Register Reg) { 416 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 417 } 418 419 /// It is beneficial to spill to earlier place in the same BB in case 420 /// as follows: 421 /// There is an alternative def earlier in the same MBB. 422 /// Hoist the spill as far as possible in SpillMBB. This can ease 423 /// register pressure: 424 /// 425 /// x = def 426 /// y = use x 427 /// s = copy x 428 /// 429 /// Hoisting the spill of s to immediately after the def removes the 430 /// interference between x and y: 431 /// 432 /// x = def 433 /// spill x 434 /// y = use killed x 435 /// 436 /// This hoist only helps when the copy kills its source. 437 /// 438 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 439 MachineInstr &CopyMI) { 440 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 441 #ifndef NDEBUG 442 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 443 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 444 #endif 445 446 Register SrcReg = CopyMI.getOperand(1).getReg(); 447 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 448 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 449 LiveQueryResult SrcQ = SrcLI.Query(Idx); 450 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 451 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 452 return false; 453 454 // Conservatively extend the stack slot range to the range of the original 455 // value. We may be able to do better with stack slot coloring by being more 456 // careful here. 457 assert(StackInt && "No stack slot assigned yet."); 458 LiveInterval &OrigLI = LIS.getInterval(Original); 459 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 460 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 461 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 462 << *StackInt << '\n'); 463 464 // We are going to spill SrcVNI immediately after its def, so clear out 465 // any later spills of the same value. 466 eliminateRedundantSpills(SrcLI, SrcVNI); 467 468 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 469 MachineBasicBlock::iterator MII; 470 if (SrcVNI->isPHIDef()) 471 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 472 else { 473 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 474 assert(DefMI && "Defining instruction disappeared"); 475 MII = DefMI; 476 ++MII; 477 } 478 MachineInstrSpan MIS(MII, MBB); 479 // Insert spill without kill flag immediately after def. 480 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 481 MRI.getRegClass(SrcReg), &TRI, Register()); 482 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 483 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 484 getVDefInterval(MI, LIS); 485 --MII; // Point to store instruction. 486 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 487 488 // If there is only 1 store instruction is required for spill, add it 489 // to mergeable list. In X86 AMX, 2 intructions are required to store. 490 // We disable the merge for this case. 491 if (MIS.begin() == MII) 492 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 493 ++NumSpills; 494 return true; 495 } 496 497 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 498 /// redundant spills of this value in SLI.reg and sibling copies. 499 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 500 assert(VNI && "Missing value"); 501 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 502 WorkList.push_back(std::make_pair(&SLI, VNI)); 503 assert(StackInt && "No stack slot assigned yet."); 504 505 do { 506 LiveInterval *LI; 507 std::tie(LI, VNI) = WorkList.pop_back_val(); 508 Register Reg = LI->reg(); 509 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 510 << VNI->def << " in " << *LI << '\n'); 511 512 // Regs to spill are taken care of. 513 if (isRegToSpill(Reg)) 514 continue; 515 516 // Add all of VNI's live range to StackInt. 517 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 518 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 519 520 // Find all spills and copies of VNI. 521 for (MachineInstr &MI : 522 llvm::make_early_inc_range(MRI.use_nodbg_bundles(Reg))) { 523 if (!MI.mayStore() && !TII.isCopyInstr(MI)) 524 continue; 525 SlotIndex Idx = LIS.getInstructionIndex(MI); 526 if (LI->getVNInfoAt(Idx) != VNI) 527 continue; 528 529 // Follow sibling copies down the dominator tree. 530 if (Register DstReg = isCopyOfBundle(MI, Reg, TII)) { 531 if (isSibling(DstReg)) { 532 LiveInterval &DstLI = LIS.getInterval(DstReg); 533 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 534 assert(DstVNI && "Missing defined value"); 535 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 536 537 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 538 } 539 continue; 540 } 541 542 // Erase spills. 543 int FI; 544 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 545 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 546 // eliminateDeadDefs won't normally remove stores, so switch opcode. 547 MI.setDesc(TII.get(TargetOpcode::KILL)); 548 DeadDefs.push_back(&MI); 549 ++NumSpillsRemoved; 550 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 551 --NumSpills; 552 } 553 } 554 } while (!WorkList.empty()); 555 } 556 557 //===----------------------------------------------------------------------===// 558 // Rematerialization 559 //===----------------------------------------------------------------------===// 560 561 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 562 /// instruction cannot be eliminated. See through snippet copies 563 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 564 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 565 WorkList.push_back(std::make_pair(LI, VNI)); 566 do { 567 std::tie(LI, VNI) = WorkList.pop_back_val(); 568 if (!UsedValues.insert(VNI).second) 569 continue; 570 571 if (VNI->isPHIDef()) { 572 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 573 for (MachineBasicBlock *P : MBB->predecessors()) { 574 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 575 if (PVNI) 576 WorkList.push_back(std::make_pair(LI, PVNI)); 577 } 578 continue; 579 } 580 581 // Follow snippet copies. 582 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 583 if (!SnippetCopies.count(MI)) 584 continue; 585 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 586 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 587 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 588 assert(SnipVNI && "Snippet undefined before copy"); 589 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 590 } while (!WorkList.empty()); 591 } 592 593 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 594 MachineInstr &MI) { 595 if (!RestrictStatepointRemat) 596 return true; 597 // Here's a quick explanation of the problem we're trying to handle here: 598 // * There are some pseudo instructions with more vreg uses than there are 599 // physical registers on the machine. 600 // * This is normally handled by spilling the vreg, and folding the reload 601 // into the user instruction. (Thus decreasing the number of used vregs 602 // until the remainder can be assigned to physregs.) 603 // * However, since we may try to spill vregs in any order, we can end up 604 // trying to spill each operand to the instruction, and then rematting it 605 // instead. When that happens, the new live intervals (for the remats) are 606 // expected to be trivially assignable (i.e. RS_Done). However, since we 607 // may have more remats than physregs, we're guaranteed to fail to assign 608 // one. 609 // At the moment, we only handle this for STATEPOINTs since they're the only 610 // pseudo op where we've seen this. If we start seeing other instructions 611 // with the same problem, we need to revisit this. 612 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 613 return true; 614 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 615 // that number of physical registers is enough to cover all fixed arguments. 616 // If it is not true we need to revisit it. 617 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 618 EndIdx = MI.getNumOperands(); 619 Idx < EndIdx; ++Idx) { 620 MachineOperand &MO = MI.getOperand(Idx); 621 if (MO.isReg() && MO.getReg() == VReg) 622 return false; 623 } 624 return true; 625 } 626 627 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 628 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 629 // Analyze instruction 630 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 631 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 632 633 if (!RI.Reads) 634 return false; 635 636 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 637 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 638 639 if (!ParentVNI) { 640 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 641 for (MachineOperand &MO : MI.all_uses()) 642 if (MO.getReg() == VirtReg.reg()) 643 MO.setIsUndef(); 644 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 645 return true; 646 } 647 648 if (SnippetCopies.count(&MI)) 649 return false; 650 651 LiveInterval &OrigLI = LIS.getInterval(Original); 652 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 653 LiveRangeEdit::Remat RM(ParentVNI); 654 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 655 656 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 657 markValueUsed(&VirtReg, ParentVNI); 658 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 659 return false; 660 } 661 662 // If the instruction also writes VirtReg.reg, it had better not require the 663 // same register for uses and defs. 664 if (RI.Tied) { 665 markValueUsed(&VirtReg, ParentVNI); 666 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 667 return false; 668 } 669 670 // Before rematerializing into a register for a single instruction, try to 671 // fold a load into the instruction. That avoids allocating a new register. 672 if (RM.OrigMI->canFoldAsLoad() && 673 foldMemoryOperand(Ops, RM.OrigMI)) { 674 Edit->markRematerialized(RM.ParentVNI); 675 ++NumFoldedLoads; 676 return true; 677 } 678 679 // If we can't guarantee that we'll be able to actually assign the new vreg, 680 // we can't remat. 681 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 682 markValueUsed(&VirtReg, ParentVNI); 683 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 684 return false; 685 } 686 687 // Allocate a new register for the remat. 688 Register NewVReg = Edit->createFrom(Original); 689 690 // Finally we can rematerialize OrigMI before MI. 691 SlotIndex DefIdx = 692 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 693 694 // We take the DebugLoc from MI, since OrigMI may be attributed to a 695 // different source location. 696 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 697 NewMI->setDebugLoc(MI.getDebugLoc()); 698 699 (void)DefIdx; 700 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 701 << *LIS.getInstructionFromIndex(DefIdx)); 702 703 // Replace operands 704 for (const auto &OpPair : Ops) { 705 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 706 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 707 MO.setReg(NewVReg); 708 MO.setIsKill(); 709 } 710 } 711 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 712 713 ++NumRemats; 714 return true; 715 } 716 717 /// reMaterializeAll - Try to rematerialize as many uses as possible, 718 /// and trim the live ranges after. 719 void InlineSpiller::reMaterializeAll() { 720 if (!Edit->anyRematerializable()) 721 return; 722 723 UsedValues.clear(); 724 725 // Try to remat before all uses of snippets. 726 bool anyRemat = false; 727 for (Register Reg : RegsToSpill) { 728 LiveInterval &LI = LIS.getInterval(Reg); 729 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 730 // Debug values are not allowed to affect codegen. 731 if (MI.isDebugValue()) 732 continue; 733 734 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 735 "instruction that isn't a DBG_VALUE"); 736 737 anyRemat |= reMaterializeFor(LI, MI); 738 } 739 } 740 if (!anyRemat) 741 return; 742 743 // Remove any values that were completely rematted. 744 for (Register Reg : RegsToSpill) { 745 LiveInterval &LI = LIS.getInterval(Reg); 746 for (VNInfo *VNI : LI.vnis()) { 747 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 748 continue; 749 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 750 MI->addRegisterDead(Reg, &TRI); 751 if (!MI->allDefsAreDead()) 752 continue; 753 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 754 DeadDefs.push_back(MI); 755 } 756 } 757 758 // Eliminate dead code after remat. Note that some snippet copies may be 759 // deleted here. 760 if (DeadDefs.empty()) 761 return; 762 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 763 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 764 765 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 766 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 767 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 768 // removed, PHI VNI are still left in the LiveInterval. 769 // So to get rid of unused reg, we need to check whether it has non-dbg 770 // reference instead of whether it has non-empty interval. 771 unsigned ResultPos = 0; 772 for (Register Reg : RegsToSpill) { 773 if (MRI.reg_nodbg_empty(Reg)) { 774 Edit->eraseVirtReg(Reg); 775 continue; 776 } 777 778 assert(LIS.hasInterval(Reg) && 779 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 780 "Empty and not used live-range?!"); 781 782 RegsToSpill[ResultPos++] = Reg; 783 } 784 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 785 LLVM_DEBUG(dbgs() << RegsToSpill.size() 786 << " registers to spill after remat.\n"); 787 } 788 789 //===----------------------------------------------------------------------===// 790 // Spilling 791 //===----------------------------------------------------------------------===// 792 793 /// If MI is a load or store of StackSlot, it can be removed. 794 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 795 int FI = 0; 796 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 797 bool IsLoad = InstrReg; 798 if (!IsLoad) 799 InstrReg = TII.isStoreToStackSlot(*MI, FI); 800 801 // We have a stack access. Is it the right register and slot? 802 if (InstrReg != Reg || FI != StackSlot) 803 return false; 804 805 if (!IsLoad) 806 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 807 808 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 809 LIS.RemoveMachineInstrFromMaps(*MI); 810 MI->eraseFromParent(); 811 812 if (IsLoad) { 813 ++NumReloadsRemoved; 814 --NumReloads; 815 } else { 816 ++NumSpillsRemoved; 817 --NumSpills; 818 } 819 820 return true; 821 } 822 823 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 824 LLVM_DUMP_METHOD 825 // Dump the range of instructions from B to E with their slot indexes. 826 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 827 MachineBasicBlock::iterator E, 828 LiveIntervals const &LIS, 829 const char *const header, 830 Register VReg = Register()) { 831 char NextLine = '\n'; 832 char SlotIndent = '\t'; 833 834 if (std::next(B) == E) { 835 NextLine = ' '; 836 SlotIndent = ' '; 837 } 838 839 dbgs() << '\t' << header << ": " << NextLine; 840 841 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 842 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 843 844 // If a register was passed in and this instruction has it as a 845 // destination that is marked as an early clobber, print the 846 // early-clobber slot index. 847 if (VReg) { 848 MachineOperand *MO = I->findRegisterDefOperand(VReg); 849 if (MO && MO->isEarlyClobber()) 850 Idx = Idx.getRegSlot(true); 851 } 852 853 dbgs() << SlotIndent << Idx << '\t' << *I; 854 } 855 } 856 #endif 857 858 /// foldMemoryOperand - Try folding stack slot references in Ops into their 859 /// instructions. 860 /// 861 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 862 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 863 /// @return True on success. 864 bool InlineSpiller:: 865 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 866 MachineInstr *LoadMI) { 867 if (Ops.empty()) 868 return false; 869 // Don't attempt folding in bundles. 870 MachineInstr *MI = Ops.front().first; 871 if (Ops.back().first != MI || MI->isBundled()) 872 return false; 873 874 bool WasCopy = TII.isCopyInstr(*MI).has_value(); 875 Register ImpReg; 876 877 // TII::foldMemoryOperand will do what we need here for statepoint 878 // (fold load into use and remove corresponding def). We will replace 879 // uses of removed def with loads (spillAroundUses). 880 // For that to work we need to untie def and use to pass it through 881 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 882 // fold them. 883 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 884 885 // Spill subregs if the target allows it. 886 // We always want to spill subregs for stackmap/patchpoint pseudos. 887 bool SpillSubRegs = TII.isSubregFoldable() || 888 MI->getOpcode() == TargetOpcode::STATEPOINT || 889 MI->getOpcode() == TargetOpcode::PATCHPOINT || 890 MI->getOpcode() == TargetOpcode::STACKMAP; 891 892 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 893 // operands. 894 SmallVector<unsigned, 8> FoldOps; 895 for (const auto &OpPair : Ops) { 896 unsigned Idx = OpPair.second; 897 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 898 MachineOperand &MO = MI->getOperand(Idx); 899 900 // No point restoring an undef read, and we'll produce an invalid live 901 // interval. 902 // TODO: Is this really the correct way to handle undef tied uses? 903 if (MO.isUse() && !MO.readsReg() && !MO.isTied()) 904 continue; 905 906 if (MO.isImplicit()) { 907 ImpReg = MO.getReg(); 908 continue; 909 } 910 911 if (!SpillSubRegs && MO.getSubReg()) 912 return false; 913 // We cannot fold a load instruction into a def. 914 if (LoadMI && MO.isDef()) 915 return false; 916 // Tied use operands should not be passed to foldMemoryOperand. 917 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 918 FoldOps.push_back(Idx); 919 } 920 921 // If we only have implicit uses, we won't be able to fold that. 922 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 923 if (FoldOps.empty()) 924 return false; 925 926 MachineInstrSpan MIS(MI, MI->getParent()); 927 928 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 929 if (UntieRegs) 930 for (unsigned Idx : FoldOps) { 931 MachineOperand &MO = MI->getOperand(Idx); 932 if (!MO.isTied()) 933 continue; 934 unsigned Tied = MI->findTiedOperandIdx(Idx); 935 if (MO.isUse()) 936 TiedOps.emplace_back(Tied, Idx); 937 else { 938 assert(MO.isDef() && "Tied to not use and def?"); 939 TiedOps.emplace_back(Idx, Tied); 940 } 941 MI->untieRegOperand(Idx); 942 } 943 944 MachineInstr *FoldMI = 945 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 946 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 947 if (!FoldMI) { 948 // Re-tie operands. 949 for (auto Tied : TiedOps) 950 MI->tieOperands(Tied.first, Tied.second); 951 return false; 952 } 953 954 // Remove LIS for any dead defs in the original MI not in FoldMI. 955 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 956 if (!MO->isReg()) 957 continue; 958 Register Reg = MO->getReg(); 959 if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) { 960 continue; 961 } 962 // Skip non-Defs, including undef uses and internal reads. 963 if (MO->isUse()) 964 continue; 965 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 966 if (RI.FullyDefined) 967 continue; 968 // FoldMI does not define this physreg. Remove the LI segment. 969 assert(MO->isDead() && "Cannot fold physreg def"); 970 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 971 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 972 } 973 974 int FI; 975 if (TII.isStoreToStackSlot(*MI, FI) && 976 HSpiller.rmFromMergeableSpills(*MI, FI)) 977 --NumSpills; 978 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 979 // Update the call site info. 980 if (MI->isCandidateForCallSiteEntry()) 981 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 982 983 // If we've folded a store into an instruction labelled with debug-info, 984 // record a substitution from the old operand to the memory operand. Handle 985 // the simple common case where operand 0 is the one being folded, plus when 986 // the destination operand is also a tied def. More values could be 987 // substituted / preserved with more analysis. 988 if (MI->peekDebugInstrNum() && Ops[0].second == 0) { 989 // Helper lambda. 990 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { 991 // Substitute old operand zero to the new instructions memory operand. 992 unsigned OldOperandNum = Ops[0].second; 993 unsigned NewNum = FoldMI->getDebugInstrNum(); 994 unsigned OldNum = MI->getDebugInstrNum(); 995 MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, 996 {NewNum, MachineFunction::DebugOperandMemNumber}); 997 }; 998 999 const MachineOperand &Op0 = MI->getOperand(Ops[0].second); 1000 if (Ops.size() == 1 && Op0.isDef()) { 1001 MakeSubstitution(); 1002 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() && 1003 Op0.getReg() == MI->getOperand(1).getReg()) { 1004 MakeSubstitution(); 1005 } 1006 } else if (MI->peekDebugInstrNum()) { 1007 // This is a debug-labelled instruction, but the operand being folded isn't 1008 // at operand zero. Most likely this means it's a load being folded in. 1009 // Substitute any register defs from operand zero up to the one being 1010 // folded -- past that point, we don't know what the new operand indexes 1011 // will be. 1012 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second); 1013 } 1014 1015 MI->eraseFromParent(); 1016 1017 // Insert any new instructions other than FoldMI into the LIS maps. 1018 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 1019 for (MachineInstr &MI : MIS) 1020 if (&MI != FoldMI) 1021 LIS.InsertMachineInstrInMaps(MI); 1022 1023 // TII.foldMemoryOperand may have left some implicit operands on the 1024 // instruction. Strip them. 1025 if (ImpReg) 1026 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 1027 MachineOperand &MO = FoldMI->getOperand(i - 1); 1028 if (!MO.isReg() || !MO.isImplicit()) 1029 break; 1030 if (MO.getReg() == ImpReg) 1031 FoldMI->removeOperand(i - 1); 1032 } 1033 1034 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 1035 "folded")); 1036 1037 if (!WasCopy) 1038 ++NumFolded; 1039 else if (Ops.front().second == 0) { 1040 ++NumSpills; 1041 // If there is only 1 store instruction is required for spill, add it 1042 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1043 // We disable the merge for this case. 1044 if (std::distance(MIS.begin(), MIS.end()) <= 1) 1045 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 1046 } else 1047 ++NumReloads; 1048 return true; 1049 } 1050 1051 void InlineSpiller::insertReload(Register NewVReg, 1052 SlotIndex Idx, 1053 MachineBasicBlock::iterator MI) { 1054 MachineBasicBlock &MBB = *MI->getParent(); 1055 1056 MachineInstrSpan MIS(MI, &MBB); 1057 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1058 MRI.getRegClass(NewVReg), &TRI, Register()); 1059 1060 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1061 1062 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1063 NewVReg)); 1064 ++NumReloads; 1065 } 1066 1067 /// Check if \p Def fully defines a VReg with an undefined value. 1068 /// If that's the case, that means the value of VReg is actually 1069 /// not relevant. 1070 static bool isRealSpill(const MachineInstr &Def) { 1071 if (!Def.isImplicitDef()) 1072 return true; 1073 assert(Def.getNumOperands() == 1 && 1074 "Implicit def with more than one definition"); 1075 // We can say that the VReg defined by Def is undef, only if it is 1076 // fully defined by Def. Otherwise, some of the lanes may not be 1077 // undef and the value of the VReg matters. 1078 return Def.getOperand(0).getSubReg(); 1079 } 1080 1081 /// insertSpill - Insert a spill of NewVReg after MI. 1082 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 1083 MachineBasicBlock::iterator MI) { 1084 // Spill are not terminators, so inserting spills after terminators will 1085 // violate invariants in MachineVerifier. 1086 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 1087 MachineBasicBlock &MBB = *MI->getParent(); 1088 1089 MachineInstrSpan MIS(MI, &MBB); 1090 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1091 bool IsRealSpill = isRealSpill(*MI); 1092 1093 if (IsRealSpill) 1094 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1095 MRI.getRegClass(NewVReg), &TRI, Register()); 1096 else 1097 // Don't spill undef value. 1098 // Anything works for undef, in particular keeping the memory 1099 // uninitialized is a viable option and it saves code size and 1100 // run time. 1101 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1102 .addReg(NewVReg, getKillRegState(isKill)); 1103 1104 MachineBasicBlock::iterator Spill = std::next(MI); 1105 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1106 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1107 getVDefInterval(MI, LIS); 1108 1109 LLVM_DEBUG( 1110 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1111 ++NumSpills; 1112 // If there is only 1 store instruction is required for spill, add it 1113 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1114 // We disable the merge for this case. 1115 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1116 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1117 } 1118 1119 /// spillAroundUses - insert spill code around each use of Reg. 1120 void InlineSpiller::spillAroundUses(Register Reg) { 1121 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1122 LiveInterval &OldLI = LIS.getInterval(Reg); 1123 1124 // Iterate over instructions using Reg. 1125 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 1126 // Debug values are not allowed to affect codegen. 1127 if (MI.isDebugValue()) { 1128 // Modify DBG_VALUE now that the value is in a spill slot. 1129 MachineBasicBlock *MBB = MI.getParent(); 1130 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI); 1131 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg); 1132 MBB->erase(MI); 1133 continue; 1134 } 1135 1136 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 1137 "instruction that isn't a DBG_VALUE"); 1138 1139 // Ignore copies to/from snippets. We'll delete them. 1140 if (SnippetCopies.count(&MI)) 1141 continue; 1142 1143 // Stack slot accesses may coalesce away. 1144 if (coalesceStackAccess(&MI, Reg)) 1145 continue; 1146 1147 // Analyze instruction. 1148 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1149 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops); 1150 1151 // Find the slot index where this instruction reads and writes OldLI. 1152 // This is usually the def slot, except for tied early clobbers. 1153 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1154 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1155 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1156 Idx = VNI->def; 1157 1158 // Check for a sibling copy. 1159 Register SibReg = isCopyOfBundle(MI, Reg, TII); 1160 if (SibReg && isSibling(SibReg)) { 1161 // This may actually be a copy between snippets. 1162 if (isRegToSpill(SibReg)) { 1163 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI); 1164 SnippetCopies.insert(&MI); 1165 continue; 1166 } 1167 if (RI.Writes) { 1168 if (hoistSpillInsideBB(OldLI, MI)) { 1169 // This COPY is now dead, the value is already in the stack slot. 1170 MI.getOperand(0).setIsDead(); 1171 DeadDefs.push_back(&MI); 1172 continue; 1173 } 1174 } else { 1175 // This is a reload for a sib-reg copy. Drop spills downstream. 1176 LiveInterval &SibLI = LIS.getInterval(SibReg); 1177 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1178 // The COPY will fold to a reload below. 1179 } 1180 } 1181 1182 // Attempt to fold memory ops. 1183 if (foldMemoryOperand(Ops)) 1184 continue; 1185 1186 // Create a new virtual register for spill/fill. 1187 // FIXME: Infer regclass from instruction alone. 1188 Register NewVReg = Edit->createFrom(Reg); 1189 1190 if (RI.Reads) 1191 insertReload(NewVReg, Idx, &MI); 1192 1193 // Rewrite instruction operands. 1194 bool hasLiveDef = false; 1195 for (const auto &OpPair : Ops) { 1196 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1197 MO.setReg(NewVReg); 1198 if (MO.isUse()) { 1199 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1200 MO.setIsKill(); 1201 } else { 1202 if (!MO.isDead()) 1203 hasLiveDef = true; 1204 } 1205 } 1206 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n'); 1207 1208 // FIXME: Use a second vreg if instruction has no tied ops. 1209 if (RI.Writes) 1210 if (hasLiveDef) 1211 insertSpill(NewVReg, true, &MI); 1212 } 1213 } 1214 1215 /// spillAll - Spill all registers remaining after rematerialization. 1216 void InlineSpiller::spillAll() { 1217 // Update LiveStacks now that we are committed to spilling. 1218 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1219 StackSlot = VRM.assignVirt2StackSlot(Original); 1220 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1221 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1222 } else 1223 StackInt = &LSS.getInterval(StackSlot); 1224 1225 if (Original != Edit->getReg()) 1226 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1227 1228 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1229 for (Register Reg : RegsToSpill) 1230 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1231 StackInt->getValNumInfo(0)); 1232 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1233 1234 // Spill around uses of all RegsToSpill. 1235 for (Register Reg : RegsToSpill) 1236 spillAroundUses(Reg); 1237 1238 // Hoisted spills may cause dead code. 1239 if (!DeadDefs.empty()) { 1240 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1241 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 1242 } 1243 1244 // Finally delete the SnippetCopies. 1245 for (Register Reg : RegsToSpill) { 1246 for (MachineInstr &MI : 1247 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 1248 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1249 // FIXME: Do this with a LiveRangeEdit callback. 1250 LIS.getSlotIndexes()->removeSingleMachineInstrFromMaps(MI); 1251 MI.eraseFromBundle(); 1252 } 1253 } 1254 1255 // Delete all spilled registers. 1256 for (Register Reg : RegsToSpill) 1257 Edit->eraseVirtReg(Reg); 1258 } 1259 1260 void InlineSpiller::spill(LiveRangeEdit &edit) { 1261 ++NumSpilledRanges; 1262 Edit = &edit; 1263 assert(!Register::isStackSlot(edit.getReg()) && 1264 "Trying to spill a stack slot."); 1265 // Share a stack slot among all descendants of Original. 1266 Original = VRM.getOriginal(edit.getReg()); 1267 StackSlot = VRM.getStackSlot(Original); 1268 StackInt = nullptr; 1269 1270 LLVM_DEBUG(dbgs() << "Inline spilling " 1271 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1272 << ':' << edit.getParent() << "\nFrom original " 1273 << printReg(Original) << '\n'); 1274 assert(edit.getParent().isSpillable() && 1275 "Attempting to spill already spilled value."); 1276 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1277 1278 collectRegsToSpill(); 1279 reMaterializeAll(); 1280 1281 // Remat may handle everything. 1282 if (!RegsToSpill.empty()) 1283 spillAll(); 1284 1285 Edit->calculateRegClassAndHint(MF, VRAI); 1286 } 1287 1288 /// Optimizations after all the reg selections and spills are done. 1289 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1290 1291 /// When a spill is inserted, add the spill to MergeableSpills map. 1292 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1293 unsigned Original) { 1294 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1295 LiveInterval &OrigLI = LIS.getInterval(Original); 1296 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1297 // LiveInterval may be cleared after all its references are spilled. 1298 if (!StackSlotToOrigLI.contains(StackSlot)) { 1299 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1300 LI->assign(OrigLI, Allocator); 1301 StackSlotToOrigLI[StackSlot] = std::move(LI); 1302 } 1303 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1304 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1305 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1306 MergeableSpills[MIdx].insert(&Spill); 1307 } 1308 1309 /// When a spill is removed, remove the spill from MergeableSpills map. 1310 /// Return true if the spill is removed successfully. 1311 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1312 int StackSlot) { 1313 auto It = StackSlotToOrigLI.find(StackSlot); 1314 if (It == StackSlotToOrigLI.end()) 1315 return false; 1316 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1317 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1318 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1319 return MergeableSpills[MIdx].erase(&Spill); 1320 } 1321 1322 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1323 /// i.e., there should be a living sibling of OrigReg at the insert point. 1324 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1325 MachineBasicBlock &BB, Register &LiveReg) { 1326 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); 1327 // The original def could be after the last insert point in the root block, 1328 // we can't hoist to here. 1329 if (Idx < OrigVNI.def) { 1330 // TODO: We could be better here. If LI is not alive in landing pad 1331 // we could hoist spill after LIP. 1332 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n"); 1333 return false; 1334 } 1335 Register OrigReg = OrigLI.reg(); 1336 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1337 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1338 1339 for (const Register &SibReg : Siblings) { 1340 LiveInterval &LI = LIS.getInterval(SibReg); 1341 VNInfo *VNI = LI.getVNInfoAt(Idx); 1342 if (VNI) { 1343 LiveReg = SibReg; 1344 return true; 1345 } 1346 } 1347 return false; 1348 } 1349 1350 /// Remove redundant spills in the same BB. Save those redundant spills in 1351 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1352 void HoistSpillHelper::rmRedundantSpills( 1353 SmallPtrSet<MachineInstr *, 16> &Spills, 1354 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1355 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1356 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1357 // another spill inside. If a BB contains more than one spill, only keep the 1358 // earlier spill with smaller SlotIndex. 1359 for (auto *const CurrentSpill : Spills) { 1360 MachineBasicBlock *Block = CurrentSpill->getParent(); 1361 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1362 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1363 if (PrevSpill) { 1364 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1365 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1366 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1367 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1368 SpillsToRm.push_back(SpillToRm); 1369 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1370 } else { 1371 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1372 } 1373 } 1374 for (auto *const SpillToRm : SpillsToRm) 1375 Spills.erase(SpillToRm); 1376 } 1377 1378 /// Starting from \p Root find a top-down traversal order of the dominator 1379 /// tree to visit all basic blocks containing the elements of \p Spills. 1380 /// Redundant spills will be found and put into \p SpillsToRm at the same 1381 /// time. \p SpillBBToSpill will be populated as part of the process and 1382 /// maps a basic block to the first store occurring in the basic block. 1383 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1384 void HoistSpillHelper::getVisitOrders( 1385 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1386 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1387 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1388 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1389 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1390 // The set contains all the possible BB nodes to which we may hoist 1391 // original spills. 1392 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1393 // Save the BB nodes on the path from the first BB node containing 1394 // non-redundant spill to the Root node. 1395 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1396 // All the spills to be hoisted must originate from a single def instruction 1397 // to the OrigReg. It means the def instruction should dominate all the spills 1398 // to be hoisted. We choose the BB where the def instruction is located as 1399 // the Root. 1400 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1401 // For every node on the dominator tree with spill, walk up on the dominator 1402 // tree towards the Root node until it is reached. If there is other node 1403 // containing spill in the middle of the path, the previous spill saw will 1404 // be redundant and the node containing it will be removed. All the nodes on 1405 // the path starting from the first node with non-redundant spill to the Root 1406 // node will be added to the WorkSet, which will contain all the possible 1407 // locations where spills may be hoisted to after the loop below is done. 1408 for (auto *const Spill : Spills) { 1409 MachineBasicBlock *Block = Spill->getParent(); 1410 MachineDomTreeNode *Node = MDT[Block]; 1411 MachineInstr *SpillToRm = nullptr; 1412 while (Node != RootIDomNode) { 1413 // If Node dominates Block, and it already contains a spill, the spill in 1414 // Block will be redundant. 1415 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1416 SpillToRm = SpillBBToSpill[MDT[Block]]; 1417 break; 1418 /// If we see the Node already in WorkSet, the path from the Node to 1419 /// the Root node must already be traversed by another spill. 1420 /// Then no need to repeat. 1421 } else if (WorkSet.count(Node)) { 1422 break; 1423 } else { 1424 NodesOnPath.insert(Node); 1425 } 1426 Node = Node->getIDom(); 1427 } 1428 if (SpillToRm) { 1429 SpillsToRm.push_back(SpillToRm); 1430 } else { 1431 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1432 // set the initial status before hoisting start. The value of BBs 1433 // containing original spills is set to 0, in order to descriminate 1434 // with BBs containing hoisted spills which will be inserted to 1435 // SpillsToKeep later during hoisting. 1436 SpillsToKeep[MDT[Block]] = 0; 1437 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1438 } 1439 NodesOnPath.clear(); 1440 } 1441 1442 // Sort the nodes in WorkSet in top-down order and save the nodes 1443 // in Orders. Orders will be used for hoisting in runHoistSpills. 1444 unsigned idx = 0; 1445 Orders.push_back(MDT.getBase().getNode(Root)); 1446 do { 1447 MachineDomTreeNode *Node = Orders[idx++]; 1448 for (MachineDomTreeNode *Child : Node->children()) { 1449 if (WorkSet.count(Child)) 1450 Orders.push_back(Child); 1451 } 1452 } while (idx != Orders.size()); 1453 assert(Orders.size() == WorkSet.size() && 1454 "Orders have different size with WorkSet"); 1455 1456 #ifndef NDEBUG 1457 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1458 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1459 for (; RIt != Orders.rend(); RIt++) 1460 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1461 LLVM_DEBUG(dbgs() << "\n"); 1462 #endif 1463 } 1464 1465 /// Try to hoist spills according to BB hotness. The spills to removed will 1466 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1467 /// \p SpillsToIns. 1468 void HoistSpillHelper::runHoistSpills( 1469 LiveInterval &OrigLI, VNInfo &OrigVNI, 1470 SmallPtrSet<MachineInstr *, 16> &Spills, 1471 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1472 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1473 // Visit order of dominator tree nodes. 1474 SmallVector<MachineDomTreeNode *, 32> Orders; 1475 // SpillsToKeep contains all the nodes where spills are to be inserted 1476 // during hoisting. If the spill to be inserted is an original spill 1477 // (not a hoisted one), the value of the map entry is 0. If the spill 1478 // is a hoisted spill, the value of the map entry is the VReg to be used 1479 // as the source of the spill. 1480 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1481 // Map from BB to the first spill inside of it. 1482 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1483 1484 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1485 1486 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1487 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1488 SpillBBToSpill); 1489 1490 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1491 // nodes set and the cost of all the spills inside those nodes. 1492 // The nodes set are the locations where spills are to be inserted 1493 // in the subtree of current node. 1494 using NodesCostPair = 1495 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1496 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1497 1498 // Iterate Orders set in reverse order, which will be a bottom-up order 1499 // in the dominator tree. Once we visit a dom tree node, we know its 1500 // children have already been visited and the spill locations in the 1501 // subtrees of all the children have been determined. 1502 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1503 for (; RIt != Orders.rend(); RIt++) { 1504 MachineBasicBlock *Block = (*RIt)->getBlock(); 1505 1506 // If Block contains an original spill, simply continue. 1507 if (SpillsToKeep.contains(*RIt) && !SpillsToKeep[*RIt]) { 1508 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1509 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1510 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1511 continue; 1512 } 1513 1514 // Collect spills in subtree of current node (*RIt) to 1515 // SpillsInSubTreeMap[*RIt].first. 1516 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1517 if (!SpillsInSubTreeMap.contains(Child)) 1518 continue; 1519 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1520 // should be placed before getting the begin and end iterators of 1521 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1522 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1523 // and the map grows and then the original buckets in the map are moved. 1524 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1525 SpillsInSubTreeMap[*RIt].first; 1526 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1527 SubTreeCost += SpillsInSubTreeMap[Child].second; 1528 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1529 auto EI = SpillsInSubTreeMap[Child].first.end(); 1530 SpillsInSubTree.insert(BI, EI); 1531 SpillsInSubTreeMap.erase(Child); 1532 } 1533 1534 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1535 SpillsInSubTreeMap[*RIt].first; 1536 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1537 // No spills in subtree, simply continue. 1538 if (SpillsInSubTree.empty()) 1539 continue; 1540 1541 // Check whether Block is a possible candidate to insert spill. 1542 Register LiveReg; 1543 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1544 continue; 1545 1546 // If there are multiple spills that could be merged, bias a little 1547 // to hoist the spill. 1548 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1549 ? BranchProbability(9, 10) 1550 : BranchProbability(1, 1); 1551 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1552 // Hoist: Move spills to current Block. 1553 for (auto *const SpillBB : SpillsInSubTree) { 1554 // When SpillBB is a BB contains original spill, insert the spill 1555 // to SpillsToRm. 1556 if (SpillsToKeep.contains(SpillBB) && !SpillsToKeep[SpillBB]) { 1557 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1558 SpillsToRm.push_back(SpillToRm); 1559 } 1560 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1561 SpillsToKeep.erase(SpillBB); 1562 } 1563 // Current Block is the BB containing the new hoisted spill. Add it to 1564 // SpillsToKeep. LiveReg is the source of the new spill. 1565 SpillsToKeep[*RIt] = LiveReg; 1566 LLVM_DEBUG({ 1567 dbgs() << "spills in BB: "; 1568 for (const auto Rspill : SpillsInSubTree) 1569 dbgs() << Rspill->getBlock()->getNumber() << " "; 1570 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1571 << "\n"; 1572 }); 1573 SpillsInSubTree.clear(); 1574 SpillsInSubTree.insert(*RIt); 1575 SubTreeCost = MBFI.getBlockFreq(Block); 1576 } 1577 } 1578 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1579 // save them to SpillsToIns. 1580 for (const auto &Ent : SpillsToKeep) { 1581 if (Ent.second) 1582 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1583 } 1584 } 1585 1586 /// For spills with equal values, remove redundant spills and hoist those left 1587 /// to less hot spots. 1588 /// 1589 /// Spills with equal values will be collected into the same set in 1590 /// MergeableSpills when spill is inserted. These equal spills are originated 1591 /// from the same defining instruction and are dominated by the instruction. 1592 /// Before hoisting all the equal spills, redundant spills inside in the same 1593 /// BB are first marked to be deleted. Then starting from the spills left, walk 1594 /// up on the dominator tree towards the Root node where the define instruction 1595 /// is located, mark the dominated spills to be deleted along the way and 1596 /// collect the BB nodes on the path from non-dominated spills to the define 1597 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1598 /// where we are considering to hoist the spills. We iterate the WorkSet in 1599 /// bottom-up order, and for each node, we will decide whether to hoist spills 1600 /// inside its subtree to that node. In this way, we can get benefit locally 1601 /// even if hoisting all the equal spills to one cold place is impossible. 1602 void HoistSpillHelper::hoistAllSpills() { 1603 SmallVector<Register, 4> NewVRegs; 1604 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1605 1606 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1607 Register Reg = Register::index2VirtReg(i); 1608 Register Original = VRM.getPreSplitReg(Reg); 1609 if (!MRI.def_empty(Reg)) 1610 Virt2SiblingsMap[Original].insert(Reg); 1611 } 1612 1613 // Each entry in MergeableSpills contains a spill set with equal values. 1614 for (auto &Ent : MergeableSpills) { 1615 int Slot = Ent.first.first; 1616 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1617 VNInfo *OrigVNI = Ent.first.second; 1618 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1619 if (Ent.second.empty()) 1620 continue; 1621 1622 LLVM_DEBUG({ 1623 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1624 << "Equal spills in BB: "; 1625 for (const auto spill : EqValSpills) 1626 dbgs() << spill->getParent()->getNumber() << " "; 1627 dbgs() << "\n"; 1628 }); 1629 1630 // SpillsToRm is the spill set to be removed from EqValSpills. 1631 SmallVector<MachineInstr *, 16> SpillsToRm; 1632 // SpillsToIns is the spill set to be newly inserted after hoisting. 1633 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1634 1635 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1636 1637 LLVM_DEBUG({ 1638 dbgs() << "Finally inserted spills in BB: "; 1639 for (const auto &Ispill : SpillsToIns) 1640 dbgs() << Ispill.first->getNumber() << " "; 1641 dbgs() << "\nFinally removed spills in BB: "; 1642 for (const auto Rspill : SpillsToRm) 1643 dbgs() << Rspill->getParent()->getNumber() << " "; 1644 dbgs() << "\n"; 1645 }); 1646 1647 // Stack live range update. 1648 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1649 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1650 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1651 StackIntvl.getValNumInfo(0)); 1652 1653 // Insert hoisted spills. 1654 for (auto const &Insert : SpillsToIns) { 1655 MachineBasicBlock *BB = Insert.first; 1656 Register LiveReg = Insert.second; 1657 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1658 MachineInstrSpan MIS(MII, BB); 1659 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1660 MRI.getRegClass(LiveReg), &TRI, Register()); 1661 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1662 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1663 getVDefInterval(MI, LIS); 1664 ++NumSpills; 1665 } 1666 1667 // Remove redundant spills or change them to dead instructions. 1668 NumSpills -= SpillsToRm.size(); 1669 for (auto *const RMEnt : SpillsToRm) { 1670 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1671 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1672 MachineOperand &MO = RMEnt->getOperand(i - 1); 1673 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1674 RMEnt->removeOperand(i - 1); 1675 } 1676 } 1677 Edit.eliminateDeadDefs(SpillsToRm, std::nullopt); 1678 } 1679 } 1680 1681 /// For VirtReg clone, the \p New register should have the same physreg or 1682 /// stackslot as the \p old register. 1683 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1684 if (VRM.hasPhys(Old)) 1685 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1686 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1687 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1688 else 1689 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1690 if (VRM.hasShape(Old)) 1691 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1692 } 1693