1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/LiveStacks.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineInstrBundle.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SlotIndexes.h" 39 #include "llvm/CodeGen/Spiller.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetOpcodes.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/VirtRegMap.h" 46 #include "llvm/Config/llvm-config.h" 47 #include "llvm/Support/BlockFrequency.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <cassert> 55 #include <iterator> 56 #include <tuple> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "regalloc" 63 64 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 65 STATISTIC(NumSnippets, "Number of spilled snippets"); 66 STATISTIC(NumSpills, "Number of spills inserted"); 67 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 68 STATISTIC(NumReloads, "Number of reloads inserted"); 69 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 70 STATISTIC(NumFolded, "Number of folded stack accesses"); 71 STATISTIC(NumFoldedLoads, "Number of folded loads"); 72 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 73 74 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 75 cl::desc("Disable inline spill hoisting")); 76 static cl::opt<bool> 77 RestrictStatepointRemat("restrict-statepoint-remat", 78 cl::init(false), cl::Hidden, 79 cl::desc("Restrict remat for statepoint operands")); 80 81 namespace { 82 83 class HoistSpillHelper : private LiveRangeEdit::Delegate { 84 MachineFunction &MF; 85 LiveIntervals &LIS; 86 LiveStacks &LSS; 87 MachineDominatorTree &MDT; 88 VirtRegMap &VRM; 89 MachineRegisterInfo &MRI; 90 const TargetInstrInfo &TII; 91 const TargetRegisterInfo &TRI; 92 const MachineBlockFrequencyInfo &MBFI; 93 94 InsertPointAnalysis IPA; 95 96 // Map from StackSlot to the LiveInterval of the original register. 97 // Note the LiveInterval of the original register may have been deleted 98 // after it is spilled. We keep a copy here to track the range where 99 // spills can be moved. 100 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 101 102 // Map from pair of (StackSlot and Original VNI) to a set of spills which 103 // have the same stackslot and have equal values defined by Original VNI. 104 // These spills are mergeable and are hoist candidates. 105 using MergeableSpillsMap = 106 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 107 MergeableSpillsMap MergeableSpills; 108 109 /// This is the map from original register to a set containing all its 110 /// siblings. To hoist a spill to another BB, we need to find out a live 111 /// sibling there and use it as the source of the new spill. 112 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 113 114 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 115 MachineBasicBlock &BB, Register &LiveReg); 116 117 void rmRedundantSpills( 118 SmallPtrSet<MachineInstr *, 16> &Spills, 119 SmallVectorImpl<MachineInstr *> &SpillsToRm, 120 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 121 122 void getVisitOrders( 123 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 124 SmallVectorImpl<MachineDomTreeNode *> &Orders, 125 SmallVectorImpl<MachineInstr *> &SpillsToRm, 126 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 127 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 128 129 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 130 SmallPtrSet<MachineInstr *, 16> &Spills, 131 SmallVectorImpl<MachineInstr *> &SpillsToRm, 132 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 133 134 public: 135 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 136 VirtRegMap &vrm) 137 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 138 LSS(pass.getAnalysis<LiveStacks>()), 139 MDT(pass.getAnalysis<MachineDominatorTree>()), VRM(vrm), 140 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 141 TRI(*mf.getSubtarget().getRegisterInfo()), 142 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 143 IPA(LIS, mf.getNumBlockIDs()) {} 144 145 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 146 unsigned Original); 147 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 148 void hoistAllSpills(); 149 void LRE_DidCloneVirtReg(Register, Register) override; 150 }; 151 152 class InlineSpiller : public Spiller { 153 MachineFunction &MF; 154 LiveIntervals &LIS; 155 LiveStacks &LSS; 156 MachineDominatorTree &MDT; 157 VirtRegMap &VRM; 158 MachineRegisterInfo &MRI; 159 const TargetInstrInfo &TII; 160 const TargetRegisterInfo &TRI; 161 const MachineBlockFrequencyInfo &MBFI; 162 163 // Variables that are valid during spill(), but used by multiple methods. 164 LiveRangeEdit *Edit = nullptr; 165 LiveInterval *StackInt = nullptr; 166 int StackSlot; 167 Register Original; 168 169 // All registers to spill to StackSlot, including the main register. 170 SmallVector<Register, 8> RegsToSpill; 171 172 // All COPY instructions to/from snippets. 173 // They are ignored since both operands refer to the same stack slot. 174 // For bundled copies, this will only include the first header copy. 175 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 176 177 // Values that failed to remat at some point. 178 SmallPtrSet<VNInfo*, 8> UsedValues; 179 180 // Dead defs generated during spilling. 181 SmallVector<MachineInstr*, 8> DeadDefs; 182 183 // Object records spills information and does the hoisting. 184 HoistSpillHelper HSpiller; 185 186 // Live range weight calculator. 187 VirtRegAuxInfo &VRAI; 188 189 ~InlineSpiller() override = default; 190 191 public: 192 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, 193 VirtRegAuxInfo &VRAI) 194 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()), 195 LSS(Pass.getAnalysis<LiveStacks>()), 196 MDT(Pass.getAnalysis<MachineDominatorTree>()), VRM(VRM), 197 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), 198 TRI(*MF.getSubtarget().getRegisterInfo()), 199 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()), 200 HSpiller(Pass, MF, VRM), VRAI(VRAI) {} 201 202 void spill(LiveRangeEdit &) override; 203 void postOptimization() override; 204 205 private: 206 bool isSnippet(const LiveInterval &SnipLI); 207 void collectRegsToSpill(); 208 209 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 210 211 bool isSibling(Register Reg); 212 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 213 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 214 215 void markValueUsed(LiveInterval*, VNInfo*); 216 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 217 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 218 void reMaterializeAll(); 219 220 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 221 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 222 MachineInstr *LoadMI = nullptr); 223 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 224 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 225 226 void spillAroundUses(Register Reg); 227 void spillAll(); 228 }; 229 230 } // end anonymous namespace 231 232 Spiller::~Spiller() = default; 233 234 void Spiller::anchor() {} 235 236 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, 237 MachineFunction &MF, VirtRegMap &VRM, 238 VirtRegAuxInfo &VRAI) { 239 return new InlineSpiller(Pass, MF, VRM, VRAI); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Snippets 244 //===----------------------------------------------------------------------===// 245 246 // When spilling a virtual register, we also spill any snippets it is connected 247 // to. The snippets are small live ranges that only have a single real use, 248 // leftovers from live range splitting. Spilling them enables memory operand 249 // folding or tightens the live range around the single use. 250 // 251 // This minimizes register pressure and maximizes the store-to-load distance for 252 // spill slots which can be important in tight loops. 253 254 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 255 /// otherwise return 0. 256 static Register isCopyOf(const MachineInstr &MI, Register Reg, 257 const TargetInstrInfo &TII) { 258 if (!TII.isCopyInstr(MI)) 259 return Register(); 260 261 const MachineOperand &DstOp = MI.getOperand(0); 262 const MachineOperand &SrcOp = MI.getOperand(1); 263 264 // TODO: Probably only worth allowing subreg copies with undef dests. 265 if (DstOp.getSubReg() != SrcOp.getSubReg()) 266 return Register(); 267 if (DstOp.getReg() == Reg) 268 return SrcOp.getReg(); 269 if (SrcOp.getReg() == Reg) 270 return DstOp.getReg(); 271 return Register(); 272 } 273 274 /// Check for a copy bundle as formed by SplitKit. 275 static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg, 276 const TargetInstrInfo &TII) { 277 if (!FirstMI.isBundled()) 278 return isCopyOf(FirstMI, Reg, TII); 279 280 assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() && 281 "expected to see first instruction in bundle"); 282 283 Register SnipReg; 284 MachineBasicBlock::const_instr_iterator I = FirstMI.getIterator(); 285 while (I->isBundledWithSucc()) { 286 const MachineInstr &MI = *I; 287 auto CopyInst = TII.isCopyInstr(MI); 288 if (!CopyInst) 289 return Register(); 290 291 const MachineOperand &DstOp = *CopyInst->Destination; 292 const MachineOperand &SrcOp = *CopyInst->Source; 293 if (DstOp.getReg() == Reg) { 294 if (!SnipReg) 295 SnipReg = SrcOp.getReg(); 296 else if (SnipReg != SrcOp.getReg()) 297 return Register(); 298 } else if (SrcOp.getReg() == Reg) { 299 if (!SnipReg) 300 SnipReg = DstOp.getReg(); 301 else if (SnipReg != DstOp.getReg()) 302 return Register(); 303 } 304 305 ++I; 306 } 307 308 return Register(); 309 } 310 311 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 312 for (const MachineOperand &MO : MI.all_defs()) 313 if (MO.getReg().isVirtual()) 314 LIS.getInterval(MO.getReg()); 315 } 316 317 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 318 /// It is assumed that SnipLI is a virtual register with the same original as 319 /// Edit->getReg(). 320 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 321 Register Reg = Edit->getReg(); 322 323 // A snippet is a tiny live range with only a single instruction using it 324 // besides copies to/from Reg or spills/fills. 325 // Exception is done for statepoint instructions which will fold fills 326 // into their operands. 327 // We accept: 328 // 329 // %snip = COPY %Reg / FILL fi# 330 // %snip = USE %snip 331 // %snip = STATEPOINT %snip in var arg area 332 // %Reg = COPY %snip / SPILL %snip, fi# 333 // 334 if (!LIS.intervalIsInOneMBB(SnipLI)) 335 return false; 336 337 // Number of defs should not exceed 2 not accounting defs coming from 338 // statepoint instructions. 339 unsigned NumValNums = SnipLI.getNumValNums(); 340 for (auto *VNI : SnipLI.vnis()) { 341 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 342 if (MI->getOpcode() == TargetOpcode::STATEPOINT) 343 --NumValNums; 344 } 345 if (NumValNums > 2) 346 return false; 347 348 MachineInstr *UseMI = nullptr; 349 350 // Check that all uses satisfy our criteria. 351 for (MachineRegisterInfo::reg_bundle_nodbg_iterator 352 RI = MRI.reg_bundle_nodbg_begin(SnipLI.reg()), 353 E = MRI.reg_bundle_nodbg_end(); 354 RI != E;) { 355 MachineInstr &MI = *RI++; 356 357 // Allow copies to/from Reg. 358 if (isCopyOfBundle(MI, Reg, TII)) 359 continue; 360 361 // Allow stack slot loads. 362 int FI; 363 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 364 continue; 365 366 // Allow stack slot stores. 367 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 368 continue; 369 370 if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg())) 371 continue; 372 373 // Allow a single additional instruction. 374 if (UseMI && &MI != UseMI) 375 return false; 376 UseMI = &MI; 377 } 378 return true; 379 } 380 381 /// collectRegsToSpill - Collect live range snippets that only have a single 382 /// real use. 383 void InlineSpiller::collectRegsToSpill() { 384 Register Reg = Edit->getReg(); 385 386 // Main register always spills. 387 RegsToSpill.assign(1, Reg); 388 SnippetCopies.clear(); 389 390 // Snippets all have the same original, so there can't be any for an original 391 // register. 392 if (Original == Reg) 393 return; 394 395 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 396 Register SnipReg = isCopyOfBundle(MI, Reg, TII); 397 if (!isSibling(SnipReg)) 398 continue; 399 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 400 if (!isSnippet(SnipLI)) 401 continue; 402 SnippetCopies.insert(&MI); 403 if (isRegToSpill(SnipReg)) 404 continue; 405 RegsToSpill.push_back(SnipReg); 406 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 407 ++NumSnippets; 408 } 409 } 410 411 bool InlineSpiller::isSibling(Register Reg) { 412 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 413 } 414 415 /// It is beneficial to spill to earlier place in the same BB in case 416 /// as follows: 417 /// There is an alternative def earlier in the same MBB. 418 /// Hoist the spill as far as possible in SpillMBB. This can ease 419 /// register pressure: 420 /// 421 /// x = def 422 /// y = use x 423 /// s = copy x 424 /// 425 /// Hoisting the spill of s to immediately after the def removes the 426 /// interference between x and y: 427 /// 428 /// x = def 429 /// spill x 430 /// y = use killed x 431 /// 432 /// This hoist only helps when the copy kills its source. 433 /// 434 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 435 MachineInstr &CopyMI) { 436 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 437 #ifndef NDEBUG 438 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 439 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 440 #endif 441 442 Register SrcReg = CopyMI.getOperand(1).getReg(); 443 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 444 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 445 LiveQueryResult SrcQ = SrcLI.Query(Idx); 446 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 447 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 448 return false; 449 450 // Conservatively extend the stack slot range to the range of the original 451 // value. We may be able to do better with stack slot coloring by being more 452 // careful here. 453 assert(StackInt && "No stack slot assigned yet."); 454 LiveInterval &OrigLI = LIS.getInterval(Original); 455 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 456 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 457 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 458 << *StackInt << '\n'); 459 460 // We are going to spill SrcVNI immediately after its def, so clear out 461 // any later spills of the same value. 462 eliminateRedundantSpills(SrcLI, SrcVNI); 463 464 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 465 MachineBasicBlock::iterator MII; 466 if (SrcVNI->isPHIDef()) 467 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin(), SrcReg); 468 else { 469 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 470 assert(DefMI && "Defining instruction disappeared"); 471 MII = DefMI; 472 ++MII; 473 } 474 MachineInstrSpan MIS(MII, MBB); 475 // Insert spill without kill flag immediately after def. 476 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 477 MRI.getRegClass(SrcReg), &TRI, Register()); 478 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 479 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 480 getVDefInterval(MI, LIS); 481 --MII; // Point to store instruction. 482 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 483 484 // If there is only 1 store instruction is required for spill, add it 485 // to mergeable list. In X86 AMX, 2 intructions are required to store. 486 // We disable the merge for this case. 487 if (MIS.begin() == MII) 488 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 489 ++NumSpills; 490 return true; 491 } 492 493 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 494 /// redundant spills of this value in SLI.reg and sibling copies. 495 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 496 assert(VNI && "Missing value"); 497 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 498 WorkList.push_back(std::make_pair(&SLI, VNI)); 499 assert(StackInt && "No stack slot assigned yet."); 500 501 do { 502 LiveInterval *LI; 503 std::tie(LI, VNI) = WorkList.pop_back_val(); 504 Register Reg = LI->reg(); 505 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 506 << VNI->def << " in " << *LI << '\n'); 507 508 // Regs to spill are taken care of. 509 if (isRegToSpill(Reg)) 510 continue; 511 512 // Add all of VNI's live range to StackInt. 513 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 514 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 515 516 // Find all spills and copies of VNI. 517 for (MachineInstr &MI : 518 llvm::make_early_inc_range(MRI.use_nodbg_bundles(Reg))) { 519 if (!MI.mayStore() && !TII.isCopyInstr(MI)) 520 continue; 521 SlotIndex Idx = LIS.getInstructionIndex(MI); 522 if (LI->getVNInfoAt(Idx) != VNI) 523 continue; 524 525 // Follow sibling copies down the dominator tree. 526 if (Register DstReg = isCopyOfBundle(MI, Reg, TII)) { 527 if (isSibling(DstReg)) { 528 LiveInterval &DstLI = LIS.getInterval(DstReg); 529 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 530 assert(DstVNI && "Missing defined value"); 531 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 532 533 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 534 } 535 continue; 536 } 537 538 // Erase spills. 539 int FI; 540 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 541 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 542 // eliminateDeadDefs won't normally remove stores, so switch opcode. 543 MI.setDesc(TII.get(TargetOpcode::KILL)); 544 DeadDefs.push_back(&MI); 545 ++NumSpillsRemoved; 546 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 547 --NumSpills; 548 } 549 } 550 } while (!WorkList.empty()); 551 } 552 553 //===----------------------------------------------------------------------===// 554 // Rematerialization 555 //===----------------------------------------------------------------------===// 556 557 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 558 /// instruction cannot be eliminated. See through snippet copies 559 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 560 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 561 WorkList.push_back(std::make_pair(LI, VNI)); 562 do { 563 std::tie(LI, VNI) = WorkList.pop_back_val(); 564 if (!UsedValues.insert(VNI).second) 565 continue; 566 567 if (VNI->isPHIDef()) { 568 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 569 for (MachineBasicBlock *P : MBB->predecessors()) { 570 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 571 if (PVNI) 572 WorkList.push_back(std::make_pair(LI, PVNI)); 573 } 574 continue; 575 } 576 577 // Follow snippet copies. 578 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 579 if (!SnippetCopies.count(MI)) 580 continue; 581 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 582 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 583 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 584 assert(SnipVNI && "Snippet undefined before copy"); 585 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 586 } while (!WorkList.empty()); 587 } 588 589 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 590 MachineInstr &MI) { 591 if (!RestrictStatepointRemat) 592 return true; 593 // Here's a quick explanation of the problem we're trying to handle here: 594 // * There are some pseudo instructions with more vreg uses than there are 595 // physical registers on the machine. 596 // * This is normally handled by spilling the vreg, and folding the reload 597 // into the user instruction. (Thus decreasing the number of used vregs 598 // until the remainder can be assigned to physregs.) 599 // * However, since we may try to spill vregs in any order, we can end up 600 // trying to spill each operand to the instruction, and then rematting it 601 // instead. When that happens, the new live intervals (for the remats) are 602 // expected to be trivially assignable (i.e. RS_Done). However, since we 603 // may have more remats than physregs, we're guaranteed to fail to assign 604 // one. 605 // At the moment, we only handle this for STATEPOINTs since they're the only 606 // pseudo op where we've seen this. If we start seeing other instructions 607 // with the same problem, we need to revisit this. 608 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 609 return true; 610 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 611 // that number of physical registers is enough to cover all fixed arguments. 612 // If it is not true we need to revisit it. 613 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 614 EndIdx = MI.getNumOperands(); 615 Idx < EndIdx; ++Idx) { 616 MachineOperand &MO = MI.getOperand(Idx); 617 if (MO.isReg() && MO.getReg() == VReg) 618 return false; 619 } 620 return true; 621 } 622 623 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 624 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 625 // Analyze instruction 626 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 627 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 628 629 if (!RI.Reads) 630 return false; 631 632 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 633 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 634 635 if (!ParentVNI) { 636 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 637 for (MachineOperand &MO : MI.all_uses()) 638 if (MO.getReg() == VirtReg.reg()) 639 MO.setIsUndef(); 640 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 641 return true; 642 } 643 644 if (SnippetCopies.count(&MI)) 645 return false; 646 647 LiveInterval &OrigLI = LIS.getInterval(Original); 648 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 649 LiveRangeEdit::Remat RM(ParentVNI); 650 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 651 652 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 653 markValueUsed(&VirtReg, ParentVNI); 654 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 655 return false; 656 } 657 658 // If the instruction also writes VirtReg.reg, it had better not require the 659 // same register for uses and defs. 660 if (RI.Tied) { 661 markValueUsed(&VirtReg, ParentVNI); 662 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 663 return false; 664 } 665 666 // Before rematerializing into a register for a single instruction, try to 667 // fold a load into the instruction. That avoids allocating a new register. 668 if (RM.OrigMI->canFoldAsLoad() && 669 foldMemoryOperand(Ops, RM.OrigMI)) { 670 Edit->markRematerialized(RM.ParentVNI); 671 ++NumFoldedLoads; 672 return true; 673 } 674 675 // If we can't guarantee that we'll be able to actually assign the new vreg, 676 // we can't remat. 677 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 678 markValueUsed(&VirtReg, ParentVNI); 679 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 680 return false; 681 } 682 683 // Allocate a new register for the remat. 684 Register NewVReg = Edit->createFrom(Original); 685 686 // Finally we can rematerialize OrigMI before MI. 687 SlotIndex DefIdx = 688 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 689 690 // We take the DebugLoc from MI, since OrigMI may be attributed to a 691 // different source location. 692 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 693 NewMI->setDebugLoc(MI.getDebugLoc()); 694 695 (void)DefIdx; 696 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 697 << *LIS.getInstructionFromIndex(DefIdx)); 698 699 // Replace operands 700 for (const auto &OpPair : Ops) { 701 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 702 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 703 MO.setReg(NewVReg); 704 MO.setIsKill(); 705 } 706 } 707 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 708 709 ++NumRemats; 710 return true; 711 } 712 713 /// reMaterializeAll - Try to rematerialize as many uses as possible, 714 /// and trim the live ranges after. 715 void InlineSpiller::reMaterializeAll() { 716 if (!Edit->anyRematerializable()) 717 return; 718 719 UsedValues.clear(); 720 721 // Try to remat before all uses of snippets. 722 bool anyRemat = false; 723 for (Register Reg : RegsToSpill) { 724 LiveInterval &LI = LIS.getInterval(Reg); 725 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 726 // Debug values are not allowed to affect codegen. 727 if (MI.isDebugValue()) 728 continue; 729 730 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 731 "instruction that isn't a DBG_VALUE"); 732 733 anyRemat |= reMaterializeFor(LI, MI); 734 } 735 } 736 if (!anyRemat) 737 return; 738 739 // Remove any values that were completely rematted. 740 for (Register Reg : RegsToSpill) { 741 LiveInterval &LI = LIS.getInterval(Reg); 742 for (VNInfo *VNI : LI.vnis()) { 743 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 744 continue; 745 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 746 MI->addRegisterDead(Reg, &TRI); 747 if (!MI->allDefsAreDead()) 748 continue; 749 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 750 DeadDefs.push_back(MI); 751 // If MI is a bundle header, also try removing copies inside the bundle, 752 // otherwise the verifier would complain "live range continues after dead 753 // def flag". 754 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) { 755 MachineBasicBlock::instr_iterator BeginIt = MI->getIterator(), 756 EndIt = MI->getParent()->instr_end(); 757 ++BeginIt; // Skip MI that was already handled. 758 759 bool OnlyDeadCopies = true; 760 for (MachineBasicBlock::instr_iterator It = BeginIt; 761 It != EndIt && It->isBundledWithPred(); ++It) { 762 763 auto DestSrc = TII.isCopyInstr(*It); 764 bool IsCopyToDeadReg = 765 DestSrc && DestSrc->Destination->getReg() == Reg; 766 if (!IsCopyToDeadReg) { 767 OnlyDeadCopies = false; 768 break; 769 } 770 } 771 if (OnlyDeadCopies) { 772 for (MachineBasicBlock::instr_iterator It = BeginIt; 773 It != EndIt && It->isBundledWithPred(); ++It) { 774 It->addRegisterDead(Reg, &TRI); 775 LLVM_DEBUG(dbgs() << "All defs dead: " << *It); 776 DeadDefs.push_back(&*It); 777 } 778 } 779 } 780 } 781 } 782 783 // Eliminate dead code after remat. Note that some snippet copies may be 784 // deleted here. 785 if (DeadDefs.empty()) 786 return; 787 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 788 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 789 790 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 791 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 792 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 793 // removed, PHI VNI are still left in the LiveInterval. 794 // So to get rid of unused reg, we need to check whether it has non-dbg 795 // reference instead of whether it has non-empty interval. 796 unsigned ResultPos = 0; 797 for (Register Reg : RegsToSpill) { 798 if (MRI.reg_nodbg_empty(Reg)) { 799 Edit->eraseVirtReg(Reg); 800 continue; 801 } 802 803 assert(LIS.hasInterval(Reg) && 804 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 805 "Empty and not used live-range?!"); 806 807 RegsToSpill[ResultPos++] = Reg; 808 } 809 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 810 LLVM_DEBUG(dbgs() << RegsToSpill.size() 811 << " registers to spill after remat.\n"); 812 } 813 814 //===----------------------------------------------------------------------===// 815 // Spilling 816 //===----------------------------------------------------------------------===// 817 818 /// If MI is a load or store of StackSlot, it can be removed. 819 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 820 int FI = 0; 821 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 822 bool IsLoad = InstrReg; 823 if (!IsLoad) 824 InstrReg = TII.isStoreToStackSlot(*MI, FI); 825 826 // We have a stack access. Is it the right register and slot? 827 if (InstrReg != Reg || FI != StackSlot) 828 return false; 829 830 if (!IsLoad) 831 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 832 833 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 834 LIS.RemoveMachineInstrFromMaps(*MI); 835 MI->eraseFromParent(); 836 837 if (IsLoad) { 838 ++NumReloadsRemoved; 839 --NumReloads; 840 } else { 841 ++NumSpillsRemoved; 842 --NumSpills; 843 } 844 845 return true; 846 } 847 848 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 849 LLVM_DUMP_METHOD 850 // Dump the range of instructions from B to E with their slot indexes. 851 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 852 MachineBasicBlock::iterator E, 853 LiveIntervals const &LIS, 854 const char *const header, 855 Register VReg = Register()) { 856 char NextLine = '\n'; 857 char SlotIndent = '\t'; 858 859 if (std::next(B) == E) { 860 NextLine = ' '; 861 SlotIndent = ' '; 862 } 863 864 dbgs() << '\t' << header << ": " << NextLine; 865 866 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 867 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 868 869 // If a register was passed in and this instruction has it as a 870 // destination that is marked as an early clobber, print the 871 // early-clobber slot index. 872 if (VReg) { 873 MachineOperand *MO = I->findRegisterDefOperand(VReg); 874 if (MO && MO->isEarlyClobber()) 875 Idx = Idx.getRegSlot(true); 876 } 877 878 dbgs() << SlotIndent << Idx << '\t' << *I; 879 } 880 } 881 #endif 882 883 /// foldMemoryOperand - Try folding stack slot references in Ops into their 884 /// instructions. 885 /// 886 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 887 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 888 /// @return True on success. 889 bool InlineSpiller:: 890 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 891 MachineInstr *LoadMI) { 892 if (Ops.empty()) 893 return false; 894 // Don't attempt folding in bundles. 895 MachineInstr *MI = Ops.front().first; 896 if (Ops.back().first != MI || MI->isBundled()) 897 return false; 898 899 bool WasCopy = TII.isCopyInstr(*MI).has_value(); 900 Register ImpReg; 901 902 // TII::foldMemoryOperand will do what we need here for statepoint 903 // (fold load into use and remove corresponding def). We will replace 904 // uses of removed def with loads (spillAroundUses). 905 // For that to work we need to untie def and use to pass it through 906 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 907 // fold them. 908 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 909 910 // Spill subregs if the target allows it. 911 // We always want to spill subregs for stackmap/patchpoint pseudos. 912 bool SpillSubRegs = TII.isSubregFoldable() || 913 MI->getOpcode() == TargetOpcode::STATEPOINT || 914 MI->getOpcode() == TargetOpcode::PATCHPOINT || 915 MI->getOpcode() == TargetOpcode::STACKMAP; 916 917 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 918 // operands. 919 SmallVector<unsigned, 8> FoldOps; 920 for (const auto &OpPair : Ops) { 921 unsigned Idx = OpPair.second; 922 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 923 MachineOperand &MO = MI->getOperand(Idx); 924 925 // No point restoring an undef read, and we'll produce an invalid live 926 // interval. 927 // TODO: Is this really the correct way to handle undef tied uses? 928 if (MO.isUse() && !MO.readsReg() && !MO.isTied()) 929 continue; 930 931 if (MO.isImplicit()) { 932 ImpReg = MO.getReg(); 933 continue; 934 } 935 936 if (!SpillSubRegs && MO.getSubReg()) 937 return false; 938 // We cannot fold a load instruction into a def. 939 if (LoadMI && MO.isDef()) 940 return false; 941 // Tied use operands should not be passed to foldMemoryOperand. 942 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 943 FoldOps.push_back(Idx); 944 } 945 946 // If we only have implicit uses, we won't be able to fold that. 947 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 948 if (FoldOps.empty()) 949 return false; 950 951 MachineInstrSpan MIS(MI, MI->getParent()); 952 953 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 954 if (UntieRegs) 955 for (unsigned Idx : FoldOps) { 956 MachineOperand &MO = MI->getOperand(Idx); 957 if (!MO.isTied()) 958 continue; 959 unsigned Tied = MI->findTiedOperandIdx(Idx); 960 if (MO.isUse()) 961 TiedOps.emplace_back(Tied, Idx); 962 else { 963 assert(MO.isDef() && "Tied to not use and def?"); 964 TiedOps.emplace_back(Idx, Tied); 965 } 966 MI->untieRegOperand(Idx); 967 } 968 969 MachineInstr *FoldMI = 970 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 971 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 972 if (!FoldMI) { 973 // Re-tie operands. 974 for (auto Tied : TiedOps) 975 MI->tieOperands(Tied.first, Tied.second); 976 return false; 977 } 978 979 // Remove LIS for any dead defs in the original MI not in FoldMI. 980 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 981 if (!MO->isReg()) 982 continue; 983 Register Reg = MO->getReg(); 984 if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) { 985 continue; 986 } 987 // Skip non-Defs, including undef uses and internal reads. 988 if (MO->isUse()) 989 continue; 990 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 991 if (RI.FullyDefined) 992 continue; 993 // FoldMI does not define this physreg. Remove the LI segment. 994 assert(MO->isDead() && "Cannot fold physreg def"); 995 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 996 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 997 } 998 999 int FI; 1000 if (TII.isStoreToStackSlot(*MI, FI) && 1001 HSpiller.rmFromMergeableSpills(*MI, FI)) 1002 --NumSpills; 1003 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 1004 // Update the call site info. 1005 if (MI->isCandidateForCallSiteEntry()) 1006 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 1007 1008 // If we've folded a store into an instruction labelled with debug-info, 1009 // record a substitution from the old operand to the memory operand. Handle 1010 // the simple common case where operand 0 is the one being folded, plus when 1011 // the destination operand is also a tied def. More values could be 1012 // substituted / preserved with more analysis. 1013 if (MI->peekDebugInstrNum() && Ops[0].second == 0) { 1014 // Helper lambda. 1015 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { 1016 // Substitute old operand zero to the new instructions memory operand. 1017 unsigned OldOperandNum = Ops[0].second; 1018 unsigned NewNum = FoldMI->getDebugInstrNum(); 1019 unsigned OldNum = MI->getDebugInstrNum(); 1020 MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, 1021 {NewNum, MachineFunction::DebugOperandMemNumber}); 1022 }; 1023 1024 const MachineOperand &Op0 = MI->getOperand(Ops[0].second); 1025 if (Ops.size() == 1 && Op0.isDef()) { 1026 MakeSubstitution(); 1027 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() && 1028 Op0.getReg() == MI->getOperand(1).getReg()) { 1029 MakeSubstitution(); 1030 } 1031 } else if (MI->peekDebugInstrNum()) { 1032 // This is a debug-labelled instruction, but the operand being folded isn't 1033 // at operand zero. Most likely this means it's a load being folded in. 1034 // Substitute any register defs from operand zero up to the one being 1035 // folded -- past that point, we don't know what the new operand indexes 1036 // will be. 1037 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second); 1038 } 1039 1040 MI->eraseFromParent(); 1041 1042 // Insert any new instructions other than FoldMI into the LIS maps. 1043 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 1044 for (MachineInstr &MI : MIS) 1045 if (&MI != FoldMI) 1046 LIS.InsertMachineInstrInMaps(MI); 1047 1048 // TII.foldMemoryOperand may have left some implicit operands on the 1049 // instruction. Strip them. 1050 if (ImpReg) 1051 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 1052 MachineOperand &MO = FoldMI->getOperand(i - 1); 1053 if (!MO.isReg() || !MO.isImplicit()) 1054 break; 1055 if (MO.getReg() == ImpReg) 1056 FoldMI->removeOperand(i - 1); 1057 } 1058 1059 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 1060 "folded")); 1061 1062 if (!WasCopy) 1063 ++NumFolded; 1064 else if (Ops.front().second == 0) { 1065 ++NumSpills; 1066 // If there is only 1 store instruction is required for spill, add it 1067 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1068 // We disable the merge for this case. 1069 if (std::distance(MIS.begin(), MIS.end()) <= 1) 1070 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 1071 } else 1072 ++NumReloads; 1073 return true; 1074 } 1075 1076 void InlineSpiller::insertReload(Register NewVReg, 1077 SlotIndex Idx, 1078 MachineBasicBlock::iterator MI) { 1079 MachineBasicBlock &MBB = *MI->getParent(); 1080 1081 MachineInstrSpan MIS(MI, &MBB); 1082 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1083 MRI.getRegClass(NewVReg), &TRI, Register()); 1084 1085 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1086 1087 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1088 NewVReg)); 1089 ++NumReloads; 1090 } 1091 1092 /// Check if \p Def fully defines a VReg with an undefined value. 1093 /// If that's the case, that means the value of VReg is actually 1094 /// not relevant. 1095 static bool isRealSpill(const MachineInstr &Def) { 1096 if (!Def.isImplicitDef()) 1097 return true; 1098 1099 // We can say that the VReg defined by Def is undef, only if it is 1100 // fully defined by Def. Otherwise, some of the lanes may not be 1101 // undef and the value of the VReg matters. 1102 return Def.getOperand(0).getSubReg(); 1103 } 1104 1105 /// insertSpill - Insert a spill of NewVReg after MI. 1106 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 1107 MachineBasicBlock::iterator MI) { 1108 // Spill are not terminators, so inserting spills after terminators will 1109 // violate invariants in MachineVerifier. 1110 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 1111 MachineBasicBlock &MBB = *MI->getParent(); 1112 1113 MachineInstrSpan MIS(MI, &MBB); 1114 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1115 bool IsRealSpill = isRealSpill(*MI); 1116 1117 if (IsRealSpill) 1118 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1119 MRI.getRegClass(NewVReg), &TRI, Register()); 1120 else 1121 // Don't spill undef value. 1122 // Anything works for undef, in particular keeping the memory 1123 // uninitialized is a viable option and it saves code size and 1124 // run time. 1125 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1126 .addReg(NewVReg, getKillRegState(isKill)); 1127 1128 MachineBasicBlock::iterator Spill = std::next(MI); 1129 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1130 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1131 getVDefInterval(MI, LIS); 1132 1133 LLVM_DEBUG( 1134 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1135 ++NumSpills; 1136 // If there is only 1 store instruction is required for spill, add it 1137 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1138 // We disable the merge for this case. 1139 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1140 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1141 } 1142 1143 /// spillAroundUses - insert spill code around each use of Reg. 1144 void InlineSpiller::spillAroundUses(Register Reg) { 1145 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1146 LiveInterval &OldLI = LIS.getInterval(Reg); 1147 1148 // Iterate over instructions using Reg. 1149 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 1150 // Debug values are not allowed to affect codegen. 1151 if (MI.isDebugValue()) { 1152 // Modify DBG_VALUE now that the value is in a spill slot. 1153 MachineBasicBlock *MBB = MI.getParent(); 1154 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI); 1155 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg); 1156 MBB->erase(MI); 1157 continue; 1158 } 1159 1160 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 1161 "instruction that isn't a DBG_VALUE"); 1162 1163 // Ignore copies to/from snippets. We'll delete them. 1164 if (SnippetCopies.count(&MI)) 1165 continue; 1166 1167 // Stack slot accesses may coalesce away. 1168 if (coalesceStackAccess(&MI, Reg)) 1169 continue; 1170 1171 // Analyze instruction. 1172 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1173 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops); 1174 1175 // Find the slot index where this instruction reads and writes OldLI. 1176 // This is usually the def slot, except for tied early clobbers. 1177 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1178 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1179 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1180 Idx = VNI->def; 1181 1182 // Check for a sibling copy. 1183 Register SibReg = isCopyOfBundle(MI, Reg, TII); 1184 if (SibReg && isSibling(SibReg)) { 1185 // This may actually be a copy between snippets. 1186 if (isRegToSpill(SibReg)) { 1187 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI); 1188 SnippetCopies.insert(&MI); 1189 continue; 1190 } 1191 if (RI.Writes) { 1192 if (hoistSpillInsideBB(OldLI, MI)) { 1193 // This COPY is now dead, the value is already in the stack slot. 1194 MI.getOperand(0).setIsDead(); 1195 DeadDefs.push_back(&MI); 1196 continue; 1197 } 1198 } else { 1199 // This is a reload for a sib-reg copy. Drop spills downstream. 1200 LiveInterval &SibLI = LIS.getInterval(SibReg); 1201 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1202 // The COPY will fold to a reload below. 1203 } 1204 } 1205 1206 // Attempt to fold memory ops. 1207 if (foldMemoryOperand(Ops)) 1208 continue; 1209 1210 // Create a new virtual register for spill/fill. 1211 // FIXME: Infer regclass from instruction alone. 1212 Register NewVReg = Edit->createFrom(Reg); 1213 1214 if (RI.Reads) 1215 insertReload(NewVReg, Idx, &MI); 1216 1217 // Rewrite instruction operands. 1218 bool hasLiveDef = false; 1219 for (const auto &OpPair : Ops) { 1220 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1221 MO.setReg(NewVReg); 1222 if (MO.isUse()) { 1223 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1224 MO.setIsKill(); 1225 } else { 1226 if (!MO.isDead()) 1227 hasLiveDef = true; 1228 } 1229 } 1230 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n'); 1231 1232 // FIXME: Use a second vreg if instruction has no tied ops. 1233 if (RI.Writes) 1234 if (hasLiveDef) 1235 insertSpill(NewVReg, true, &MI); 1236 } 1237 } 1238 1239 /// spillAll - Spill all registers remaining after rematerialization. 1240 void InlineSpiller::spillAll() { 1241 // Update LiveStacks now that we are committed to spilling. 1242 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1243 StackSlot = VRM.assignVirt2StackSlot(Original); 1244 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1245 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1246 } else 1247 StackInt = &LSS.getInterval(StackSlot); 1248 1249 if (Original != Edit->getReg()) 1250 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1251 1252 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1253 for (Register Reg : RegsToSpill) 1254 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1255 StackInt->getValNumInfo(0)); 1256 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1257 1258 // Spill around uses of all RegsToSpill. 1259 for (Register Reg : RegsToSpill) 1260 spillAroundUses(Reg); 1261 1262 // Hoisted spills may cause dead code. 1263 if (!DeadDefs.empty()) { 1264 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1265 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 1266 } 1267 1268 // Finally delete the SnippetCopies. 1269 for (Register Reg : RegsToSpill) { 1270 for (MachineInstr &MI : 1271 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 1272 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1273 // FIXME: Do this with a LiveRangeEdit callback. 1274 LIS.getSlotIndexes()->removeSingleMachineInstrFromMaps(MI); 1275 MI.eraseFromBundle(); 1276 } 1277 } 1278 1279 // Delete all spilled registers. 1280 for (Register Reg : RegsToSpill) 1281 Edit->eraseVirtReg(Reg); 1282 } 1283 1284 void InlineSpiller::spill(LiveRangeEdit &edit) { 1285 ++NumSpilledRanges; 1286 Edit = &edit; 1287 assert(!Register::isStackSlot(edit.getReg()) && 1288 "Trying to spill a stack slot."); 1289 // Share a stack slot among all descendants of Original. 1290 Original = VRM.getOriginal(edit.getReg()); 1291 StackSlot = VRM.getStackSlot(Original); 1292 StackInt = nullptr; 1293 1294 LLVM_DEBUG(dbgs() << "Inline spilling " 1295 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1296 << ':' << edit.getParent() << "\nFrom original " 1297 << printReg(Original) << '\n'); 1298 assert(edit.getParent().isSpillable() && 1299 "Attempting to spill already spilled value."); 1300 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1301 1302 collectRegsToSpill(); 1303 reMaterializeAll(); 1304 1305 // Remat may handle everything. 1306 if (!RegsToSpill.empty()) 1307 spillAll(); 1308 1309 Edit->calculateRegClassAndHint(MF, VRAI); 1310 } 1311 1312 /// Optimizations after all the reg selections and spills are done. 1313 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1314 1315 /// When a spill is inserted, add the spill to MergeableSpills map. 1316 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1317 unsigned Original) { 1318 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1319 LiveInterval &OrigLI = LIS.getInterval(Original); 1320 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1321 // LiveInterval may be cleared after all its references are spilled. 1322 if (!StackSlotToOrigLI.contains(StackSlot)) { 1323 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1324 LI->assign(OrigLI, Allocator); 1325 StackSlotToOrigLI[StackSlot] = std::move(LI); 1326 } 1327 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1328 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1329 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1330 MergeableSpills[MIdx].insert(&Spill); 1331 } 1332 1333 /// When a spill is removed, remove the spill from MergeableSpills map. 1334 /// Return true if the spill is removed successfully. 1335 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1336 int StackSlot) { 1337 auto It = StackSlotToOrigLI.find(StackSlot); 1338 if (It == StackSlotToOrigLI.end()) 1339 return false; 1340 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1341 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1342 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1343 return MergeableSpills[MIdx].erase(&Spill); 1344 } 1345 1346 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1347 /// i.e., there should be a living sibling of OrigReg at the insert point. 1348 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1349 MachineBasicBlock &BB, Register &LiveReg) { 1350 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); 1351 // The original def could be after the last insert point in the root block, 1352 // we can't hoist to here. 1353 if (Idx < OrigVNI.def) { 1354 // TODO: We could be better here. If LI is not alive in landing pad 1355 // we could hoist spill after LIP. 1356 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n"); 1357 return false; 1358 } 1359 Register OrigReg = OrigLI.reg(); 1360 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1361 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1362 1363 for (const Register &SibReg : Siblings) { 1364 LiveInterval &LI = LIS.getInterval(SibReg); 1365 VNInfo *VNI = LI.getVNInfoAt(Idx); 1366 if (VNI) { 1367 LiveReg = SibReg; 1368 return true; 1369 } 1370 } 1371 return false; 1372 } 1373 1374 /// Remove redundant spills in the same BB. Save those redundant spills in 1375 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1376 void HoistSpillHelper::rmRedundantSpills( 1377 SmallPtrSet<MachineInstr *, 16> &Spills, 1378 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1379 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1380 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1381 // another spill inside. If a BB contains more than one spill, only keep the 1382 // earlier spill with smaller SlotIndex. 1383 for (auto *const CurrentSpill : Spills) { 1384 MachineBasicBlock *Block = CurrentSpill->getParent(); 1385 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1386 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1387 if (PrevSpill) { 1388 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1389 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1390 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1391 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1392 SpillsToRm.push_back(SpillToRm); 1393 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1394 } else { 1395 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1396 } 1397 } 1398 for (auto *const SpillToRm : SpillsToRm) 1399 Spills.erase(SpillToRm); 1400 } 1401 1402 /// Starting from \p Root find a top-down traversal order of the dominator 1403 /// tree to visit all basic blocks containing the elements of \p Spills. 1404 /// Redundant spills will be found and put into \p SpillsToRm at the same 1405 /// time. \p SpillBBToSpill will be populated as part of the process and 1406 /// maps a basic block to the first store occurring in the basic block. 1407 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1408 void HoistSpillHelper::getVisitOrders( 1409 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1410 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1411 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1412 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1413 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1414 // The set contains all the possible BB nodes to which we may hoist 1415 // original spills. 1416 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1417 // Save the BB nodes on the path from the first BB node containing 1418 // non-redundant spill to the Root node. 1419 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1420 // All the spills to be hoisted must originate from a single def instruction 1421 // to the OrigReg. It means the def instruction should dominate all the spills 1422 // to be hoisted. We choose the BB where the def instruction is located as 1423 // the Root. 1424 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1425 // For every node on the dominator tree with spill, walk up on the dominator 1426 // tree towards the Root node until it is reached. If there is other node 1427 // containing spill in the middle of the path, the previous spill saw will 1428 // be redundant and the node containing it will be removed. All the nodes on 1429 // the path starting from the first node with non-redundant spill to the Root 1430 // node will be added to the WorkSet, which will contain all the possible 1431 // locations where spills may be hoisted to after the loop below is done. 1432 for (auto *const Spill : Spills) { 1433 MachineBasicBlock *Block = Spill->getParent(); 1434 MachineDomTreeNode *Node = MDT[Block]; 1435 MachineInstr *SpillToRm = nullptr; 1436 while (Node != RootIDomNode) { 1437 // If Node dominates Block, and it already contains a spill, the spill in 1438 // Block will be redundant. 1439 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1440 SpillToRm = SpillBBToSpill[MDT[Block]]; 1441 break; 1442 /// If we see the Node already in WorkSet, the path from the Node to 1443 /// the Root node must already be traversed by another spill. 1444 /// Then no need to repeat. 1445 } else if (WorkSet.count(Node)) { 1446 break; 1447 } else { 1448 NodesOnPath.insert(Node); 1449 } 1450 Node = Node->getIDom(); 1451 } 1452 if (SpillToRm) { 1453 SpillsToRm.push_back(SpillToRm); 1454 } else { 1455 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1456 // set the initial status before hoisting start. The value of BBs 1457 // containing original spills is set to 0, in order to descriminate 1458 // with BBs containing hoisted spills which will be inserted to 1459 // SpillsToKeep later during hoisting. 1460 SpillsToKeep[MDT[Block]] = 0; 1461 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1462 } 1463 NodesOnPath.clear(); 1464 } 1465 1466 // Sort the nodes in WorkSet in top-down order and save the nodes 1467 // in Orders. Orders will be used for hoisting in runHoistSpills. 1468 unsigned idx = 0; 1469 Orders.push_back(MDT.getBase().getNode(Root)); 1470 do { 1471 MachineDomTreeNode *Node = Orders[idx++]; 1472 for (MachineDomTreeNode *Child : Node->children()) { 1473 if (WorkSet.count(Child)) 1474 Orders.push_back(Child); 1475 } 1476 } while (idx != Orders.size()); 1477 assert(Orders.size() == WorkSet.size() && 1478 "Orders have different size with WorkSet"); 1479 1480 #ifndef NDEBUG 1481 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1482 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1483 for (; RIt != Orders.rend(); RIt++) 1484 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1485 LLVM_DEBUG(dbgs() << "\n"); 1486 #endif 1487 } 1488 1489 /// Try to hoist spills according to BB hotness. The spills to removed will 1490 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1491 /// \p SpillsToIns. 1492 void HoistSpillHelper::runHoistSpills( 1493 LiveInterval &OrigLI, VNInfo &OrigVNI, 1494 SmallPtrSet<MachineInstr *, 16> &Spills, 1495 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1496 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1497 // Visit order of dominator tree nodes. 1498 SmallVector<MachineDomTreeNode *, 32> Orders; 1499 // SpillsToKeep contains all the nodes where spills are to be inserted 1500 // during hoisting. If the spill to be inserted is an original spill 1501 // (not a hoisted one), the value of the map entry is 0. If the spill 1502 // is a hoisted spill, the value of the map entry is the VReg to be used 1503 // as the source of the spill. 1504 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1505 // Map from BB to the first spill inside of it. 1506 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1507 1508 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1509 1510 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1511 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1512 SpillBBToSpill); 1513 1514 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1515 // nodes set and the cost of all the spills inside those nodes. 1516 // The nodes set are the locations where spills are to be inserted 1517 // in the subtree of current node. 1518 using NodesCostPair = 1519 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1520 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1521 1522 // Iterate Orders set in reverse order, which will be a bottom-up order 1523 // in the dominator tree. Once we visit a dom tree node, we know its 1524 // children have already been visited and the spill locations in the 1525 // subtrees of all the children have been determined. 1526 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1527 for (; RIt != Orders.rend(); RIt++) { 1528 MachineBasicBlock *Block = (*RIt)->getBlock(); 1529 1530 // If Block contains an original spill, simply continue. 1531 if (SpillsToKeep.contains(*RIt) && !SpillsToKeep[*RIt]) { 1532 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1533 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1534 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1535 continue; 1536 } 1537 1538 // Collect spills in subtree of current node (*RIt) to 1539 // SpillsInSubTreeMap[*RIt].first. 1540 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1541 if (!SpillsInSubTreeMap.contains(Child)) 1542 continue; 1543 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1544 // should be placed before getting the begin and end iterators of 1545 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1546 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1547 // and the map grows and then the original buckets in the map are moved. 1548 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1549 SpillsInSubTreeMap[*RIt].first; 1550 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1551 SubTreeCost += SpillsInSubTreeMap[Child].second; 1552 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1553 auto EI = SpillsInSubTreeMap[Child].first.end(); 1554 SpillsInSubTree.insert(BI, EI); 1555 SpillsInSubTreeMap.erase(Child); 1556 } 1557 1558 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1559 SpillsInSubTreeMap[*RIt].first; 1560 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1561 // No spills in subtree, simply continue. 1562 if (SpillsInSubTree.empty()) 1563 continue; 1564 1565 // Check whether Block is a possible candidate to insert spill. 1566 Register LiveReg; 1567 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1568 continue; 1569 1570 // If there are multiple spills that could be merged, bias a little 1571 // to hoist the spill. 1572 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1573 ? BranchProbability(9, 10) 1574 : BranchProbability(1, 1); 1575 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1576 // Hoist: Move spills to current Block. 1577 for (auto *const SpillBB : SpillsInSubTree) { 1578 // When SpillBB is a BB contains original spill, insert the spill 1579 // to SpillsToRm. 1580 if (SpillsToKeep.contains(SpillBB) && !SpillsToKeep[SpillBB]) { 1581 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1582 SpillsToRm.push_back(SpillToRm); 1583 } 1584 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1585 SpillsToKeep.erase(SpillBB); 1586 } 1587 // Current Block is the BB containing the new hoisted spill. Add it to 1588 // SpillsToKeep. LiveReg is the source of the new spill. 1589 SpillsToKeep[*RIt] = LiveReg; 1590 LLVM_DEBUG({ 1591 dbgs() << "spills in BB: "; 1592 for (const auto Rspill : SpillsInSubTree) 1593 dbgs() << Rspill->getBlock()->getNumber() << " "; 1594 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1595 << "\n"; 1596 }); 1597 SpillsInSubTree.clear(); 1598 SpillsInSubTree.insert(*RIt); 1599 SubTreeCost = MBFI.getBlockFreq(Block); 1600 } 1601 } 1602 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1603 // save them to SpillsToIns. 1604 for (const auto &Ent : SpillsToKeep) { 1605 if (Ent.second) 1606 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1607 } 1608 } 1609 1610 /// For spills with equal values, remove redundant spills and hoist those left 1611 /// to less hot spots. 1612 /// 1613 /// Spills with equal values will be collected into the same set in 1614 /// MergeableSpills when spill is inserted. These equal spills are originated 1615 /// from the same defining instruction and are dominated by the instruction. 1616 /// Before hoisting all the equal spills, redundant spills inside in the same 1617 /// BB are first marked to be deleted. Then starting from the spills left, walk 1618 /// up on the dominator tree towards the Root node where the define instruction 1619 /// is located, mark the dominated spills to be deleted along the way and 1620 /// collect the BB nodes on the path from non-dominated spills to the define 1621 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1622 /// where we are considering to hoist the spills. We iterate the WorkSet in 1623 /// bottom-up order, and for each node, we will decide whether to hoist spills 1624 /// inside its subtree to that node. In this way, we can get benefit locally 1625 /// even if hoisting all the equal spills to one cold place is impossible. 1626 void HoistSpillHelper::hoistAllSpills() { 1627 SmallVector<Register, 4> NewVRegs; 1628 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1629 1630 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1631 Register Reg = Register::index2VirtReg(i); 1632 Register Original = VRM.getPreSplitReg(Reg); 1633 if (!MRI.def_empty(Reg)) 1634 Virt2SiblingsMap[Original].insert(Reg); 1635 } 1636 1637 // Each entry in MergeableSpills contains a spill set with equal values. 1638 for (auto &Ent : MergeableSpills) { 1639 int Slot = Ent.first.first; 1640 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1641 VNInfo *OrigVNI = Ent.first.second; 1642 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1643 if (Ent.second.empty()) 1644 continue; 1645 1646 LLVM_DEBUG({ 1647 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1648 << "Equal spills in BB: "; 1649 for (const auto spill : EqValSpills) 1650 dbgs() << spill->getParent()->getNumber() << " "; 1651 dbgs() << "\n"; 1652 }); 1653 1654 // SpillsToRm is the spill set to be removed from EqValSpills. 1655 SmallVector<MachineInstr *, 16> SpillsToRm; 1656 // SpillsToIns is the spill set to be newly inserted after hoisting. 1657 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1658 1659 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1660 1661 LLVM_DEBUG({ 1662 dbgs() << "Finally inserted spills in BB: "; 1663 for (const auto &Ispill : SpillsToIns) 1664 dbgs() << Ispill.first->getNumber() << " "; 1665 dbgs() << "\nFinally removed spills in BB: "; 1666 for (const auto Rspill : SpillsToRm) 1667 dbgs() << Rspill->getParent()->getNumber() << " "; 1668 dbgs() << "\n"; 1669 }); 1670 1671 // Stack live range update. 1672 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1673 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1674 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1675 StackIntvl.getValNumInfo(0)); 1676 1677 // Insert hoisted spills. 1678 for (auto const &Insert : SpillsToIns) { 1679 MachineBasicBlock *BB = Insert.first; 1680 Register LiveReg = Insert.second; 1681 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1682 MachineInstrSpan MIS(MII, BB); 1683 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1684 MRI.getRegClass(LiveReg), &TRI, Register()); 1685 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1686 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1687 getVDefInterval(MI, LIS); 1688 ++NumSpills; 1689 } 1690 1691 // Remove redundant spills or change them to dead instructions. 1692 NumSpills -= SpillsToRm.size(); 1693 for (auto *const RMEnt : SpillsToRm) { 1694 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1695 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1696 MachineOperand &MO = RMEnt->getOperand(i - 1); 1697 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1698 RMEnt->removeOperand(i - 1); 1699 } 1700 } 1701 Edit.eliminateDeadDefs(SpillsToRm, std::nullopt); 1702 } 1703 } 1704 1705 /// For VirtReg clone, the \p New register should have the same physreg or 1706 /// stackslot as the \p old register. 1707 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1708 if (VRM.hasPhys(Old)) 1709 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1710 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1711 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1712 else 1713 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1714 if (VRM.hasShape(Old)) 1715 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1716 } 1717