1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/LiveRangeEdit.h" 26 #include "llvm/CodeGen/LiveStacks.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineInstrBundle.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/Spiller.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetOpcodes.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/CodeGen/VirtRegMap.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/Support/BlockFrequency.h" 47 #include "llvm/Support/BranchProbability.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <cassert> 54 #include <iterator> 55 #include <tuple> 56 #include <utility> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "regalloc" 61 62 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 63 STATISTIC(NumSnippets, "Number of spilled snippets"); 64 STATISTIC(NumSpills, "Number of spills inserted"); 65 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 66 STATISTIC(NumReloads, "Number of reloads inserted"); 67 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 68 STATISTIC(NumFolded, "Number of folded stack accesses"); 69 STATISTIC(NumFoldedLoads, "Number of folded loads"); 70 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 71 72 static cl::opt<bool> 73 RestrictStatepointRemat("restrict-statepoint-remat", 74 cl::init(false), cl::Hidden, 75 cl::desc("Restrict remat for statepoint operands")); 76 77 namespace { 78 79 class HoistSpillHelper : private LiveRangeEdit::Delegate { 80 MachineFunction &MF; 81 LiveIntervals &LIS; 82 LiveStacks &LSS; 83 MachineDominatorTree &MDT; 84 VirtRegMap &VRM; 85 MachineRegisterInfo &MRI; 86 const TargetInstrInfo &TII; 87 const TargetRegisterInfo &TRI; 88 const MachineBlockFrequencyInfo &MBFI; 89 90 InsertPointAnalysis IPA; 91 92 // Map from StackSlot to the LiveInterval of the original register. 93 // Note the LiveInterval of the original register may have been deleted 94 // after it is spilled. We keep a copy here to track the range where 95 // spills can be moved. 96 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 97 98 // Map from pair of (StackSlot and Original VNI) to a set of spills which 99 // have the same stackslot and have equal values defined by Original VNI. 100 // These spills are mergeable and are hoist candidates. 101 using MergeableSpillsMap = 102 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 103 MergeableSpillsMap MergeableSpills; 104 105 /// This is the map from original register to a set containing all its 106 /// siblings. To hoist a spill to another BB, we need to find out a live 107 /// sibling there and use it as the source of the new spill. 108 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 109 110 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 111 MachineBasicBlock &BB, Register &LiveReg); 112 113 void rmRedundantSpills( 114 SmallPtrSet<MachineInstr *, 16> &Spills, 115 SmallVectorImpl<MachineInstr *> &SpillsToRm, 116 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 117 118 void getVisitOrders( 119 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 120 SmallVectorImpl<MachineDomTreeNode *> &Orders, 121 SmallVectorImpl<MachineInstr *> &SpillsToRm, 122 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 123 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 124 125 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 126 SmallPtrSet<MachineInstr *, 16> &Spills, 127 SmallVectorImpl<MachineInstr *> &SpillsToRm, 128 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 129 130 public: 131 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 132 VirtRegMap &vrm) 133 : MF(mf), LIS(pass.getAnalysis<LiveIntervalsWrapperPass>().getLIS()), 134 LSS(pass.getAnalysis<LiveStacksWrapperLegacy>().getLS()), 135 MDT(pass.getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()), 136 VRM(vrm), MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 137 TRI(*mf.getSubtarget().getRegisterInfo()), 138 MBFI( 139 pass.getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()), 140 IPA(LIS, mf.getNumBlockIDs()) {} 141 142 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 143 unsigned Original); 144 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 145 void hoistAllSpills(); 146 void LRE_DidCloneVirtReg(Register, Register) override; 147 }; 148 149 class InlineSpiller : public Spiller { 150 MachineFunction &MF; 151 LiveIntervals &LIS; 152 LiveStacks &LSS; 153 MachineDominatorTree &MDT; 154 VirtRegMap &VRM; 155 MachineRegisterInfo &MRI; 156 const TargetInstrInfo &TII; 157 const TargetRegisterInfo &TRI; 158 const MachineBlockFrequencyInfo &MBFI; 159 160 // Variables that are valid during spill(), but used by multiple methods. 161 LiveRangeEdit *Edit = nullptr; 162 LiveInterval *StackInt = nullptr; 163 int StackSlot; 164 Register Original; 165 166 // All registers to spill to StackSlot, including the main register. 167 SmallVector<Register, 8> RegsToSpill; 168 169 // All registers that were replaced by the spiller through some other method, 170 // e.g. rematerialization. 171 SmallVector<Register, 8> RegsReplaced; 172 173 // All COPY instructions to/from snippets. 174 // They are ignored since both operands refer to the same stack slot. 175 // For bundled copies, this will only include the first header copy. 176 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 177 178 // Values that failed to remat at some point. 179 SmallPtrSet<VNInfo*, 8> UsedValues; 180 181 // Dead defs generated during spilling. 182 SmallVector<MachineInstr*, 8> DeadDefs; 183 184 // Object records spills information and does the hoisting. 185 HoistSpillHelper HSpiller; 186 187 // Live range weight calculator. 188 VirtRegAuxInfo &VRAI; 189 190 ~InlineSpiller() override = default; 191 192 public: 193 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, 194 VirtRegAuxInfo &VRAI) 195 : MF(MF), LIS(Pass.getAnalysis<LiveIntervalsWrapperPass>().getLIS()), 196 LSS(Pass.getAnalysis<LiveStacksWrapperLegacy>().getLS()), 197 MDT(Pass.getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()), 198 VRM(VRM), MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), 199 TRI(*MF.getSubtarget().getRegisterInfo()), 200 MBFI( 201 Pass.getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()), 202 HSpiller(Pass, MF, VRM), VRAI(VRAI) {} 203 204 void spill(LiveRangeEdit &) override; 205 ArrayRef<Register> getSpilledRegs() override { return RegsToSpill; } 206 ArrayRef<Register> getReplacedRegs() override { return RegsReplaced; } 207 void postOptimization() override; 208 209 private: 210 bool isSnippet(const LiveInterval &SnipLI); 211 void collectRegsToSpill(); 212 213 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 214 215 bool isSibling(Register Reg); 216 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 217 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 218 219 void markValueUsed(LiveInterval*, VNInfo*); 220 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 221 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 222 void reMaterializeAll(); 223 224 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 225 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 226 MachineInstr *LoadMI = nullptr); 227 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 228 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 229 230 void spillAroundUses(Register Reg); 231 void spillAll(); 232 }; 233 234 } // end anonymous namespace 235 236 Spiller::~Spiller() = default; 237 238 void Spiller::anchor() {} 239 240 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, 241 MachineFunction &MF, VirtRegMap &VRM, 242 VirtRegAuxInfo &VRAI) { 243 return new InlineSpiller(Pass, MF, VRM, VRAI); 244 } 245 246 //===----------------------------------------------------------------------===// 247 // Snippets 248 //===----------------------------------------------------------------------===// 249 250 // When spilling a virtual register, we also spill any snippets it is connected 251 // to. The snippets are small live ranges that only have a single real use, 252 // leftovers from live range splitting. Spilling them enables memory operand 253 // folding or tightens the live range around the single use. 254 // 255 // This minimizes register pressure and maximizes the store-to-load distance for 256 // spill slots which can be important in tight loops. 257 258 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 259 /// otherwise return 0. 260 static Register isCopyOf(const MachineInstr &MI, Register Reg, 261 const TargetInstrInfo &TII) { 262 if (!TII.isCopyInstr(MI)) 263 return Register(); 264 265 const MachineOperand &DstOp = MI.getOperand(0); 266 const MachineOperand &SrcOp = MI.getOperand(1); 267 268 // TODO: Probably only worth allowing subreg copies with undef dests. 269 if (DstOp.getSubReg() != SrcOp.getSubReg()) 270 return Register(); 271 if (DstOp.getReg() == Reg) 272 return SrcOp.getReg(); 273 if (SrcOp.getReg() == Reg) 274 return DstOp.getReg(); 275 return Register(); 276 } 277 278 /// Check for a copy bundle as formed by SplitKit. 279 static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg, 280 const TargetInstrInfo &TII) { 281 if (!FirstMI.isBundled()) 282 return isCopyOf(FirstMI, Reg, TII); 283 284 assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() && 285 "expected to see first instruction in bundle"); 286 287 Register SnipReg; 288 MachineBasicBlock::const_instr_iterator I = FirstMI.getIterator(); 289 while (I->isBundledWithSucc()) { 290 const MachineInstr &MI = *I; 291 auto CopyInst = TII.isCopyInstr(MI); 292 if (!CopyInst) 293 return Register(); 294 295 const MachineOperand &DstOp = *CopyInst->Destination; 296 const MachineOperand &SrcOp = *CopyInst->Source; 297 if (DstOp.getReg() == Reg) { 298 if (!SnipReg) 299 SnipReg = SrcOp.getReg(); 300 else if (SnipReg != SrcOp.getReg()) 301 return Register(); 302 } else if (SrcOp.getReg() == Reg) { 303 if (!SnipReg) 304 SnipReg = DstOp.getReg(); 305 else if (SnipReg != DstOp.getReg()) 306 return Register(); 307 } 308 309 ++I; 310 } 311 312 return Register(); 313 } 314 315 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 316 for (const MachineOperand &MO : MI.all_defs()) 317 if (MO.getReg().isVirtual()) 318 LIS.getInterval(MO.getReg()); 319 } 320 321 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 322 /// It is assumed that SnipLI is a virtual register with the same original as 323 /// Edit->getReg(). 324 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 325 Register Reg = Edit->getReg(); 326 327 // A snippet is a tiny live range with only a single instruction using it 328 // besides copies to/from Reg or spills/fills. 329 // Exception is done for statepoint instructions which will fold fills 330 // into their operands. 331 // We accept: 332 // 333 // %snip = COPY %Reg / FILL fi# 334 // %snip = USE %snip 335 // %snip = STATEPOINT %snip in var arg area 336 // %Reg = COPY %snip / SPILL %snip, fi# 337 // 338 if (!LIS.intervalIsInOneMBB(SnipLI)) 339 return false; 340 341 // Number of defs should not exceed 2 not accounting defs coming from 342 // statepoint instructions. 343 unsigned NumValNums = SnipLI.getNumValNums(); 344 for (auto *VNI : SnipLI.vnis()) { 345 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 346 if (MI->getOpcode() == TargetOpcode::STATEPOINT) 347 --NumValNums; 348 } 349 if (NumValNums > 2) 350 return false; 351 352 MachineInstr *UseMI = nullptr; 353 354 // Check that all uses satisfy our criteria. 355 for (MachineRegisterInfo::reg_bundle_nodbg_iterator 356 RI = MRI.reg_bundle_nodbg_begin(SnipLI.reg()), 357 E = MRI.reg_bundle_nodbg_end(); 358 RI != E;) { 359 MachineInstr &MI = *RI++; 360 361 // Allow copies to/from Reg. 362 if (isCopyOfBundle(MI, Reg, TII)) 363 continue; 364 365 // Allow stack slot loads. 366 int FI; 367 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 368 continue; 369 370 // Allow stack slot stores. 371 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 372 continue; 373 374 if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg())) 375 continue; 376 377 // Allow a single additional instruction. 378 if (UseMI && &MI != UseMI) 379 return false; 380 UseMI = &MI; 381 } 382 return true; 383 } 384 385 /// collectRegsToSpill - Collect live range snippets that only have a single 386 /// real use. 387 void InlineSpiller::collectRegsToSpill() { 388 Register Reg = Edit->getReg(); 389 390 // Main register always spills. 391 RegsToSpill.assign(1, Reg); 392 SnippetCopies.clear(); 393 RegsReplaced.clear(); 394 395 // Snippets all have the same original, so there can't be any for an original 396 // register. 397 if (Original == Reg) 398 return; 399 400 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 401 Register SnipReg = isCopyOfBundle(MI, Reg, TII); 402 if (!isSibling(SnipReg)) 403 continue; 404 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 405 if (!isSnippet(SnipLI)) 406 continue; 407 SnippetCopies.insert(&MI); 408 if (isRegToSpill(SnipReg)) 409 continue; 410 RegsToSpill.push_back(SnipReg); 411 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 412 ++NumSnippets; 413 } 414 } 415 416 bool InlineSpiller::isSibling(Register Reg) { 417 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 418 } 419 420 /// It is beneficial to spill to earlier place in the same BB in case 421 /// as follows: 422 /// There is an alternative def earlier in the same MBB. 423 /// Hoist the spill as far as possible in SpillMBB. This can ease 424 /// register pressure: 425 /// 426 /// x = def 427 /// y = use x 428 /// s = copy x 429 /// 430 /// Hoisting the spill of s to immediately after the def removes the 431 /// interference between x and y: 432 /// 433 /// x = def 434 /// spill x 435 /// y = use killed x 436 /// 437 /// This hoist only helps when the copy kills its source. 438 /// 439 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 440 MachineInstr &CopyMI) { 441 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 442 #ifndef NDEBUG 443 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 444 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 445 #endif 446 447 Register SrcReg = CopyMI.getOperand(1).getReg(); 448 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 449 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 450 LiveQueryResult SrcQ = SrcLI.Query(Idx); 451 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 452 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 453 return false; 454 455 // Conservatively extend the stack slot range to the range of the original 456 // value. We may be able to do better with stack slot coloring by being more 457 // careful here. 458 assert(StackInt && "No stack slot assigned yet."); 459 LiveInterval &OrigLI = LIS.getInterval(Original); 460 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 461 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 462 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 463 << *StackInt << '\n'); 464 465 // We are going to spill SrcVNI immediately after its def, so clear out 466 // any later spills of the same value. 467 eliminateRedundantSpills(SrcLI, SrcVNI); 468 469 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 470 MachineBasicBlock::iterator MII; 471 if (SrcVNI->isPHIDef()) 472 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin(), SrcReg); 473 else { 474 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 475 assert(DefMI && "Defining instruction disappeared"); 476 MII = DefMI; 477 ++MII; 478 } 479 MachineInstrSpan MIS(MII, MBB); 480 // Insert spill without kill flag immediately after def. 481 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 482 MRI.getRegClass(SrcReg), &TRI, Register()); 483 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 484 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 485 getVDefInterval(MI, LIS); 486 --MII; // Point to store instruction. 487 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 488 489 // If there is only 1 store instruction is required for spill, add it 490 // to mergeable list. In X86 AMX, 2 intructions are required to store. 491 // We disable the merge for this case. 492 if (MIS.begin() == MII) 493 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 494 ++NumSpills; 495 return true; 496 } 497 498 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 499 /// redundant spills of this value in SLI.reg and sibling copies. 500 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 501 assert(VNI && "Missing value"); 502 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 503 WorkList.push_back(std::make_pair(&SLI, VNI)); 504 assert(StackInt && "No stack slot assigned yet."); 505 506 do { 507 LiveInterval *LI; 508 std::tie(LI, VNI) = WorkList.pop_back_val(); 509 Register Reg = LI->reg(); 510 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 511 << VNI->def << " in " << *LI << '\n'); 512 513 // Regs to spill are taken care of. 514 if (isRegToSpill(Reg)) 515 continue; 516 517 // Add all of VNI's live range to StackInt. 518 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 519 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 520 521 // Find all spills and copies of VNI. 522 for (MachineInstr &MI : 523 llvm::make_early_inc_range(MRI.use_nodbg_bundles(Reg))) { 524 if (!MI.mayStore() && !TII.isCopyInstr(MI)) 525 continue; 526 SlotIndex Idx = LIS.getInstructionIndex(MI); 527 if (LI->getVNInfoAt(Idx) != VNI) 528 continue; 529 530 // Follow sibling copies down the dominator tree. 531 if (Register DstReg = isCopyOfBundle(MI, Reg, TII)) { 532 if (isSibling(DstReg)) { 533 LiveInterval &DstLI = LIS.getInterval(DstReg); 534 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 535 assert(DstVNI && "Missing defined value"); 536 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 537 538 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 539 } 540 continue; 541 } 542 543 // Erase spills. 544 int FI; 545 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 546 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 547 // eliminateDeadDefs won't normally remove stores, so switch opcode. 548 MI.setDesc(TII.get(TargetOpcode::KILL)); 549 DeadDefs.push_back(&MI); 550 ++NumSpillsRemoved; 551 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 552 --NumSpills; 553 } 554 } 555 } while (!WorkList.empty()); 556 } 557 558 //===----------------------------------------------------------------------===// 559 // Rematerialization 560 //===----------------------------------------------------------------------===// 561 562 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 563 /// instruction cannot be eliminated. See through snippet copies 564 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 565 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 566 WorkList.push_back(std::make_pair(LI, VNI)); 567 do { 568 std::tie(LI, VNI) = WorkList.pop_back_val(); 569 if (!UsedValues.insert(VNI).second) 570 continue; 571 572 if (VNI->isPHIDef()) { 573 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 574 for (MachineBasicBlock *P : MBB->predecessors()) { 575 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 576 if (PVNI) 577 WorkList.push_back(std::make_pair(LI, PVNI)); 578 } 579 continue; 580 } 581 582 // Follow snippet copies. 583 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 584 if (!SnippetCopies.count(MI)) 585 continue; 586 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 587 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 588 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 589 assert(SnipVNI && "Snippet undefined before copy"); 590 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 591 } while (!WorkList.empty()); 592 } 593 594 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 595 MachineInstr &MI) { 596 if (!RestrictStatepointRemat) 597 return true; 598 // Here's a quick explanation of the problem we're trying to handle here: 599 // * There are some pseudo instructions with more vreg uses than there are 600 // physical registers on the machine. 601 // * This is normally handled by spilling the vreg, and folding the reload 602 // into the user instruction. (Thus decreasing the number of used vregs 603 // until the remainder can be assigned to physregs.) 604 // * However, since we may try to spill vregs in any order, we can end up 605 // trying to spill each operand to the instruction, and then rematting it 606 // instead. When that happens, the new live intervals (for the remats) are 607 // expected to be trivially assignable (i.e. RS_Done). However, since we 608 // may have more remats than physregs, we're guaranteed to fail to assign 609 // one. 610 // At the moment, we only handle this for STATEPOINTs since they're the only 611 // pseudo op where we've seen this. If we start seeing other instructions 612 // with the same problem, we need to revisit this. 613 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 614 return true; 615 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 616 // that number of physical registers is enough to cover all fixed arguments. 617 // If it is not true we need to revisit it. 618 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 619 EndIdx = MI.getNumOperands(); 620 Idx < EndIdx; ++Idx) { 621 MachineOperand &MO = MI.getOperand(Idx); 622 if (MO.isReg() && MO.getReg() == VReg) 623 return false; 624 } 625 return true; 626 } 627 628 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 629 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 630 // Analyze instruction 631 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 632 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 633 634 if (!RI.Reads) 635 return false; 636 637 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 638 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 639 640 if (!ParentVNI) { 641 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 642 for (MachineOperand &MO : MI.all_uses()) 643 if (MO.getReg() == VirtReg.reg()) 644 MO.setIsUndef(); 645 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 646 return true; 647 } 648 649 if (SnippetCopies.count(&MI)) 650 return false; 651 652 LiveInterval &OrigLI = LIS.getInterval(Original); 653 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 654 LiveRangeEdit::Remat RM(ParentVNI); 655 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 656 657 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 658 markValueUsed(&VirtReg, ParentVNI); 659 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 660 return false; 661 } 662 663 // If the instruction also writes VirtReg.reg, it had better not require the 664 // same register for uses and defs. 665 if (RI.Tied) { 666 markValueUsed(&VirtReg, ParentVNI); 667 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 668 return false; 669 } 670 671 // Before rematerializing into a register for a single instruction, try to 672 // fold a load into the instruction. That avoids allocating a new register. 673 if (RM.OrigMI->canFoldAsLoad() && 674 foldMemoryOperand(Ops, RM.OrigMI)) { 675 Edit->markRematerialized(RM.ParentVNI); 676 ++NumFoldedLoads; 677 return true; 678 } 679 680 // If we can't guarantee that we'll be able to actually assign the new vreg, 681 // we can't remat. 682 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 683 markValueUsed(&VirtReg, ParentVNI); 684 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 685 return false; 686 } 687 688 // Allocate a new register for the remat. 689 Register NewVReg = Edit->createFrom(Original); 690 691 // Finally we can rematerialize OrigMI before MI. 692 SlotIndex DefIdx = 693 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 694 695 // We take the DebugLoc from MI, since OrigMI may be attributed to a 696 // different source location. 697 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 698 NewMI->setDebugLoc(MI.getDebugLoc()); 699 700 (void)DefIdx; 701 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 702 << *LIS.getInstructionFromIndex(DefIdx)); 703 704 // Replace operands 705 for (const auto &OpPair : Ops) { 706 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 707 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 708 MO.setReg(NewVReg); 709 MO.setIsKill(); 710 } 711 } 712 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 713 714 ++NumRemats; 715 return true; 716 } 717 718 /// reMaterializeAll - Try to rematerialize as many uses as possible, 719 /// and trim the live ranges after. 720 void InlineSpiller::reMaterializeAll() { 721 if (!Edit->anyRematerializable()) 722 return; 723 724 UsedValues.clear(); 725 726 // Try to remat before all uses of snippets. 727 bool anyRemat = false; 728 for (Register Reg : RegsToSpill) { 729 LiveInterval &LI = LIS.getInterval(Reg); 730 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 731 // Debug values are not allowed to affect codegen. 732 if (MI.isDebugValue()) 733 continue; 734 735 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 736 "instruction that isn't a DBG_VALUE"); 737 738 anyRemat |= reMaterializeFor(LI, MI); 739 } 740 } 741 if (!anyRemat) 742 return; 743 744 // Remove any values that were completely rematted. 745 for (Register Reg : RegsToSpill) { 746 LiveInterval &LI = LIS.getInterval(Reg); 747 for (VNInfo *VNI : LI.vnis()) { 748 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 749 continue; 750 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 751 MI->addRegisterDead(Reg, &TRI); 752 if (!MI->allDefsAreDead()) 753 continue; 754 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 755 DeadDefs.push_back(MI); 756 // If MI is a bundle header, also try removing copies inside the bundle, 757 // otherwise the verifier would complain "live range continues after dead 758 // def flag". 759 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) { 760 MachineBasicBlock::instr_iterator BeginIt = MI->getIterator(), 761 EndIt = MI->getParent()->instr_end(); 762 ++BeginIt; // Skip MI that was already handled. 763 764 bool OnlyDeadCopies = true; 765 for (MachineBasicBlock::instr_iterator It = BeginIt; 766 It != EndIt && It->isBundledWithPred(); ++It) { 767 768 auto DestSrc = TII.isCopyInstr(*It); 769 bool IsCopyToDeadReg = 770 DestSrc && DestSrc->Destination->getReg() == Reg; 771 if (!IsCopyToDeadReg) { 772 OnlyDeadCopies = false; 773 break; 774 } 775 } 776 if (OnlyDeadCopies) { 777 for (MachineBasicBlock::instr_iterator It = BeginIt; 778 It != EndIt && It->isBundledWithPred(); ++It) { 779 It->addRegisterDead(Reg, &TRI); 780 LLVM_DEBUG(dbgs() << "All defs dead: " << *It); 781 DeadDefs.push_back(&*It); 782 } 783 } 784 } 785 } 786 } 787 788 // Eliminate dead code after remat. Note that some snippet copies may be 789 // deleted here. 790 if (DeadDefs.empty()) 791 return; 792 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 793 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 794 795 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 796 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 797 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 798 // removed, PHI VNI are still left in the LiveInterval. 799 // So to get rid of unused reg, we need to check whether it has non-dbg 800 // reference instead of whether it has non-empty interval. 801 unsigned ResultPos = 0; 802 for (Register Reg : RegsToSpill) { 803 if (MRI.reg_nodbg_empty(Reg)) { 804 Edit->eraseVirtReg(Reg); 805 RegsReplaced.push_back(Reg); 806 continue; 807 } 808 809 assert(LIS.hasInterval(Reg) && 810 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 811 "Empty and not used live-range?!"); 812 813 RegsToSpill[ResultPos++] = Reg; 814 } 815 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 816 LLVM_DEBUG(dbgs() << RegsToSpill.size() 817 << " registers to spill after remat.\n"); 818 } 819 820 //===----------------------------------------------------------------------===// 821 // Spilling 822 //===----------------------------------------------------------------------===// 823 824 /// If MI is a load or store of StackSlot, it can be removed. 825 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 826 int FI = 0; 827 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 828 bool IsLoad = InstrReg; 829 if (!IsLoad) 830 InstrReg = TII.isStoreToStackSlot(*MI, FI); 831 832 // We have a stack access. Is it the right register and slot? 833 if (InstrReg != Reg || FI != StackSlot) 834 return false; 835 836 if (!IsLoad) 837 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 838 839 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 840 LIS.RemoveMachineInstrFromMaps(*MI); 841 MI->eraseFromParent(); 842 843 if (IsLoad) { 844 ++NumReloadsRemoved; 845 --NumReloads; 846 } else { 847 ++NumSpillsRemoved; 848 --NumSpills; 849 } 850 851 return true; 852 } 853 854 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 855 LLVM_DUMP_METHOD 856 // Dump the range of instructions from B to E with their slot indexes. 857 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 858 MachineBasicBlock::iterator E, 859 LiveIntervals const &LIS, 860 const char *const header, 861 Register VReg = Register()) { 862 char NextLine = '\n'; 863 char SlotIndent = '\t'; 864 865 if (std::next(B) == E) { 866 NextLine = ' '; 867 SlotIndent = ' '; 868 } 869 870 dbgs() << '\t' << header << ": " << NextLine; 871 872 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 873 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 874 875 // If a register was passed in and this instruction has it as a 876 // destination that is marked as an early clobber, print the 877 // early-clobber slot index. 878 if (VReg) { 879 MachineOperand *MO = I->findRegisterDefOperand(VReg, /*TRI=*/nullptr); 880 if (MO && MO->isEarlyClobber()) 881 Idx = Idx.getRegSlot(true); 882 } 883 884 dbgs() << SlotIndent << Idx << '\t' << *I; 885 } 886 } 887 #endif 888 889 /// foldMemoryOperand - Try folding stack slot references in Ops into their 890 /// instructions. 891 /// 892 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 893 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 894 /// @return True on success. 895 bool InlineSpiller:: 896 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 897 MachineInstr *LoadMI) { 898 if (Ops.empty()) 899 return false; 900 // Don't attempt folding in bundles. 901 MachineInstr *MI = Ops.front().first; 902 if (Ops.back().first != MI || MI->isBundled()) 903 return false; 904 905 bool WasCopy = TII.isCopyInstr(*MI).has_value(); 906 Register ImpReg; 907 908 // TII::foldMemoryOperand will do what we need here for statepoint 909 // (fold load into use and remove corresponding def). We will replace 910 // uses of removed def with loads (spillAroundUses). 911 // For that to work we need to untie def and use to pass it through 912 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 913 // fold them. 914 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 915 916 // Spill subregs if the target allows it. 917 // We always want to spill subregs for stackmap/patchpoint pseudos. 918 bool SpillSubRegs = TII.isSubregFoldable() || 919 MI->getOpcode() == TargetOpcode::STATEPOINT || 920 MI->getOpcode() == TargetOpcode::PATCHPOINT || 921 MI->getOpcode() == TargetOpcode::STACKMAP; 922 923 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 924 // operands. 925 SmallVector<unsigned, 8> FoldOps; 926 for (const auto &OpPair : Ops) { 927 unsigned Idx = OpPair.second; 928 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 929 MachineOperand &MO = MI->getOperand(Idx); 930 931 // No point restoring an undef read, and we'll produce an invalid live 932 // interval. 933 // TODO: Is this really the correct way to handle undef tied uses? 934 if (MO.isUse() && !MO.readsReg() && !MO.isTied()) 935 continue; 936 937 if (MO.isImplicit()) { 938 ImpReg = MO.getReg(); 939 continue; 940 } 941 942 if (!SpillSubRegs && MO.getSubReg()) 943 return false; 944 // We cannot fold a load instruction into a def. 945 if (LoadMI && MO.isDef()) 946 return false; 947 // Tied use operands should not be passed to foldMemoryOperand. 948 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 949 FoldOps.push_back(Idx); 950 } 951 952 // If we only have implicit uses, we won't be able to fold that. 953 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 954 if (FoldOps.empty()) 955 return false; 956 957 MachineInstrSpan MIS(MI, MI->getParent()); 958 959 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 960 if (UntieRegs) 961 for (unsigned Idx : FoldOps) { 962 MachineOperand &MO = MI->getOperand(Idx); 963 if (!MO.isTied()) 964 continue; 965 unsigned Tied = MI->findTiedOperandIdx(Idx); 966 if (MO.isUse()) 967 TiedOps.emplace_back(Tied, Idx); 968 else { 969 assert(MO.isDef() && "Tied to not use and def?"); 970 TiedOps.emplace_back(Idx, Tied); 971 } 972 MI->untieRegOperand(Idx); 973 } 974 975 MachineInstr *FoldMI = 976 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 977 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 978 if (!FoldMI) { 979 // Re-tie operands. 980 for (auto Tied : TiedOps) 981 MI->tieOperands(Tied.first, Tied.second); 982 return false; 983 } 984 985 // Remove LIS for any dead defs in the original MI not in FoldMI. 986 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 987 if (!MO->isReg()) 988 continue; 989 Register Reg = MO->getReg(); 990 if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) { 991 continue; 992 } 993 // Skip non-Defs, including undef uses and internal reads. 994 if (MO->isUse()) 995 continue; 996 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 997 if (RI.FullyDefined) 998 continue; 999 // FoldMI does not define this physreg. Remove the LI segment. 1000 assert(MO->isDead() && "Cannot fold physreg def"); 1001 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 1002 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 1003 } 1004 1005 int FI; 1006 if (TII.isStoreToStackSlot(*MI, FI) && 1007 HSpiller.rmFromMergeableSpills(*MI, FI)) 1008 --NumSpills; 1009 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 1010 // Update the call site info. 1011 if (MI->isCandidateForCallSiteEntry()) 1012 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 1013 1014 // If we've folded a store into an instruction labelled with debug-info, 1015 // record a substitution from the old operand to the memory operand. Handle 1016 // the simple common case where operand 0 is the one being folded, plus when 1017 // the destination operand is also a tied def. More values could be 1018 // substituted / preserved with more analysis. 1019 if (MI->peekDebugInstrNum() && Ops[0].second == 0) { 1020 // Helper lambda. 1021 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { 1022 // Substitute old operand zero to the new instructions memory operand. 1023 unsigned OldOperandNum = Ops[0].second; 1024 unsigned NewNum = FoldMI->getDebugInstrNum(); 1025 unsigned OldNum = MI->getDebugInstrNum(); 1026 MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, 1027 {NewNum, MachineFunction::DebugOperandMemNumber}); 1028 }; 1029 1030 const MachineOperand &Op0 = MI->getOperand(Ops[0].second); 1031 if (Ops.size() == 1 && Op0.isDef()) { 1032 MakeSubstitution(); 1033 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() && 1034 Op0.getReg() == MI->getOperand(1).getReg()) { 1035 MakeSubstitution(); 1036 } 1037 } else if (MI->peekDebugInstrNum()) { 1038 // This is a debug-labelled instruction, but the operand being folded isn't 1039 // at operand zero. Most likely this means it's a load being folded in. 1040 // Substitute any register defs from operand zero up to the one being 1041 // folded -- past that point, we don't know what the new operand indexes 1042 // will be. 1043 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second); 1044 } 1045 1046 MI->eraseFromParent(); 1047 1048 // Insert any new instructions other than FoldMI into the LIS maps. 1049 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 1050 for (MachineInstr &MI : MIS) 1051 if (&MI != FoldMI) 1052 LIS.InsertMachineInstrInMaps(MI); 1053 1054 // TII.foldMemoryOperand may have left some implicit operands on the 1055 // instruction. Strip them. 1056 if (ImpReg) 1057 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 1058 MachineOperand &MO = FoldMI->getOperand(i - 1); 1059 if (!MO.isReg() || !MO.isImplicit()) 1060 break; 1061 if (MO.getReg() == ImpReg) 1062 FoldMI->removeOperand(i - 1); 1063 } 1064 1065 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 1066 "folded")); 1067 1068 if (!WasCopy) 1069 ++NumFolded; 1070 else if (Ops.front().second == 0) { 1071 ++NumSpills; 1072 // If there is only 1 store instruction is required for spill, add it 1073 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1074 // We disable the merge for this case. 1075 if (std::distance(MIS.begin(), MIS.end()) <= 1) 1076 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 1077 } else 1078 ++NumReloads; 1079 return true; 1080 } 1081 1082 void InlineSpiller::insertReload(Register NewVReg, 1083 SlotIndex Idx, 1084 MachineBasicBlock::iterator MI) { 1085 MachineBasicBlock &MBB = *MI->getParent(); 1086 1087 MachineInstrSpan MIS(MI, &MBB); 1088 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1089 MRI.getRegClass(NewVReg), &TRI, Register()); 1090 1091 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1092 1093 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1094 NewVReg)); 1095 ++NumReloads; 1096 } 1097 1098 /// Check if \p Def fully defines a VReg with an undefined value. 1099 /// If that's the case, that means the value of VReg is actually 1100 /// not relevant. 1101 static bool isRealSpill(const MachineInstr &Def) { 1102 if (!Def.isImplicitDef()) 1103 return true; 1104 1105 // We can say that the VReg defined by Def is undef, only if it is 1106 // fully defined by Def. Otherwise, some of the lanes may not be 1107 // undef and the value of the VReg matters. 1108 return Def.getOperand(0).getSubReg(); 1109 } 1110 1111 /// insertSpill - Insert a spill of NewVReg after MI. 1112 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 1113 MachineBasicBlock::iterator MI) { 1114 // Spill are not terminators, so inserting spills after terminators will 1115 // violate invariants in MachineVerifier. 1116 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 1117 MachineBasicBlock &MBB = *MI->getParent(); 1118 1119 MachineInstrSpan MIS(MI, &MBB); 1120 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1121 bool IsRealSpill = isRealSpill(*MI); 1122 1123 if (IsRealSpill) 1124 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1125 MRI.getRegClass(NewVReg), &TRI, Register()); 1126 else 1127 // Don't spill undef value. 1128 // Anything works for undef, in particular keeping the memory 1129 // uninitialized is a viable option and it saves code size and 1130 // run time. 1131 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1132 .addReg(NewVReg, getKillRegState(isKill)); 1133 1134 MachineBasicBlock::iterator Spill = std::next(MI); 1135 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1136 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1137 getVDefInterval(MI, LIS); 1138 1139 LLVM_DEBUG( 1140 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1141 ++NumSpills; 1142 // If there is only 1 store instruction is required for spill, add it 1143 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1144 // We disable the merge for this case. 1145 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1146 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1147 } 1148 1149 /// spillAroundUses - insert spill code around each use of Reg. 1150 void InlineSpiller::spillAroundUses(Register Reg) { 1151 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1152 LiveInterval &OldLI = LIS.getInterval(Reg); 1153 1154 // Iterate over instructions using Reg. 1155 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 1156 // Debug values are not allowed to affect codegen. 1157 if (MI.isDebugValue()) { 1158 // Modify DBG_VALUE now that the value is in a spill slot. 1159 MachineBasicBlock *MBB = MI.getParent(); 1160 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI); 1161 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg); 1162 MBB->erase(MI); 1163 continue; 1164 } 1165 1166 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 1167 "instruction that isn't a DBG_VALUE"); 1168 1169 // Ignore copies to/from snippets. We'll delete them. 1170 if (SnippetCopies.count(&MI)) 1171 continue; 1172 1173 // Stack slot accesses may coalesce away. 1174 if (coalesceStackAccess(&MI, Reg)) 1175 continue; 1176 1177 // Analyze instruction. 1178 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1179 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops); 1180 1181 // Find the slot index where this instruction reads and writes OldLI. 1182 // This is usually the def slot, except for tied early clobbers. 1183 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1184 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1185 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1186 Idx = VNI->def; 1187 1188 // Check for a sibling copy. 1189 Register SibReg = isCopyOfBundle(MI, Reg, TII); 1190 if (SibReg && isSibling(SibReg)) { 1191 // This may actually be a copy between snippets. 1192 if (isRegToSpill(SibReg)) { 1193 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI); 1194 SnippetCopies.insert(&MI); 1195 continue; 1196 } 1197 if (RI.Writes) { 1198 if (hoistSpillInsideBB(OldLI, MI)) { 1199 // This COPY is now dead, the value is already in the stack slot. 1200 MI.getOperand(0).setIsDead(); 1201 DeadDefs.push_back(&MI); 1202 continue; 1203 } 1204 } else { 1205 // This is a reload for a sib-reg copy. Drop spills downstream. 1206 LiveInterval &SibLI = LIS.getInterval(SibReg); 1207 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1208 // The COPY will fold to a reload below. 1209 } 1210 } 1211 1212 // Attempt to fold memory ops. 1213 if (foldMemoryOperand(Ops)) 1214 continue; 1215 1216 // Create a new virtual register for spill/fill. 1217 // FIXME: Infer regclass from instruction alone. 1218 Register NewVReg = Edit->createFrom(Reg); 1219 1220 if (RI.Reads) 1221 insertReload(NewVReg, Idx, &MI); 1222 1223 // Rewrite instruction operands. 1224 bool hasLiveDef = false; 1225 for (const auto &OpPair : Ops) { 1226 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1227 MO.setReg(NewVReg); 1228 if (MO.isUse()) { 1229 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1230 MO.setIsKill(); 1231 } else { 1232 if (!MO.isDead()) 1233 hasLiveDef = true; 1234 } 1235 } 1236 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n'); 1237 1238 // FIXME: Use a second vreg if instruction has no tied ops. 1239 if (RI.Writes) 1240 if (hasLiveDef) 1241 insertSpill(NewVReg, true, &MI); 1242 } 1243 } 1244 1245 /// spillAll - Spill all registers remaining after rematerialization. 1246 void InlineSpiller::spillAll() { 1247 // Update LiveStacks now that we are committed to spilling. 1248 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1249 StackSlot = VRM.assignVirt2StackSlot(Original); 1250 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1251 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1252 } else 1253 StackInt = &LSS.getInterval(StackSlot); 1254 1255 if (Original != Edit->getReg()) 1256 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1257 1258 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1259 for (Register Reg : RegsToSpill) 1260 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1261 StackInt->getValNumInfo(0)); 1262 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1263 1264 // Spill around uses of all RegsToSpill. 1265 for (Register Reg : RegsToSpill) { 1266 spillAroundUses(Reg); 1267 // Assign all of the spilled registers to the slot so that 1268 // LiveDebugVariables knows about these locations later on. 1269 if (VRM.getStackSlot(Reg) == VirtRegMap::NO_STACK_SLOT) 1270 VRM.assignVirt2StackSlot(Reg, StackSlot); 1271 } 1272 1273 // Hoisted spills may cause dead code. 1274 if (!DeadDefs.empty()) { 1275 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1276 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 1277 } 1278 1279 // Finally delete the SnippetCopies. 1280 for (Register Reg : RegsToSpill) { 1281 for (MachineInstr &MI : 1282 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 1283 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1284 // FIXME: Do this with a LiveRangeEdit callback. 1285 LIS.getSlotIndexes()->removeSingleMachineInstrFromMaps(MI); 1286 MI.eraseFromBundle(); 1287 } 1288 } 1289 1290 // Delete all spilled registers. 1291 for (Register Reg : RegsToSpill) 1292 Edit->eraseVirtReg(Reg); 1293 } 1294 1295 void InlineSpiller::spill(LiveRangeEdit &edit) { 1296 ++NumSpilledRanges; 1297 Edit = &edit; 1298 assert(!Register::isStackSlot(edit.getReg()) && 1299 "Trying to spill a stack slot."); 1300 // Share a stack slot among all descendants of Original. 1301 Original = VRM.getOriginal(edit.getReg()); 1302 StackSlot = VRM.getStackSlot(Original); 1303 StackInt = nullptr; 1304 1305 LLVM_DEBUG(dbgs() << "Inline spilling " 1306 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1307 << ':' << edit.getParent() << "\nFrom original " 1308 << printReg(Original) << '\n'); 1309 assert(edit.getParent().isSpillable() && 1310 "Attempting to spill already spilled value."); 1311 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1312 1313 collectRegsToSpill(); 1314 reMaterializeAll(); 1315 1316 // Remat may handle everything. 1317 if (!RegsToSpill.empty()) 1318 spillAll(); 1319 1320 Edit->calculateRegClassAndHint(MF, VRAI); 1321 } 1322 1323 /// Optimizations after all the reg selections and spills are done. 1324 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1325 1326 /// When a spill is inserted, add the spill to MergeableSpills map. 1327 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1328 unsigned Original) { 1329 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1330 LiveInterval &OrigLI = LIS.getInterval(Original); 1331 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1332 // LiveInterval may be cleared after all its references are spilled. 1333 if (!StackSlotToOrigLI.contains(StackSlot)) { 1334 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1335 LI->assign(OrigLI, Allocator); 1336 StackSlotToOrigLI[StackSlot] = std::move(LI); 1337 } 1338 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1339 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1340 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1341 MergeableSpills[MIdx].insert(&Spill); 1342 } 1343 1344 /// When a spill is removed, remove the spill from MergeableSpills map. 1345 /// Return true if the spill is removed successfully. 1346 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1347 int StackSlot) { 1348 auto It = StackSlotToOrigLI.find(StackSlot); 1349 if (It == StackSlotToOrigLI.end()) 1350 return false; 1351 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1352 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1353 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1354 return MergeableSpills[MIdx].erase(&Spill); 1355 } 1356 1357 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1358 /// i.e., there should be a living sibling of OrigReg at the insert point. 1359 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1360 MachineBasicBlock &BB, Register &LiveReg) { 1361 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); 1362 // The original def could be after the last insert point in the root block, 1363 // we can't hoist to here. 1364 if (Idx < OrigVNI.def) { 1365 // TODO: We could be better here. If LI is not alive in landing pad 1366 // we could hoist spill after LIP. 1367 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n"); 1368 return false; 1369 } 1370 Register OrigReg = OrigLI.reg(); 1371 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1372 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1373 1374 for (const Register &SibReg : Siblings) { 1375 LiveInterval &LI = LIS.getInterval(SibReg); 1376 VNInfo *VNI = LI.getVNInfoAt(Idx); 1377 if (VNI) { 1378 LiveReg = SibReg; 1379 return true; 1380 } 1381 } 1382 return false; 1383 } 1384 1385 /// Remove redundant spills in the same BB. Save those redundant spills in 1386 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1387 void HoistSpillHelper::rmRedundantSpills( 1388 SmallPtrSet<MachineInstr *, 16> &Spills, 1389 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1390 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1391 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1392 // another spill inside. If a BB contains more than one spill, only keep the 1393 // earlier spill with smaller SlotIndex. 1394 for (auto *const CurrentSpill : Spills) { 1395 MachineBasicBlock *Block = CurrentSpill->getParent(); 1396 MachineDomTreeNode *Node = MDT.getNode(Block); 1397 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1398 if (PrevSpill) { 1399 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1400 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1401 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1402 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1403 SpillsToRm.push_back(SpillToRm); 1404 SpillBBToSpill[MDT.getNode(Block)] = SpillToKeep; 1405 } else { 1406 SpillBBToSpill[MDT.getNode(Block)] = CurrentSpill; 1407 } 1408 } 1409 for (auto *const SpillToRm : SpillsToRm) 1410 Spills.erase(SpillToRm); 1411 } 1412 1413 /// Starting from \p Root find a top-down traversal order of the dominator 1414 /// tree to visit all basic blocks containing the elements of \p Spills. 1415 /// Redundant spills will be found and put into \p SpillsToRm at the same 1416 /// time. \p SpillBBToSpill will be populated as part of the process and 1417 /// maps a basic block to the first store occurring in the basic block. 1418 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1419 void HoistSpillHelper::getVisitOrders( 1420 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1421 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1422 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1423 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1424 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1425 // The set contains all the possible BB nodes to which we may hoist 1426 // original spills. 1427 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1428 // Save the BB nodes on the path from the first BB node containing 1429 // non-redundant spill to the Root node. 1430 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1431 // All the spills to be hoisted must originate from a single def instruction 1432 // to the OrigReg. It means the def instruction should dominate all the spills 1433 // to be hoisted. We choose the BB where the def instruction is located as 1434 // the Root. 1435 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1436 // For every node on the dominator tree with spill, walk up on the dominator 1437 // tree towards the Root node until it is reached. If there is other node 1438 // containing spill in the middle of the path, the previous spill saw will 1439 // be redundant and the node containing it will be removed. All the nodes on 1440 // the path starting from the first node with non-redundant spill to the Root 1441 // node will be added to the WorkSet, which will contain all the possible 1442 // locations where spills may be hoisted to after the loop below is done. 1443 for (auto *const Spill : Spills) { 1444 MachineBasicBlock *Block = Spill->getParent(); 1445 MachineDomTreeNode *Node = MDT[Block]; 1446 MachineInstr *SpillToRm = nullptr; 1447 while (Node != RootIDomNode) { 1448 // If Node dominates Block, and it already contains a spill, the spill in 1449 // Block will be redundant. 1450 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1451 SpillToRm = SpillBBToSpill[MDT[Block]]; 1452 break; 1453 /// If we see the Node already in WorkSet, the path from the Node to 1454 /// the Root node must already be traversed by another spill. 1455 /// Then no need to repeat. 1456 } else if (WorkSet.count(Node)) { 1457 break; 1458 } else { 1459 NodesOnPath.insert(Node); 1460 } 1461 Node = Node->getIDom(); 1462 } 1463 if (SpillToRm) { 1464 SpillsToRm.push_back(SpillToRm); 1465 } else { 1466 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1467 // set the initial status before hoisting start. The value of BBs 1468 // containing original spills is set to 0, in order to descriminate 1469 // with BBs containing hoisted spills which will be inserted to 1470 // SpillsToKeep later during hoisting. 1471 SpillsToKeep[MDT[Block]] = 0; 1472 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1473 } 1474 NodesOnPath.clear(); 1475 } 1476 1477 // Sort the nodes in WorkSet in top-down order and save the nodes 1478 // in Orders. Orders will be used for hoisting in runHoistSpills. 1479 unsigned idx = 0; 1480 Orders.push_back(MDT.getNode(Root)); 1481 do { 1482 MachineDomTreeNode *Node = Orders[idx++]; 1483 for (MachineDomTreeNode *Child : Node->children()) { 1484 if (WorkSet.count(Child)) 1485 Orders.push_back(Child); 1486 } 1487 } while (idx != Orders.size()); 1488 assert(Orders.size() == WorkSet.size() && 1489 "Orders have different size with WorkSet"); 1490 1491 #ifndef NDEBUG 1492 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1493 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1494 for (; RIt != Orders.rend(); RIt++) 1495 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1496 LLVM_DEBUG(dbgs() << "\n"); 1497 #endif 1498 } 1499 1500 /// Try to hoist spills according to BB hotness. The spills to removed will 1501 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1502 /// \p SpillsToIns. 1503 void HoistSpillHelper::runHoistSpills( 1504 LiveInterval &OrigLI, VNInfo &OrigVNI, 1505 SmallPtrSet<MachineInstr *, 16> &Spills, 1506 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1507 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1508 // Visit order of dominator tree nodes. 1509 SmallVector<MachineDomTreeNode *, 32> Orders; 1510 // SpillsToKeep contains all the nodes where spills are to be inserted 1511 // during hoisting. If the spill to be inserted is an original spill 1512 // (not a hoisted one), the value of the map entry is 0. If the spill 1513 // is a hoisted spill, the value of the map entry is the VReg to be used 1514 // as the source of the spill. 1515 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1516 // Map from BB to the first spill inside of it. 1517 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1518 1519 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1520 1521 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1522 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1523 SpillBBToSpill); 1524 1525 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1526 // nodes set and the cost of all the spills inside those nodes. 1527 // The nodes set are the locations where spills are to be inserted 1528 // in the subtree of current node. 1529 using NodesCostPair = 1530 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1531 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1532 1533 // Iterate Orders set in reverse order, which will be a bottom-up order 1534 // in the dominator tree. Once we visit a dom tree node, we know its 1535 // children have already been visited and the spill locations in the 1536 // subtrees of all the children have been determined. 1537 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1538 for (; RIt != Orders.rend(); RIt++) { 1539 MachineBasicBlock *Block = (*RIt)->getBlock(); 1540 1541 // If Block contains an original spill, simply continue. 1542 if (SpillsToKeep.contains(*RIt) && !SpillsToKeep[*RIt]) { 1543 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1544 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1545 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1546 continue; 1547 } 1548 1549 // Collect spills in subtree of current node (*RIt) to 1550 // SpillsInSubTreeMap[*RIt].first. 1551 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1552 if (!SpillsInSubTreeMap.contains(Child)) 1553 continue; 1554 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1555 // should be placed before getting the begin and end iterators of 1556 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1557 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1558 // and the map grows and then the original buckets in the map are moved. 1559 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1560 SpillsInSubTreeMap[*RIt].first; 1561 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1562 SubTreeCost += SpillsInSubTreeMap[Child].second; 1563 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1564 auto EI = SpillsInSubTreeMap[Child].first.end(); 1565 SpillsInSubTree.insert(BI, EI); 1566 SpillsInSubTreeMap.erase(Child); 1567 } 1568 1569 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1570 SpillsInSubTreeMap[*RIt].first; 1571 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1572 // No spills in subtree, simply continue. 1573 if (SpillsInSubTree.empty()) 1574 continue; 1575 1576 // Check whether Block is a possible candidate to insert spill. 1577 Register LiveReg; 1578 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1579 continue; 1580 1581 // If there are multiple spills that could be merged, bias a little 1582 // to hoist the spill. 1583 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1584 ? BranchProbability(9, 10) 1585 : BranchProbability(1, 1); 1586 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1587 // Hoist: Move spills to current Block. 1588 for (auto *const SpillBB : SpillsInSubTree) { 1589 // When SpillBB is a BB contains original spill, insert the spill 1590 // to SpillsToRm. 1591 if (SpillsToKeep.contains(SpillBB) && !SpillsToKeep[SpillBB]) { 1592 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1593 SpillsToRm.push_back(SpillToRm); 1594 } 1595 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1596 SpillsToKeep.erase(SpillBB); 1597 } 1598 // Current Block is the BB containing the new hoisted spill. Add it to 1599 // SpillsToKeep. LiveReg is the source of the new spill. 1600 SpillsToKeep[*RIt] = LiveReg; 1601 LLVM_DEBUG({ 1602 dbgs() << "spills in BB: "; 1603 for (const auto Rspill : SpillsInSubTree) 1604 dbgs() << Rspill->getBlock()->getNumber() << " "; 1605 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1606 << "\n"; 1607 }); 1608 SpillsInSubTree.clear(); 1609 SpillsInSubTree.insert(*RIt); 1610 SubTreeCost = MBFI.getBlockFreq(Block); 1611 } 1612 } 1613 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1614 // save them to SpillsToIns. 1615 for (const auto &Ent : SpillsToKeep) { 1616 if (Ent.second) 1617 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1618 } 1619 } 1620 1621 /// For spills with equal values, remove redundant spills and hoist those left 1622 /// to less hot spots. 1623 /// 1624 /// Spills with equal values will be collected into the same set in 1625 /// MergeableSpills when spill is inserted. These equal spills are originated 1626 /// from the same defining instruction and are dominated by the instruction. 1627 /// Before hoisting all the equal spills, redundant spills inside in the same 1628 /// BB are first marked to be deleted. Then starting from the spills left, walk 1629 /// up on the dominator tree towards the Root node where the define instruction 1630 /// is located, mark the dominated spills to be deleted along the way and 1631 /// collect the BB nodes on the path from non-dominated spills to the define 1632 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1633 /// where we are considering to hoist the spills. We iterate the WorkSet in 1634 /// bottom-up order, and for each node, we will decide whether to hoist spills 1635 /// inside its subtree to that node. In this way, we can get benefit locally 1636 /// even if hoisting all the equal spills to one cold place is impossible. 1637 void HoistSpillHelper::hoistAllSpills() { 1638 SmallVector<Register, 4> NewVRegs; 1639 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1640 1641 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1642 Register Reg = Register::index2VirtReg(i); 1643 Register Original = VRM.getPreSplitReg(Reg); 1644 if (!MRI.def_empty(Reg)) 1645 Virt2SiblingsMap[Original].insert(Reg); 1646 } 1647 1648 // Each entry in MergeableSpills contains a spill set with equal values. 1649 for (auto &Ent : MergeableSpills) { 1650 int Slot = Ent.first.first; 1651 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1652 VNInfo *OrigVNI = Ent.first.second; 1653 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1654 if (Ent.second.empty()) 1655 continue; 1656 1657 LLVM_DEBUG({ 1658 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1659 << "Equal spills in BB: "; 1660 for (const auto spill : EqValSpills) 1661 dbgs() << spill->getParent()->getNumber() << " "; 1662 dbgs() << "\n"; 1663 }); 1664 1665 // SpillsToRm is the spill set to be removed from EqValSpills. 1666 SmallVector<MachineInstr *, 16> SpillsToRm; 1667 // SpillsToIns is the spill set to be newly inserted after hoisting. 1668 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1669 1670 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1671 1672 LLVM_DEBUG({ 1673 dbgs() << "Finally inserted spills in BB: "; 1674 for (const auto &Ispill : SpillsToIns) 1675 dbgs() << Ispill.first->getNumber() << " "; 1676 dbgs() << "\nFinally removed spills in BB: "; 1677 for (const auto Rspill : SpillsToRm) 1678 dbgs() << Rspill->getParent()->getNumber() << " "; 1679 dbgs() << "\n"; 1680 }); 1681 1682 // Stack live range update. 1683 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1684 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1685 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1686 StackIntvl.getValNumInfo(0)); 1687 1688 // Insert hoisted spills. 1689 for (auto const &Insert : SpillsToIns) { 1690 MachineBasicBlock *BB = Insert.first; 1691 Register LiveReg = Insert.second; 1692 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1693 MachineInstrSpan MIS(MII, BB); 1694 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1695 MRI.getRegClass(LiveReg), &TRI, Register()); 1696 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1697 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1698 getVDefInterval(MI, LIS); 1699 ++NumSpills; 1700 } 1701 1702 // Remove redundant spills or change them to dead instructions. 1703 NumSpills -= SpillsToRm.size(); 1704 for (auto *const RMEnt : SpillsToRm) { 1705 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1706 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1707 MachineOperand &MO = RMEnt->getOperand(i - 1); 1708 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1709 RMEnt->removeOperand(i - 1); 1710 } 1711 } 1712 Edit.eliminateDeadDefs(SpillsToRm, {}); 1713 } 1714 } 1715 1716 /// For VirtReg clone, the \p New register should have the same physreg or 1717 /// stackslot as the \p old register. 1718 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1719 if (VRM.hasPhys(Old)) 1720 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1721 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1722 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1723 else 1724 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1725 if (VRM.hasShape(Old)) 1726 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1727 } 1728