1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns explicit null checks of the form 10 // 11 // test %r10, %r10 12 // je throw_npe 13 // movl (%r10), %esi 14 // ... 15 // 16 // to 17 // 18 // faulting_load_op("movl (%r10), %esi", throw_npe) 19 // ... 20 // 21 // With the help of a runtime that understands the .fault_maps section, 22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs 23 // a page fault. 24 // Store and LoadStore are also supported. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/Optional.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/CodeGen/FaultMaps.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/PseudoSourceValue.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetOpcodes.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/MC/MCInstrDesc.h" 55 #include "llvm/MC/MCRegisterInfo.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/CommandLine.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 62 using namespace llvm; 63 64 static cl::opt<int> PageSize("imp-null-check-page-size", 65 cl::desc("The page size of the target in bytes"), 66 cl::init(4096), cl::Hidden); 67 68 static cl::opt<unsigned> MaxInstsToConsider( 69 "imp-null-max-insts-to-consider", 70 cl::desc("The max number of instructions to consider hoisting loads over " 71 "(the algorithm is quadratic over this number)"), 72 cl::Hidden, cl::init(8)); 73 74 #define DEBUG_TYPE "implicit-null-checks" 75 76 STATISTIC(NumImplicitNullChecks, 77 "Number of explicit null checks made implicit"); 78 79 namespace { 80 81 class ImplicitNullChecks : public MachineFunctionPass { 82 /// Return true if \c computeDependence can process \p MI. 83 static bool canHandle(const MachineInstr *MI); 84 85 /// Helper function for \c computeDependence. Return true if \p A 86 /// and \p B do not have any dependences between them, and can be 87 /// re-ordered without changing program semantics. 88 bool canReorder(const MachineInstr *A, const MachineInstr *B); 89 90 /// A data type for representing the result computed by \c 91 /// computeDependence. States whether it is okay to reorder the 92 /// instruction passed to \c computeDependence with at most one 93 /// dependency. 94 struct DependenceResult { 95 /// Can we actually re-order \p MI with \p Insts (see \c 96 /// computeDependence). 97 bool CanReorder; 98 99 /// If non-None, then an instruction in \p Insts that also must be 100 /// hoisted. 101 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence; 102 103 /*implicit*/ DependenceResult( 104 bool CanReorder, 105 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence) 106 : CanReorder(CanReorder), PotentialDependence(PotentialDependence) { 107 assert((!PotentialDependence || CanReorder) && 108 "!CanReorder && PotentialDependence.hasValue() not allowed!"); 109 } 110 }; 111 112 /// Compute a result for the following question: can \p MI be 113 /// re-ordered from after \p Insts to before it. 114 /// 115 /// \c canHandle should return true for all instructions in \p 116 /// Insts. 117 DependenceResult computeDependence(const MachineInstr *MI, 118 ArrayRef<MachineInstr *> Block); 119 120 /// Represents one null check that can be made implicit. 121 class NullCheck { 122 // The memory operation the null check can be folded into. 123 MachineInstr *MemOperation; 124 125 // The instruction actually doing the null check (Ptr != 0). 126 MachineInstr *CheckOperation; 127 128 // The block the check resides in. 129 MachineBasicBlock *CheckBlock; 130 131 // The block branched to if the pointer is non-null. 132 MachineBasicBlock *NotNullSucc; 133 134 // The block branched to if the pointer is null. 135 MachineBasicBlock *NullSucc; 136 137 // If this is non-null, then MemOperation has a dependency on this 138 // instruction; and it needs to be hoisted to execute before MemOperation. 139 MachineInstr *OnlyDependency; 140 141 public: 142 explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, 143 MachineBasicBlock *checkBlock, 144 MachineBasicBlock *notNullSucc, 145 MachineBasicBlock *nullSucc, 146 MachineInstr *onlyDependency) 147 : MemOperation(memOperation), CheckOperation(checkOperation), 148 CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc), 149 OnlyDependency(onlyDependency) {} 150 151 MachineInstr *getMemOperation() const { return MemOperation; } 152 153 MachineInstr *getCheckOperation() const { return CheckOperation; } 154 155 MachineBasicBlock *getCheckBlock() const { return CheckBlock; } 156 157 MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; } 158 159 MachineBasicBlock *getNullSucc() const { return NullSucc; } 160 161 MachineInstr *getOnlyDependency() const { return OnlyDependency; } 162 }; 163 164 const TargetInstrInfo *TII = nullptr; 165 const TargetRegisterInfo *TRI = nullptr; 166 AliasAnalysis *AA = nullptr; 167 MachineFrameInfo *MFI = nullptr; 168 169 bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, 170 SmallVectorImpl<NullCheck> &NullCheckList); 171 MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB, 172 MachineBasicBlock *HandlerMBB); 173 void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList); 174 175 enum AliasResult { 176 AR_NoAlias, 177 AR_MayAlias, 178 AR_WillAliasEverything 179 }; 180 181 /// Returns AR_NoAlias if \p MI memory operation does not alias with 182 /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if 183 /// they may alias and any further memory operation may alias with \p PrevMI. 184 AliasResult areMemoryOpsAliased(const MachineInstr &MI, 185 const MachineInstr *PrevMI) const; 186 187 enum SuitabilityResult { 188 SR_Suitable, 189 SR_Unsuitable, 190 SR_Impossible 191 }; 192 193 /// Return SR_Suitable if \p MI a memory operation that can be used to 194 /// implicitly null check the value in \p PointerReg, SR_Unsuitable if 195 /// \p MI cannot be used to null check and SR_Impossible if there is 196 /// no sense to continue lookup due to any other instruction will not be able 197 /// to be used. \p PrevInsts is the set of instruction seen since 198 /// the explicit null check on \p PointerReg. 199 SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI, 200 unsigned PointerReg, 201 ArrayRef<MachineInstr *> PrevInsts); 202 203 /// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block 204 /// if it was hoisted to the NullCheck block. This is used by caller 205 /// canHoistInst to decide if DependenceMI can be hoisted safely. 206 bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI, 207 MachineBasicBlock *NullSucc, 208 unsigned PointerReg); 209 210 /// Return true if \p FaultingMI can be hoisted from after the 211 /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a 212 /// non-null value if we also need to (and legally can) hoist a depedency. 213 bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg, 214 ArrayRef<MachineInstr *> InstsSeenSoFar, 215 MachineBasicBlock *NullSucc, MachineInstr *&Dependence); 216 217 public: 218 static char ID; 219 220 ImplicitNullChecks() : MachineFunctionPass(ID) { 221 initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); 222 } 223 224 bool runOnMachineFunction(MachineFunction &MF) override; 225 226 void getAnalysisUsage(AnalysisUsage &AU) const override { 227 AU.addRequired<AAResultsWrapperPass>(); 228 MachineFunctionPass::getAnalysisUsage(AU); 229 } 230 231 MachineFunctionProperties getRequiredProperties() const override { 232 return MachineFunctionProperties().set( 233 MachineFunctionProperties::Property::NoVRegs); 234 } 235 }; 236 237 } // end anonymous namespace 238 239 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) { 240 if (MI->isCall() || MI->mayRaiseFPException() || 241 MI->hasUnmodeledSideEffects()) 242 return false; 243 auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); }; 244 (void)IsRegMask; 245 246 assert(!llvm::any_of(MI->operands(), IsRegMask) && 247 "Calls were filtered out above!"); 248 249 auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); }; 250 return llvm::all_of(MI->memoperands(), IsUnordered); 251 } 252 253 ImplicitNullChecks::DependenceResult 254 ImplicitNullChecks::computeDependence(const MachineInstr *MI, 255 ArrayRef<MachineInstr *> Block) { 256 assert(llvm::all_of(Block, canHandle) && "Check this first!"); 257 assert(!is_contained(Block, MI) && "Block must be exclusive of MI!"); 258 259 Optional<ArrayRef<MachineInstr *>::iterator> Dep; 260 261 for (auto I = Block.begin(), E = Block.end(); I != E; ++I) { 262 if (canReorder(*I, MI)) 263 continue; 264 265 if (Dep == None) { 266 // Found one possible dependency, keep track of it. 267 Dep = I; 268 } else { 269 // We found two dependencies, so bail out. 270 return {false, None}; 271 } 272 } 273 274 return {true, Dep}; 275 } 276 277 bool ImplicitNullChecks::canReorder(const MachineInstr *A, 278 const MachineInstr *B) { 279 assert(canHandle(A) && canHandle(B) && "Precondition!"); 280 281 // canHandle makes sure that we _can_ correctly analyze the dependencies 282 // between A and B here -- for instance, we should not be dealing with heap 283 // load-store dependencies here. 284 285 for (auto MOA : A->operands()) { 286 if (!(MOA.isReg() && MOA.getReg())) 287 continue; 288 289 Register RegA = MOA.getReg(); 290 for (auto MOB : B->operands()) { 291 if (!(MOB.isReg() && MOB.getReg())) 292 continue; 293 294 Register RegB = MOB.getReg(); 295 296 if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef())) 297 return false; 298 } 299 } 300 301 return true; 302 } 303 304 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { 305 TII = MF.getSubtarget().getInstrInfo(); 306 TRI = MF.getRegInfo().getTargetRegisterInfo(); 307 MFI = &MF.getFrameInfo(); 308 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 309 310 SmallVector<NullCheck, 16> NullCheckList; 311 312 for (auto &MBB : MF) 313 analyzeBlockForNullChecks(MBB, NullCheckList); 314 315 if (!NullCheckList.empty()) 316 rewriteNullChecks(NullCheckList); 317 318 return !NullCheckList.empty(); 319 } 320 321 // Return true if any register aliasing \p Reg is live-in into \p MBB. 322 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI, 323 MachineBasicBlock *MBB, unsigned Reg) { 324 for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid(); 325 ++AR) 326 if (MBB->isLiveIn(*AR)) 327 return true; 328 return false; 329 } 330 331 ImplicitNullChecks::AliasResult 332 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI, 333 const MachineInstr *PrevMI) const { 334 // If it is not memory access, skip the check. 335 if (!(PrevMI->mayStore() || PrevMI->mayLoad())) 336 return AR_NoAlias; 337 // Load-Load may alias 338 if (!(MI.mayStore() || PrevMI->mayStore())) 339 return AR_NoAlias; 340 // We lost info, conservatively alias. If it was store then no sense to 341 // continue because we won't be able to check against it further. 342 if (MI.memoperands_empty()) 343 return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias; 344 if (PrevMI->memoperands_empty()) 345 return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias; 346 347 for (MachineMemOperand *MMO1 : MI.memoperands()) { 348 // MMO1 should have a value due it comes from operation we'd like to use 349 // as implicit null check. 350 assert(MMO1->getValue() && "MMO1 should have a Value!"); 351 for (MachineMemOperand *MMO2 : PrevMI->memoperands()) { 352 if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) { 353 if (PSV->mayAlias(MFI)) 354 return AR_MayAlias; 355 continue; 356 } 357 llvm::AliasResult AAResult = 358 AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 359 MMO1->getAAInfo()), 360 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 361 MMO2->getAAInfo())); 362 if (AAResult != NoAlias) 363 return AR_MayAlias; 364 } 365 } 366 return AR_NoAlias; 367 } 368 369 ImplicitNullChecks::SuitabilityResult 370 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI, 371 unsigned PointerReg, 372 ArrayRef<MachineInstr *> PrevInsts) { 373 int64_t Offset; 374 bool OffsetIsScalable; 375 const MachineOperand *BaseOp; 376 377 378 // FIXME: This handles only simple addressing mode. 379 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 380 return SR_Unsuitable; 381 382 // We need the base of the memory instruction to be same as the register 383 // where the null check is performed (i.e. PointerReg). 384 if (!BaseOp->isReg() || BaseOp->getReg() != PointerReg) 385 return SR_Unsuitable; 386 387 // Scalable offsets are a part of scalable vectors (SVE for AArch64). That 388 // target is in-practice unsupported for ImplicitNullChecks. 389 if (OffsetIsScalable) 390 return SR_Unsuitable; 391 392 if (!MI.mayLoadOrStore() || MI.isPredicable()) 393 return SR_Unsuitable; 394 395 // We want the mem access to be issued at a sane offset from PointerReg, 396 // so that if PointerReg is null then the access reliably page faults. 397 if (!(-PageSize < Offset && Offset < PageSize)) 398 return SR_Unsuitable; 399 400 // Finally, check whether the current memory access aliases with previous one. 401 for (auto *PrevMI : PrevInsts) { 402 AliasResult AR = areMemoryOpsAliased(MI, PrevMI); 403 if (AR == AR_WillAliasEverything) 404 return SR_Impossible; 405 if (AR == AR_MayAlias) 406 return SR_Unsuitable; 407 } 408 return SR_Suitable; 409 } 410 411 bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns( 412 MachineInstr *DependenceMI, MachineBasicBlock *NullSucc, 413 unsigned PointerReg) { 414 for (auto &DependenceMO : DependenceMI->operands()) { 415 if (!(DependenceMO.isReg() && DependenceMO.getReg())) 416 continue; 417 418 // Make sure that we won't clobber any live ins to the sibling block by 419 // hoisting Dependency. For instance, we can't hoist INST to before the 420 // null check (even if it safe, and does not violate any dependencies in 421 // the non_null_block) if %rdx is live in to _null_block. 422 // 423 // test %rcx, %rcx 424 // je _null_block 425 // _non_null_block: 426 // %rdx = INST 427 // ... 428 // 429 // This restriction does not apply to the faulting load inst because in 430 // case the pointer loaded from is in the null page, the load will not 431 // semantically execute, and affect machine state. That is, if the load 432 // was loading into %rax and it faults, the value of %rax should stay the 433 // same as it would have been had the load not have executed and we'd have 434 // branched to NullSucc directly. 435 if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg())) 436 return true; 437 438 } 439 440 // The dependence does not clobber live-ins in NullSucc block. 441 return false; 442 } 443 444 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI, 445 unsigned PointerReg, 446 ArrayRef<MachineInstr *> InstsSeenSoFar, 447 MachineBasicBlock *NullSucc, 448 MachineInstr *&Dependence) { 449 auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar); 450 if (!DepResult.CanReorder) 451 return false; 452 453 if (!DepResult.PotentialDependence) { 454 Dependence = nullptr; 455 return true; 456 } 457 458 auto DependenceItr = *DepResult.PotentialDependence; 459 auto *DependenceMI = *DependenceItr; 460 461 // We don't want to reason about speculating loads. Note -- at this point 462 // we should have already filtered out all of the other non-speculatable 463 // things, like calls and stores. 464 // We also do not want to hoist stores because it might change the memory 465 // while the FaultingMI may result in faulting. 466 assert(canHandle(DependenceMI) && "Should never have reached here!"); 467 if (DependenceMI->mayLoadOrStore()) 468 return false; 469 470 if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc, PointerReg)) 471 return false; 472 473 auto DepDepResult = 474 computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr}); 475 476 if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence) 477 return false; 478 479 Dependence = DependenceMI; 480 return true; 481 } 482 483 /// Analyze MBB to check if its terminating branch can be turned into an 484 /// implicit null check. If yes, append a description of the said null check to 485 /// NullCheckList and return true, else return false. 486 bool ImplicitNullChecks::analyzeBlockForNullChecks( 487 MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) { 488 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 489 490 MDNode *BranchMD = nullptr; 491 if (auto *BB = MBB.getBasicBlock()) 492 BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); 493 494 if (!BranchMD) 495 return false; 496 497 MachineBranchPredicate MBP; 498 499 if (TII->analyzeBranchPredicate(MBB, MBP, true)) 500 return false; 501 502 // Is the predicate comparing an integer to zero? 503 if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 504 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 505 MBP.Predicate == MachineBranchPredicate::PRED_EQ))) 506 return false; 507 508 // If we cannot erase the test instruction itself, then making the null check 509 // implicit does not buy us much. 510 if (!MBP.SingleUseCondition) 511 return false; 512 513 MachineBasicBlock *NotNullSucc, *NullSucc; 514 515 if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { 516 NotNullSucc = MBP.TrueDest; 517 NullSucc = MBP.FalseDest; 518 } else { 519 NotNullSucc = MBP.FalseDest; 520 NullSucc = MBP.TrueDest; 521 } 522 523 // We handle the simplest case for now. We can potentially do better by using 524 // the machine dominator tree. 525 if (NotNullSucc->pred_size() != 1) 526 return false; 527 528 // To prevent the invalid transformation of the following code: 529 // 530 // mov %rax, %rcx 531 // test %rax, %rax 532 // %rax = ... 533 // je throw_npe 534 // mov(%rcx), %r9 535 // mov(%rax), %r10 536 // 537 // into: 538 // 539 // mov %rax, %rcx 540 // %rax = .... 541 // faulting_load_op("movl (%rax), %r10", throw_npe) 542 // mov(%rcx), %r9 543 // 544 // we must ensure that there are no instructions between the 'test' and 545 // conditional jump that modify %rax. 546 const Register PointerReg = MBP.LHS.getReg(); 547 548 assert(MBP.ConditionDef->getParent() == &MBB && "Should be in basic block"); 549 550 for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I) 551 if (I->modifiesRegister(PointerReg, TRI)) 552 return false; 553 554 // Starting with a code fragment like: 555 // 556 // test %rax, %rax 557 // jne LblNotNull 558 // 559 // LblNull: 560 // callq throw_NullPointerException 561 // 562 // LblNotNull: 563 // Inst0 564 // Inst1 565 // ... 566 // Def = Load (%rax + <offset>) 567 // ... 568 // 569 // 570 // we want to end up with 571 // 572 // Def = FaultingLoad (%rax + <offset>), LblNull 573 // jmp LblNotNull ;; explicit or fallthrough 574 // 575 // LblNotNull: 576 // Inst0 577 // Inst1 578 // ... 579 // 580 // LblNull: 581 // callq throw_NullPointerException 582 // 583 // 584 // To see why this is legal, consider the two possibilities: 585 // 586 // 1. %rax is null: since we constrain <offset> to be less than PageSize, the 587 // load instruction dereferences the null page, causing a segmentation 588 // fault. 589 // 590 // 2. %rax is not null: in this case we know that the load cannot fault, as 591 // otherwise the load would've faulted in the original program too and the 592 // original program would've been undefined. 593 // 594 // This reasoning cannot be extended to justify hoisting through arbitrary 595 // control flow. For instance, in the example below (in pseudo-C) 596 // 597 // if (ptr == null) { throw_npe(); unreachable; } 598 // if (some_cond) { return 42; } 599 // v = ptr->field; // LD 600 // ... 601 // 602 // we cannot (without code duplication) use the load marked "LD" to null check 603 // ptr -- clause (2) above does not apply in this case. In the above program 604 // the safety of ptr->field can be dependent on some_cond; and, for instance, 605 // ptr could be some non-null invalid reference that never gets loaded from 606 // because some_cond is always true. 607 608 SmallVector<MachineInstr *, 8> InstsSeenSoFar; 609 610 for (auto &MI : *NotNullSucc) { 611 if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider) 612 return false; 613 614 MachineInstr *Dependence; 615 SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar); 616 if (SR == SR_Impossible) 617 return false; 618 if (SR == SR_Suitable && 619 canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) { 620 NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc, 621 NullSucc, Dependence); 622 return true; 623 } 624 625 // If MI re-defines the PointerReg in a way that changes the value of 626 // PointerReg if it was null, then we cannot move further. 627 if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI)) 628 return false; 629 InstsSeenSoFar.push_back(&MI); 630 } 631 632 return false; 633 } 634 635 /// Wrap a machine instruction, MI, into a FAULTING machine instruction. 636 /// The FAULTING instruction does the same load/store as MI 637 /// (defining the same register), and branches to HandlerMBB if the mem access 638 /// faults. The FAULTING instruction is inserted at the end of MBB. 639 MachineInstr *ImplicitNullChecks::insertFaultingInstr( 640 MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) { 641 const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for 642 // all targets. 643 644 DebugLoc DL; 645 unsigned NumDefs = MI->getDesc().getNumDefs(); 646 assert(NumDefs <= 1 && "other cases unhandled!"); 647 648 unsigned DefReg = NoRegister; 649 if (NumDefs != 0) { 650 DefReg = MI->getOperand(0).getReg(); 651 assert(NumDefs == 1 && "expected exactly one def!"); 652 } 653 654 FaultMaps::FaultKind FK; 655 if (MI->mayLoad()) 656 FK = 657 MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad; 658 else 659 FK = FaultMaps::FaultingStore; 660 661 auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg) 662 .addImm(FK) 663 .addMBB(HandlerMBB) 664 .addImm(MI->getOpcode()); 665 666 for (auto &MO : MI->uses()) { 667 if (MO.isReg()) { 668 MachineOperand NewMO = MO; 669 if (MO.isUse()) { 670 NewMO.setIsKill(false); 671 } else { 672 assert(MO.isDef() && "Expected def or use"); 673 NewMO.setIsDead(false); 674 } 675 MIB.add(NewMO); 676 } else { 677 MIB.add(MO); 678 } 679 } 680 681 MIB.setMemRefs(MI->memoperands()); 682 683 return MIB; 684 } 685 686 /// Rewrite the null checks in NullCheckList into implicit null checks. 687 void ImplicitNullChecks::rewriteNullChecks( 688 ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) { 689 DebugLoc DL; 690 691 for (auto &NC : NullCheckList) { 692 // Remove the conditional branch dependent on the null check. 693 unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock()); 694 (void)BranchesRemoved; 695 assert(BranchesRemoved > 0 && "expected at least one branch!"); 696 697 if (auto *DepMI = NC.getOnlyDependency()) { 698 DepMI->removeFromParent(); 699 NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI); 700 } 701 702 // Insert a faulting instruction where the conditional branch was 703 // originally. We check earlier ensures that this bit of code motion 704 // is legal. We do not touch the successors list for any basic block 705 // since we haven't changed control flow, we've just made it implicit. 706 MachineInstr *FaultingInstr = insertFaultingInstr( 707 NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc()); 708 // Now the values defined by MemOperation, if any, are live-in of 709 // the block of MemOperation. 710 // The original operation may define implicit-defs alongside 711 // the value. 712 MachineBasicBlock *MBB = NC.getMemOperation()->getParent(); 713 for (const MachineOperand &MO : FaultingInstr->operands()) { 714 if (!MO.isReg() || !MO.isDef()) 715 continue; 716 Register Reg = MO.getReg(); 717 if (!Reg || MBB->isLiveIn(Reg)) 718 continue; 719 MBB->addLiveIn(Reg); 720 } 721 722 if (auto *DepMI = NC.getOnlyDependency()) { 723 for (auto &MO : DepMI->operands()) { 724 if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead()) 725 continue; 726 if (!NC.getNotNullSucc()->isLiveIn(MO.getReg())) 727 NC.getNotNullSucc()->addLiveIn(MO.getReg()); 728 } 729 } 730 731 NC.getMemOperation()->eraseFromParent(); 732 NC.getCheckOperation()->eraseFromParent(); 733 734 // Insert an *unconditional* branch to not-null successor. 735 TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr, 736 /*Cond=*/None, DL); 737 738 NumImplicitNullChecks++; 739 } 740 } 741 742 char ImplicitNullChecks::ID = 0; 743 744 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; 745 746 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE, 747 "Implicit null checks", false, false) 748 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 749 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE, 750 "Implicit null checks", false, false) 751