xref: /llvm-project/llvm/lib/CodeGen/ImplicitNullChecks.cpp (revision 35cb45c533fb76dcfc9f44b4e8bbd5d8a855ed2a)
1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns explicit null checks of the form
10 //
11 //   test %r10, %r10
12 //   je throw_npe
13 //   movl (%r10), %esi
14 //   ...
15 //
16 // to
17 //
18 //   faulting_load_op("movl (%r10), %esi", throw_npe)
19 //   ...
20 //
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23 // a page fault.
24 // Store and LoadStore are also supported.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/CodeGen/FaultMaps.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PseudoSourceValue.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/CommandLine.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 
62 using namespace llvm;
63 
64 static cl::opt<int> PageSize("imp-null-check-page-size",
65                              cl::desc("The page size of the target in bytes"),
66                              cl::init(4096), cl::Hidden);
67 
68 static cl::opt<unsigned> MaxInstsToConsider(
69     "imp-null-max-insts-to-consider",
70     cl::desc("The max number of instructions to consider hoisting loads over "
71              "(the algorithm is quadratic over this number)"),
72     cl::Hidden, cl::init(8));
73 
74 #define DEBUG_TYPE "implicit-null-checks"
75 
76 STATISTIC(NumImplicitNullChecks,
77           "Number of explicit null checks made implicit");
78 
79 namespace {
80 
81 class ImplicitNullChecks : public MachineFunctionPass {
82   /// Return true if \c computeDependence can process \p MI.
83   static bool canHandle(const MachineInstr *MI);
84 
85   /// Helper function for \c computeDependence.  Return true if \p A
86   /// and \p B do not have any dependences between them, and can be
87   /// re-ordered without changing program semantics.
88   bool canReorder(const MachineInstr *A, const MachineInstr *B);
89 
90   /// A data type for representing the result computed by \c
91   /// computeDependence.  States whether it is okay to reorder the
92   /// instruction passed to \c computeDependence with at most one
93   /// dependency.
94   struct DependenceResult {
95     /// Can we actually re-order \p MI with \p Insts (see \c
96     /// computeDependence).
97     bool CanReorder;
98 
99     /// If non-None, then an instruction in \p Insts that also must be
100     /// hoisted.
101     Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
102 
103     /*implicit*/ DependenceResult(
104         bool CanReorder,
105         Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
106         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
107       assert((!PotentialDependence || CanReorder) &&
108              "!CanReorder && PotentialDependence.hasValue() not allowed!");
109     }
110   };
111 
112   /// Compute a result for the following question: can \p MI be
113   /// re-ordered from after \p Insts to before it.
114   ///
115   /// \c canHandle should return true for all instructions in \p
116   /// Insts.
117   DependenceResult computeDependence(const MachineInstr *MI,
118                                      ArrayRef<MachineInstr *> Block);
119 
120   /// Represents one null check that can be made implicit.
121   class NullCheck {
122     // The memory operation the null check can be folded into.
123     MachineInstr *MemOperation;
124 
125     // The instruction actually doing the null check (Ptr != 0).
126     MachineInstr *CheckOperation;
127 
128     // The block the check resides in.
129     MachineBasicBlock *CheckBlock;
130 
131     // The block branched to if the pointer is non-null.
132     MachineBasicBlock *NotNullSucc;
133 
134     // The block branched to if the pointer is null.
135     MachineBasicBlock *NullSucc;
136 
137     // If this is non-null, then MemOperation has a dependency on this
138     // instruction; and it needs to be hoisted to execute before MemOperation.
139     MachineInstr *OnlyDependency;
140 
141   public:
142     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
143                        MachineBasicBlock *checkBlock,
144                        MachineBasicBlock *notNullSucc,
145                        MachineBasicBlock *nullSucc,
146                        MachineInstr *onlyDependency)
147         : MemOperation(memOperation), CheckOperation(checkOperation),
148           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
149           OnlyDependency(onlyDependency) {}
150 
151     MachineInstr *getMemOperation() const { return MemOperation; }
152 
153     MachineInstr *getCheckOperation() const { return CheckOperation; }
154 
155     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
156 
157     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
158 
159     MachineBasicBlock *getNullSucc() const { return NullSucc; }
160 
161     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
162   };
163 
164   const TargetInstrInfo *TII = nullptr;
165   const TargetRegisterInfo *TRI = nullptr;
166   AliasAnalysis *AA = nullptr;
167   MachineFrameInfo *MFI = nullptr;
168 
169   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
170                                  SmallVectorImpl<NullCheck> &NullCheckList);
171   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
172                                     MachineBasicBlock *HandlerMBB);
173   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
174 
175   enum AliasResult {
176     AR_NoAlias,
177     AR_MayAlias,
178     AR_WillAliasEverything
179   };
180 
181   /// Returns AR_NoAlias if \p MI memory operation does not alias with
182   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
183   /// they may alias and any further memory operation may alias with \p PrevMI.
184   AliasResult areMemoryOpsAliased(const MachineInstr &MI,
185                                   const MachineInstr *PrevMI) const;
186 
187   enum SuitabilityResult {
188     SR_Suitable,
189     SR_Unsuitable,
190     SR_Impossible
191   };
192 
193   /// Return SR_Suitable if \p MI a memory operation that can be used to
194   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
195   /// \p MI cannot be used to null check and SR_Impossible if there is
196   /// no sense to continue lookup due to any other instruction will not be able
197   /// to be used. \p PrevInsts is the set of instruction seen since
198   /// the explicit null check on \p PointerReg.
199   SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
200                                        unsigned PointerReg,
201                                        ArrayRef<MachineInstr *> PrevInsts);
202 
203   /// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block
204   /// if it was hoisted to the NullCheck block. This is used by caller
205   /// canHoistInst to decide if DependenceMI can be hoisted safely.
206   bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI,
207                                            MachineBasicBlock *NullSucc);
208 
209   /// Return true if \p FaultingMI can be hoisted from after the
210   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
211   /// non-null value if we also need to (and legally can) hoist a dependency.
212   bool canHoistInst(MachineInstr *FaultingMI,
213                     ArrayRef<MachineInstr *> InstsSeenSoFar,
214                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
215 
216 public:
217   static char ID;
218 
219   ImplicitNullChecks() : MachineFunctionPass(ID) {
220     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
221   }
222 
223   bool runOnMachineFunction(MachineFunction &MF) override;
224 
225   void getAnalysisUsage(AnalysisUsage &AU) const override {
226     AU.addRequired<AAResultsWrapperPass>();
227     MachineFunctionPass::getAnalysisUsage(AU);
228   }
229 
230   MachineFunctionProperties getRequiredProperties() const override {
231     return MachineFunctionProperties().set(
232         MachineFunctionProperties::Property::NoVRegs);
233   }
234 };
235 
236 } // end anonymous namespace
237 
238 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
239   if (MI->isCall() || MI->mayRaiseFPException() ||
240       MI->hasUnmodeledSideEffects())
241     return false;
242   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
243   (void)IsRegMask;
244 
245   assert(!llvm::any_of(MI->operands(), IsRegMask) &&
246          "Calls were filtered out above!");
247 
248   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
249   return llvm::all_of(MI->memoperands(), IsUnordered);
250 }
251 
252 ImplicitNullChecks::DependenceResult
253 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
254                                       ArrayRef<MachineInstr *> Block) {
255   assert(llvm::all_of(Block, canHandle) && "Check this first!");
256   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
257 
258   Optional<ArrayRef<MachineInstr *>::iterator> Dep;
259 
260   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
261     if (canReorder(*I, MI))
262       continue;
263 
264     if (Dep == None) {
265       // Found one possible dependency, keep track of it.
266       Dep = I;
267     } else {
268       // We found two dependencies, so bail out.
269       return {false, None};
270     }
271   }
272 
273   return {true, Dep};
274 }
275 
276 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
277                                     const MachineInstr *B) {
278   assert(canHandle(A) && canHandle(B) && "Precondition!");
279 
280   // canHandle makes sure that we _can_ correctly analyze the dependencies
281   // between A and B here -- for instance, we should not be dealing with heap
282   // load-store dependencies here.
283 
284   for (const auto &MOA : A->operands()) {
285     if (!(MOA.isReg() && MOA.getReg()))
286       continue;
287 
288     Register RegA = MOA.getReg();
289     for (const auto &MOB : B->operands()) {
290       if (!(MOB.isReg() && MOB.getReg()))
291         continue;
292 
293       Register RegB = MOB.getReg();
294 
295       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
296         return false;
297     }
298   }
299 
300   return true;
301 }
302 
303 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
304   TII = MF.getSubtarget().getInstrInfo();
305   TRI = MF.getRegInfo().getTargetRegisterInfo();
306   MFI = &MF.getFrameInfo();
307   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
308 
309   SmallVector<NullCheck, 16> NullCheckList;
310 
311   for (auto &MBB : MF)
312     analyzeBlockForNullChecks(MBB, NullCheckList);
313 
314   if (!NullCheckList.empty())
315     rewriteNullChecks(NullCheckList);
316 
317   return !NullCheckList.empty();
318 }
319 
320 // Return true if any register aliasing \p Reg is live-in into \p MBB.
321 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
322                            MachineBasicBlock *MBB, unsigned Reg) {
323   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
324        ++AR)
325     if (MBB->isLiveIn(*AR))
326       return true;
327   return false;
328 }
329 
330 ImplicitNullChecks::AliasResult
331 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
332                                         const MachineInstr *PrevMI) const {
333   // If it is not memory access, skip the check.
334   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
335     return AR_NoAlias;
336   // Load-Load may alias
337   if (!(MI.mayStore() || PrevMI->mayStore()))
338     return AR_NoAlias;
339   // We lost info, conservatively alias. If it was store then no sense to
340   // continue because we won't be able to check against it further.
341   if (MI.memoperands_empty())
342     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
343   if (PrevMI->memoperands_empty())
344     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
345 
346   for (MachineMemOperand *MMO1 : MI.memoperands()) {
347     // MMO1 should have a value due it comes from operation we'd like to use
348     // as implicit null check.
349     assert(MMO1->getValue() && "MMO1 should have a Value!");
350     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
351       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
352         if (PSV->mayAlias(MFI))
353           return AR_MayAlias;
354         continue;
355       }
356       llvm::AliasResult AAResult =
357           AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
358                                    MMO1->getAAInfo()),
359                     MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
360                                    MMO2->getAAInfo()));
361       if (AAResult != NoAlias)
362         return AR_MayAlias;
363     }
364   }
365   return AR_NoAlias;
366 }
367 
368 ImplicitNullChecks::SuitabilityResult
369 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
370                                        unsigned PointerReg,
371                                        ArrayRef<MachineInstr *> PrevInsts) {
372   int64_t Offset;
373   bool OffsetIsScalable;
374   const MachineOperand *BaseOp;
375 
376   // Implementation restriction for faulting_op insertion
377   // TODO: This could be relaxed if we find a test case which warrants it.
378   if (MI.getDesc().getNumDefs() > 1)
379    return SR_Unsuitable;
380 
381   if (!MI.mayLoadOrStore() || MI.isPredicable())
382     return SR_Unsuitable;
383   auto AM = TII->getAddrModeFromMemoryOp(MI, TRI);
384   if (!AM)
385     return SR_Unsuitable;
386   auto AddrMode = *AM;
387   const Register BaseReg = AddrMode.BaseReg, ScaledReg = AddrMode.ScaledReg;
388   int64_t Displacement = AddrMode.Displacement;
389 
390   // We need the base of the memory instruction to be same as the register
391   // where the null check is performed (i.e. PointerReg).
392   if (BaseReg != PointerReg && ScaledReg != PointerReg)
393     return SR_Unsuitable;
394   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
395   unsigned PointerRegSizeInBits = TRI->getRegSizeInBits(PointerReg, MRI);
396   // Bail out of the sizes of BaseReg, ScaledReg and PointerReg are not the
397   // same.
398   if ((BaseReg &&
399        TRI->getRegSizeInBits(BaseReg, MRI) != PointerRegSizeInBits) ||
400       (ScaledReg &&
401        TRI->getRegSizeInBits(ScaledReg, MRI) != PointerRegSizeInBits))
402     return SR_Unsuitable;
403 
404   // Returns true if RegUsedInAddr is used for calculating the displacement
405   // depending on addressing mode. Also calculates the Displacement.
406   auto CalculateDisplacementFromAddrMode = [&](Register RegUsedInAddr,
407                                                int64_t Multiplier) {
408     // The register can be NoRegister, which is defined as zero for all targets.
409     // Consider instruction of interest as `movq 8(,%rdi,8), %rax`. Here the
410     // ScaledReg is %rdi, while there is no BaseReg.
411     if (!RegUsedInAddr)
412       return false;
413     assert(Multiplier && "expected to be non-zero!");
414     MachineInstr *ModifyingMI = nullptr;
415     for (auto It = std::next(MachineBasicBlock::const_reverse_iterator(&MI));
416          It != MI.getParent()->rend(); It++) {
417       const MachineInstr *CurrMI = &*It;
418       if (CurrMI->modifiesRegister(RegUsedInAddr, TRI)) {
419         ModifyingMI = const_cast<MachineInstr *>(CurrMI);
420         break;
421       }
422     }
423     if (!ModifyingMI)
424       return false;
425     // Check for the const value defined in register by ModifyingMI. This means
426     // all other previous values for that register has been invalidated.
427     int64_t ImmVal;
428     if (!TII->getConstValDefinedInReg(*ModifyingMI, RegUsedInAddr, ImmVal))
429       return false;
430     // Calculate the reg size in bits, since this is needed for bailing out in
431     // case of overflow.
432     int32_t RegSizeInBits = TRI->getRegSizeInBits(RegUsedInAddr, MRI);
433     APInt ImmValC(RegSizeInBits, ImmVal, true /*IsSigned*/);
434     APInt MultiplierC(RegSizeInBits, Multiplier);
435     assert(MultiplierC.isStrictlyPositive() &&
436            "expected to be a positive value!");
437     bool IsOverflow;
438     // Sign of the product depends on the sign of the ImmVal, since Multiplier
439     // is always positive.
440     APInt Product = ImmValC.smul_ov(MultiplierC, IsOverflow);
441     if (IsOverflow)
442       return false;
443     APInt DisplacementC(64, Displacement, true /*isSigned*/);
444     DisplacementC = Product.sadd_ov(DisplacementC, IsOverflow);
445     if (IsOverflow)
446       return false;
447 
448     // We only handle diplacements upto 64 bits wide.
449     if (DisplacementC.getActiveBits() > 64)
450       return false;
451     Displacement = DisplacementC.getSExtValue();
452     return true;
453   };
454 
455   // If a register used in the address is constant, fold it's effect into the
456   // displacement for ease of analysis.
457   bool BaseRegIsConstVal = false, ScaledRegIsConstVal = false;
458   if (CalculateDisplacementFromAddrMode(BaseReg, 1))
459     BaseRegIsConstVal = true;
460   if (CalculateDisplacementFromAddrMode(ScaledReg, AddrMode.Scale))
461     ScaledRegIsConstVal = true;
462 
463   // The register which is not null checked should be part of the Displacement
464   // calculation, otherwise we do not know whether the Displacement is made up
465   // by some symbolic values.
466   // This matters because we do not want to incorrectly assume that load from
467   // falls in the zeroth faulting page in the "sane offset check" below.
468   if ((BaseReg && BaseReg != PointerReg && !BaseRegIsConstVal) ||
469       (ScaledReg && ScaledReg != PointerReg && !ScaledRegIsConstVal))
470     return SR_Unsuitable;
471 
472   // We want the mem access to be issued at a sane offset from PointerReg,
473   // so that if PointerReg is null then the access reliably page faults.
474   if (!(-PageSize < Displacement && Displacement < PageSize))
475     return SR_Unsuitable;
476 
477   // Finally, check whether the current memory access aliases with previous one.
478   for (auto *PrevMI : PrevInsts) {
479     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
480     if (AR == AR_WillAliasEverything)
481       return SR_Impossible;
482     if (AR == AR_MayAlias)
483       return SR_Unsuitable;
484   }
485   return SR_Suitable;
486 }
487 
488 bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns(
489     MachineInstr *DependenceMI, MachineBasicBlock *NullSucc) {
490   for (const auto &DependenceMO : DependenceMI->operands()) {
491     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
492       continue;
493 
494     // Make sure that we won't clobber any live ins to the sibling block by
495     // hoisting Dependency.  For instance, we can't hoist INST to before the
496     // null check (even if it safe, and does not violate any dependencies in
497     // the non_null_block) if %rdx is live in to _null_block.
498     //
499     //    test %rcx, %rcx
500     //    je _null_block
501     //  _non_null_block:
502     //    %rdx = INST
503     //    ...
504     //
505     // This restriction does not apply to the faulting load inst because in
506     // case the pointer loaded from is in the null page, the load will not
507     // semantically execute, and affect machine state.  That is, if the load
508     // was loading into %rax and it faults, the value of %rax should stay the
509     // same as it would have been had the load not have executed and we'd have
510     // branched to NullSucc directly.
511     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
512       return true;
513 
514   }
515 
516   // The dependence does not clobber live-ins in NullSucc block.
517   return false;
518 }
519 
520 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
521                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
522                                       MachineBasicBlock *NullSucc,
523                                       MachineInstr *&Dependence) {
524   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
525   if (!DepResult.CanReorder)
526     return false;
527 
528   if (!DepResult.PotentialDependence) {
529     Dependence = nullptr;
530     return true;
531   }
532 
533   auto DependenceItr = *DepResult.PotentialDependence;
534   auto *DependenceMI = *DependenceItr;
535 
536   // We don't want to reason about speculating loads.  Note -- at this point
537   // we should have already filtered out all of the other non-speculatable
538   // things, like calls and stores.
539   // We also do not want to hoist stores because it might change the memory
540   // while the FaultingMI may result in faulting.
541   assert(canHandle(DependenceMI) && "Should never have reached here!");
542   if (DependenceMI->mayLoadOrStore())
543     return false;
544 
545   if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc))
546     return false;
547 
548   auto DepDepResult =
549       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
550 
551   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
552     return false;
553 
554   Dependence = DependenceMI;
555   return true;
556 }
557 
558 /// Analyze MBB to check if its terminating branch can be turned into an
559 /// implicit null check.  If yes, append a description of the said null check to
560 /// NullCheckList and return true, else return false.
561 bool ImplicitNullChecks::analyzeBlockForNullChecks(
562     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
563   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
564 
565   MDNode *BranchMD = nullptr;
566   if (auto *BB = MBB.getBasicBlock())
567     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
568 
569   if (!BranchMD)
570     return false;
571 
572   MachineBranchPredicate MBP;
573 
574   if (TII->analyzeBranchPredicate(MBB, MBP, true))
575     return false;
576 
577   // Is the predicate comparing an integer to zero?
578   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
579         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
580          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
581     return false;
582 
583   // If there is a separate condition generation instruction, we chose not to
584   // transform unless we can remove both condition and consuming branch.
585   if (MBP.ConditionDef && !MBP.SingleUseCondition)
586     return false;
587 
588   MachineBasicBlock *NotNullSucc, *NullSucc;
589 
590   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
591     NotNullSucc = MBP.TrueDest;
592     NullSucc = MBP.FalseDest;
593   } else {
594     NotNullSucc = MBP.FalseDest;
595     NullSucc = MBP.TrueDest;
596   }
597 
598   // We handle the simplest case for now.  We can potentially do better by using
599   // the machine dominator tree.
600   if (NotNullSucc->pred_size() != 1)
601     return false;
602 
603   const Register PointerReg = MBP.LHS.getReg();
604 
605   if (MBP.ConditionDef) {
606     // To prevent the invalid transformation of the following code:
607     //
608     //   mov %rax, %rcx
609     //   test %rax, %rax
610     //   %rax = ...
611     //   je throw_npe
612     //   mov(%rcx), %r9
613     //   mov(%rax), %r10
614     //
615     // into:
616     //
617     //   mov %rax, %rcx
618     //   %rax = ....
619     //   faulting_load_op("movl (%rax), %r10", throw_npe)
620     //   mov(%rcx), %r9
621     //
622     // we must ensure that there are no instructions between the 'test' and
623     // conditional jump that modify %rax.
624     assert(MBP.ConditionDef->getParent() ==  &MBB &&
625            "Should be in basic block");
626 
627     for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
628       if (I->modifiesRegister(PointerReg, TRI))
629         return false;
630   }
631   // Starting with a code fragment like:
632   //
633   //   test %rax, %rax
634   //   jne LblNotNull
635   //
636   //  LblNull:
637   //   callq throw_NullPointerException
638   //
639   //  LblNotNull:
640   //   Inst0
641   //   Inst1
642   //   ...
643   //   Def = Load (%rax + <offset>)
644   //   ...
645   //
646   //
647   // we want to end up with
648   //
649   //   Def = FaultingLoad (%rax + <offset>), LblNull
650   //   jmp LblNotNull ;; explicit or fallthrough
651   //
652   //  LblNotNull:
653   //   Inst0
654   //   Inst1
655   //   ...
656   //
657   //  LblNull:
658   //   callq throw_NullPointerException
659   //
660   //
661   // To see why this is legal, consider the two possibilities:
662   //
663   //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
664   //     load instruction dereferences the null page, causing a segmentation
665   //     fault.
666   //
667   //  2. %rax is not null: in this case we know that the load cannot fault, as
668   //     otherwise the load would've faulted in the original program too and the
669   //     original program would've been undefined.
670   //
671   // This reasoning cannot be extended to justify hoisting through arbitrary
672   // control flow.  For instance, in the example below (in pseudo-C)
673   //
674   //    if (ptr == null) { throw_npe(); unreachable; }
675   //    if (some_cond) { return 42; }
676   //    v = ptr->field;  // LD
677   //    ...
678   //
679   // we cannot (without code duplication) use the load marked "LD" to null check
680   // ptr -- clause (2) above does not apply in this case.  In the above program
681   // the safety of ptr->field can be dependent on some_cond; and, for instance,
682   // ptr could be some non-null invalid reference that never gets loaded from
683   // because some_cond is always true.
684 
685   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
686 
687   for (auto &MI : *NotNullSucc) {
688     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
689       return false;
690 
691     MachineInstr *Dependence;
692     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
693     if (SR == SR_Impossible)
694       return false;
695     if (SR == SR_Suitable &&
696         canHoistInst(&MI, InstsSeenSoFar, NullSucc, Dependence)) {
697       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
698                                  NullSucc, Dependence);
699       return true;
700     }
701 
702     // If MI re-defines the PointerReg in a way that changes the value of
703     // PointerReg if it was null, then we cannot move further.
704     if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI))
705       return false;
706     InstsSeenSoFar.push_back(&MI);
707   }
708 
709   return false;
710 }
711 
712 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
713 /// The FAULTING instruction does the same load/store as MI
714 /// (defining the same register), and branches to HandlerMBB if the mem access
715 /// faults.  The FAULTING instruction is inserted at the end of MBB.
716 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
717     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
718   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
719                                  // all targets.
720 
721   DebugLoc DL;
722   unsigned NumDefs = MI->getDesc().getNumDefs();
723   assert(NumDefs <= 1 && "other cases unhandled!");
724 
725   unsigned DefReg = NoRegister;
726   if (NumDefs != 0) {
727     DefReg = MI->getOperand(0).getReg();
728     assert(NumDefs == 1 && "expected exactly one def!");
729   }
730 
731   FaultMaps::FaultKind FK;
732   if (MI->mayLoad())
733     FK =
734         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
735   else
736     FK = FaultMaps::FaultingStore;
737 
738   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
739                  .addImm(FK)
740                  .addMBB(HandlerMBB)
741                  .addImm(MI->getOpcode());
742 
743   for (auto &MO : MI->uses()) {
744     if (MO.isReg()) {
745       MachineOperand NewMO = MO;
746       if (MO.isUse()) {
747         NewMO.setIsKill(false);
748       } else {
749         assert(MO.isDef() && "Expected def or use");
750         NewMO.setIsDead(false);
751       }
752       MIB.add(NewMO);
753     } else {
754       MIB.add(MO);
755     }
756   }
757 
758   MIB.setMemRefs(MI->memoperands());
759 
760   return MIB;
761 }
762 
763 /// Rewrite the null checks in NullCheckList into implicit null checks.
764 void ImplicitNullChecks::rewriteNullChecks(
765     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
766   DebugLoc DL;
767 
768   for (auto &NC : NullCheckList) {
769     // Remove the conditional branch dependent on the null check.
770     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
771     (void)BranchesRemoved;
772     assert(BranchesRemoved > 0 && "expected at least one branch!");
773 
774     if (auto *DepMI = NC.getOnlyDependency()) {
775       DepMI->removeFromParent();
776       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
777     }
778 
779     // Insert a faulting instruction where the conditional branch was
780     // originally. We check earlier ensures that this bit of code motion
781     // is legal.  We do not touch the successors list for any basic block
782     // since we haven't changed control flow, we've just made it implicit.
783     MachineInstr *FaultingInstr = insertFaultingInstr(
784         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
785     // Now the values defined by MemOperation, if any, are live-in of
786     // the block of MemOperation.
787     // The original operation may define implicit-defs alongside
788     // the value.
789     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
790     for (const MachineOperand &MO : FaultingInstr->operands()) {
791       if (!MO.isReg() || !MO.isDef())
792         continue;
793       Register Reg = MO.getReg();
794       if (!Reg || MBB->isLiveIn(Reg))
795         continue;
796       MBB->addLiveIn(Reg);
797     }
798 
799     if (auto *DepMI = NC.getOnlyDependency()) {
800       for (auto &MO : DepMI->operands()) {
801         if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
802           continue;
803         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
804           NC.getNotNullSucc()->addLiveIn(MO.getReg());
805       }
806     }
807 
808     NC.getMemOperation()->eraseFromParent();
809     if (auto *CheckOp = NC.getCheckOperation())
810       CheckOp->eraseFromParent();
811 
812     // Insert an *unconditional* branch to not-null successor - we expect
813     // block placement to remove fallthroughs later.
814     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
815                       /*Cond=*/None, DL);
816 
817     NumImplicitNullChecks++;
818   }
819 }
820 
821 char ImplicitNullChecks::ID = 0;
822 
823 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
824 
825 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
826                       "Implicit null checks", false, false)
827 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
828 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
829                     "Implicit null checks", false, false)
830