1 //===-- GlobalMerge.cpp - Internal globals merging -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass merges globals with internal linkage into one. This way all the 10 // globals which were merged into a biggest one can be addressed using offsets 11 // from the same base pointer (no need for separate base pointer for each of the 12 // global). Such a transformation can significantly reduce the register pressure 13 // when many globals are involved. 14 // 15 // For example, consider the code which touches several global variables at 16 // once: 17 // 18 // static int foo[N], bar[N], baz[N]; 19 // 20 // for (i = 0; i < N; ++i) { 21 // foo[i] = bar[i] * baz[i]; 22 // } 23 // 24 // On ARM the addresses of 3 arrays should be kept in the registers, thus 25 // this code has quite large register pressure (loop body): 26 // 27 // ldr r1, [r5], #4 28 // ldr r2, [r6], #4 29 // mul r1, r2, r1 30 // str r1, [r0], #4 31 // 32 // Pass converts the code to something like: 33 // 34 // static struct { 35 // int foo[N]; 36 // int bar[N]; 37 // int baz[N]; 38 // } merged; 39 // 40 // for (i = 0; i < N; ++i) { 41 // merged.foo[i] = merged.bar[i] * merged.baz[i]; 42 // } 43 // 44 // and in ARM code this becomes: 45 // 46 // ldr r0, [r5, #40] 47 // ldr r1, [r5, #80] 48 // mul r0, r1, r0 49 // str r0, [r5], #4 50 // 51 // note that we saved 2 registers here almostly "for free". 52 // 53 // However, merging globals can have tradeoffs: 54 // - it confuses debuggers, tools, and users 55 // - it makes linker optimizations less useful (order files, LOHs, ...) 56 // - it forces usage of indexed addressing (which isn't necessarily "free") 57 // - it can increase register pressure when the uses are disparate enough. 58 // 59 // We use heuristics to discover the best global grouping we can (cf cl::opts). 60 // ===---------------------------------------------------------------------===// 61 62 #include "llvm/ADT/DenseMap.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GlobalVariable.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/Intrinsics.h" 75 #include "llvm/IR/Module.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetLowering.h" 81 #include "llvm/Target/TargetLoweringObjectFile.h" 82 #include "llvm/Target/TargetSubtargetInfo.h" 83 #include <algorithm> 84 using namespace llvm; 85 86 #define DEBUG_TYPE "global-merge" 87 88 // FIXME: This is only useful as a last-resort way to disable the pass. 89 static cl::opt<bool> 90 EnableGlobalMerge("enable-global-merge", cl::Hidden, 91 cl::desc("Enable the global merge pass"), 92 cl::init(true)); 93 94 static cl::opt<bool> GlobalMergeGroupByUse( 95 "global-merge-group-by-use", cl::Hidden, 96 cl::desc("Improve global merge pass to look at uses"), cl::init(true)); 97 98 static cl::opt<bool> GlobalMergeIgnoreSingleUse( 99 "global-merge-ignore-single-use", cl::Hidden, 100 cl::desc("Improve global merge pass to ignore globals only used alone"), 101 cl::init(true)); 102 103 static cl::opt<bool> 104 EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden, 105 cl::desc("Enable global merge pass on constants"), 106 cl::init(false)); 107 108 // FIXME: this could be a transitional option, and we probably need to remove 109 // it if only we are sure this optimization could always benefit all targets. 110 static cl::opt<cl::boolOrDefault> 111 EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden, 112 cl::desc("Enable global merge pass on external linkage")); 113 114 STATISTIC(NumMerged, "Number of globals merged"); 115 namespace { 116 class GlobalMerge : public FunctionPass { 117 const TargetMachine *TM; 118 // FIXME: Infer the maximum possible offset depending on the actual users 119 // (these max offsets are different for the users inside Thumb or ARM 120 // functions), see the code that passes in the offset in the ARM backend 121 // for more information. 122 unsigned MaxOffset; 123 124 /// Whether we should try to optimize for size only. 125 /// Currently, this applies a dead simple heuristic: only consider globals 126 /// used in minsize functions for merging. 127 /// FIXME: This could learn about optsize, and be used in the cost model. 128 bool OnlyOptimizeForSize; 129 130 /// Whether we should merge global variables that have external linkage. 131 bool MergeExternalGlobals; 132 133 bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals, 134 Module &M, bool isConst, unsigned AddrSpace) const; 135 /// \brief Merge everything in \p Globals for which the corresponding bit 136 /// in \p GlobalSet is set. 137 bool doMerge(const SmallVectorImpl<GlobalVariable *> &Globals, 138 const BitVector &GlobalSet, Module &M, bool isConst, 139 unsigned AddrSpace) const; 140 141 /// \brief Check if the given variable has been identified as must keep 142 /// \pre setMustKeepGlobalVariables must have been called on the Module that 143 /// contains GV 144 bool isMustKeepGlobalVariable(const GlobalVariable *GV) const { 145 return MustKeepGlobalVariables.count(GV); 146 } 147 148 /// Collect every variables marked as "used" or used in a landing pad 149 /// instruction for this Module. 150 void setMustKeepGlobalVariables(Module &M); 151 152 /// Collect every variables marked as "used" 153 void collectUsedGlobalVariables(Module &M); 154 155 /// Keep track of the GlobalVariable that must not be merged away 156 SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables; 157 158 public: 159 static char ID; // Pass identification, replacement for typeid. 160 explicit GlobalMerge(const TargetMachine *TM = nullptr, 161 unsigned MaximalOffset = 0, 162 bool OnlyOptimizeForSize = false, 163 bool MergeExternalGlobals = false) 164 : FunctionPass(ID), TM(TM), MaxOffset(MaximalOffset), 165 OnlyOptimizeForSize(OnlyOptimizeForSize), 166 MergeExternalGlobals(MergeExternalGlobals) { 167 initializeGlobalMergePass(*PassRegistry::getPassRegistry()); 168 } 169 170 bool doInitialization(Module &M) override; 171 bool runOnFunction(Function &F) override; 172 bool doFinalization(Module &M) override; 173 174 const char *getPassName() const override { 175 return "Merge internal globals"; 176 } 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override { 179 AU.setPreservesCFG(); 180 FunctionPass::getAnalysisUsage(AU); 181 } 182 }; 183 } // end anonymous namespace 184 185 char GlobalMerge::ID = 0; 186 INITIALIZE_PASS_BEGIN(GlobalMerge, "global-merge", "Merge global variables", 187 false, false) 188 INITIALIZE_PASS_END(GlobalMerge, "global-merge", "Merge global variables", 189 false, false) 190 191 bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals, 192 Module &M, bool isConst, unsigned AddrSpace) const { 193 auto &DL = M.getDataLayout(); 194 // FIXME: Find better heuristics 195 std::stable_sort(Globals.begin(), Globals.end(), 196 [&DL](const GlobalVariable *GV1, const GlobalVariable *GV2) { 197 return DL.getTypeAllocSize(GV1->getValueType()) < 198 DL.getTypeAllocSize(GV2->getValueType()); 199 }); 200 201 // If we want to just blindly group all globals together, do so. 202 if (!GlobalMergeGroupByUse) { 203 BitVector AllGlobals(Globals.size()); 204 AllGlobals.set(); 205 return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); 206 } 207 208 // If we want to be smarter, look at all uses of each global, to try to 209 // discover all sets of globals used together, and how many times each of 210 // these sets occurred. 211 // 212 // Keep this reasonably efficient, by having an append-only list of all sets 213 // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of 214 // code (currently, a Function) to the set of globals seen so far that are 215 // used together in that unit (GlobalUsesByFunction). 216 // 217 // When we look at the Nth global, we now that any new set is either: 218 // - the singleton set {N}, containing this global only, or 219 // - the union of {N} and a previously-discovered set, containing some 220 // combination of the previous N-1 globals. 221 // Using that knowledge, when looking at the Nth global, we can keep: 222 // - a reference to the singleton set {N} (CurGVOnlySetIdx) 223 // - a list mapping each previous set to its union with {N} (EncounteredUGS), 224 // if it actually occurs. 225 226 // We keep track of the sets of globals used together "close enough". 227 struct UsedGlobalSet { 228 UsedGlobalSet(size_t Size) : Globals(Size), UsageCount(1) {} 229 BitVector Globals; 230 unsigned UsageCount; 231 }; 232 233 // Each set is unique in UsedGlobalSets. 234 std::vector<UsedGlobalSet> UsedGlobalSets; 235 236 // Avoid repeating the create-global-set pattern. 237 auto CreateGlobalSet = [&]() -> UsedGlobalSet & { 238 UsedGlobalSets.emplace_back(Globals.size()); 239 return UsedGlobalSets.back(); 240 }; 241 242 // The first set is the empty set. 243 CreateGlobalSet().UsageCount = 0; 244 245 // We define "close enough" to be "in the same function". 246 // FIXME: Grouping uses by function is way too aggressive, so we should have 247 // a better metric for distance between uses. 248 // The obvious alternative would be to group by BasicBlock, but that's in 249 // turn too conservative.. 250 // Anything in between wouldn't be trivial to compute, so just stick with 251 // per-function grouping. 252 253 // The value type is an index into UsedGlobalSets. 254 // The default (0) conveniently points to the empty set. 255 DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction; 256 257 // Now, look at each merge-eligible global in turn. 258 259 // Keep track of the sets we already encountered to which we added the 260 // current global. 261 // Each element matches the same-index element in UsedGlobalSets. 262 // This lets us efficiently tell whether a set has already been expanded to 263 // include the current global. 264 std::vector<size_t> EncounteredUGS; 265 266 for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) { 267 GlobalVariable *GV = Globals[GI]; 268 269 // Reset the encountered sets for this global... 270 std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0); 271 // ...and grow it in case we created new sets for the previous global. 272 EncounteredUGS.resize(UsedGlobalSets.size()); 273 274 // We might need to create a set that only consists of the current global. 275 // Keep track of its index into UsedGlobalSets. 276 size_t CurGVOnlySetIdx = 0; 277 278 // For each global, look at all its Uses. 279 for (auto &U : GV->uses()) { 280 // This Use might be a ConstantExpr. We're interested in Instruction 281 // users, so look through ConstantExpr... 282 Use *UI, *UE; 283 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) { 284 if (CE->use_empty()) 285 continue; 286 UI = &*CE->use_begin(); 287 UE = nullptr; 288 } else if (isa<Instruction>(U.getUser())) { 289 UI = &U; 290 UE = UI->getNext(); 291 } else { 292 continue; 293 } 294 295 // ...to iterate on all the instruction users of the global. 296 // Note that we iterate on Uses and not on Users to be able to getNext(). 297 for (; UI != UE; UI = UI->getNext()) { 298 Instruction *I = dyn_cast<Instruction>(UI->getUser()); 299 if (!I) 300 continue; 301 302 Function *ParentFn = I->getParent()->getParent(); 303 304 // If we're only optimizing for size, ignore non-minsize functions. 305 if (OnlyOptimizeForSize && !ParentFn->optForMinSize()) 306 continue; 307 308 size_t UGSIdx = GlobalUsesByFunction[ParentFn]; 309 310 // If this is the first global the basic block uses, map it to the set 311 // consisting of this global only. 312 if (!UGSIdx) { 313 // If that set doesn't exist yet, create it. 314 if (!CurGVOnlySetIdx) { 315 CurGVOnlySetIdx = UsedGlobalSets.size(); 316 CreateGlobalSet().Globals.set(GI); 317 } else { 318 ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount; 319 } 320 321 GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx; 322 continue; 323 } 324 325 // If we already encountered this BB, just increment the counter. 326 if (UsedGlobalSets[UGSIdx].Globals.test(GI)) { 327 ++UsedGlobalSets[UGSIdx].UsageCount; 328 continue; 329 } 330 331 // If not, the previous set wasn't actually used in this function. 332 --UsedGlobalSets[UGSIdx].UsageCount; 333 334 // If we already expanded the previous set to include this global, just 335 // reuse that expanded set. 336 if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) { 337 ++UsedGlobalSets[ExpandedIdx].UsageCount; 338 GlobalUsesByFunction[ParentFn] = ExpandedIdx; 339 continue; 340 } 341 342 // If not, create a new set consisting of the union of the previous set 343 // and this global. Mark it as encountered, so we can reuse it later. 344 GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] = 345 UsedGlobalSets.size(); 346 347 UsedGlobalSet &NewUGS = CreateGlobalSet(); 348 NewUGS.Globals.set(GI); 349 NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals; 350 } 351 } 352 } 353 354 // Now we found a bunch of sets of globals used together. We accumulated 355 // the number of times we encountered the sets (i.e., the number of blocks 356 // that use that exact set of globals). 357 // 358 // Multiply that by the size of the set to give us a crude profitability 359 // metric. 360 std::sort(UsedGlobalSets.begin(), UsedGlobalSets.end(), 361 [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) { 362 return UGS1.Globals.count() * UGS1.UsageCount < 363 UGS2.Globals.count() * UGS2.UsageCount; 364 }); 365 366 // We can choose to merge all globals together, but ignore globals never used 367 // with another global. This catches the obviously non-profitable cases of 368 // having a single global, but is aggressive enough for any other case. 369 if (GlobalMergeIgnoreSingleUse) { 370 BitVector AllGlobals(Globals.size()); 371 for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { 372 const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; 373 if (UGS.UsageCount == 0) 374 continue; 375 if (UGS.Globals.count() > 1) 376 AllGlobals |= UGS.Globals; 377 } 378 return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); 379 } 380 381 // Starting from the sets with the best (=biggest) profitability, find a 382 // good combination. 383 // The ideal (and expensive) solution can only be found by trying all 384 // combinations, looking for the one with the best profitability. 385 // Don't be smart about it, and just pick the first compatible combination, 386 // starting with the sets with the best profitability. 387 BitVector PickedGlobals(Globals.size()); 388 bool Changed = false; 389 390 for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { 391 const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; 392 if (UGS.UsageCount == 0) 393 continue; 394 if (PickedGlobals.anyCommon(UGS.Globals)) 395 continue; 396 PickedGlobals |= UGS.Globals; 397 // If the set only contains one global, there's no point in merging. 398 // Ignore the global for inclusion in other sets though, so keep it in 399 // PickedGlobals. 400 if (UGS.Globals.count() < 2) 401 continue; 402 Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace); 403 } 404 405 return Changed; 406 } 407 408 bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals, 409 const BitVector &GlobalSet, Module &M, bool isConst, 410 unsigned AddrSpace) const { 411 assert(Globals.size() > 1); 412 413 Type *Int32Ty = Type::getInt32Ty(M.getContext()); 414 auto &DL = M.getDataLayout(); 415 416 DEBUG(dbgs() << " Trying to merge set, starts with #" 417 << GlobalSet.find_first() << "\n"); 418 419 ssize_t i = GlobalSet.find_first(); 420 while (i != -1) { 421 ssize_t j = 0; 422 uint64_t MergedSize = 0; 423 std::vector<Type*> Tys; 424 std::vector<Constant*> Inits; 425 426 for (j = i; j != -1; j = GlobalSet.find_next(j)) { 427 Type *Ty = Globals[j]->getValueType(); 428 MergedSize += DL.getTypeAllocSize(Ty); 429 if (MergedSize > MaxOffset) { 430 break; 431 } 432 Tys.push_back(Ty); 433 Inits.push_back(Globals[j]->getInitializer()); 434 } 435 436 StructType *MergedTy = StructType::get(M.getContext(), Tys); 437 Constant *MergedInit = ConstantStruct::get(MergedTy, Inits); 438 439 GlobalVariable *MergedGV = new GlobalVariable( 440 M, MergedTy, isConst, GlobalValue::PrivateLinkage, MergedInit, 441 "_MergedGlobals", nullptr, GlobalVariable::NotThreadLocal, AddrSpace); 442 443 for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k), ++idx) { 444 GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage(); 445 std::string Name = Globals[k]->getName(); 446 447 Constant *Idx[2] = { 448 ConstantInt::get(Int32Ty, 0), 449 ConstantInt::get(Int32Ty, idx), 450 }; 451 Constant *GEP = 452 ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx); 453 Globals[k]->replaceAllUsesWith(GEP); 454 Globals[k]->eraseFromParent(); 455 456 // When the linkage is not internal we must emit an alias for the original 457 // variable name as it may be accessed from another object. On non-Mach-O 458 // we can also emit an alias for internal linkage as it's safe to do so. 459 // It's not safe on Mach-O as the alias (and thus the portion of the 460 // MergedGlobals variable) may be dead stripped at link time. 461 if (Linkage != GlobalValue::InternalLinkage || 462 !TM->getTargetTriple().isOSBinFormatMachO()) { 463 GlobalAlias::create(Tys[idx], AddrSpace, Linkage, Name, GEP, &M); 464 } 465 466 NumMerged++; 467 } 468 i = j; 469 } 470 471 return true; 472 } 473 474 void GlobalMerge::collectUsedGlobalVariables(Module &M) { 475 // Extract global variables from llvm.used array 476 const GlobalVariable *GV = M.getGlobalVariable("llvm.used"); 477 if (!GV || !GV->hasInitializer()) return; 478 479 // Should be an array of 'i8*'. 480 const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); 481 482 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 483 if (const GlobalVariable *G = 484 dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts())) 485 MustKeepGlobalVariables.insert(G); 486 } 487 488 void GlobalMerge::setMustKeepGlobalVariables(Module &M) { 489 collectUsedGlobalVariables(M); 490 491 for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn; 492 ++IFn) { 493 for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end(); 494 IBB != IEndBB; ++IBB) { 495 // Follow the invoke link to find the landing pad instruction 496 const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator()); 497 if (!II) continue; 498 499 const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst(); 500 // Look for globals in the clauses of the landing pad instruction 501 for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses(); 502 Idx != NumClauses; ++Idx) 503 if (const GlobalVariable *GV = 504 dyn_cast<GlobalVariable>(LPInst->getClause(Idx) 505 ->stripPointerCasts())) 506 MustKeepGlobalVariables.insert(GV); 507 } 508 } 509 } 510 511 bool GlobalMerge::doInitialization(Module &M) { 512 if (!EnableGlobalMerge) 513 return false; 514 515 auto &DL = M.getDataLayout(); 516 DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals, 517 BSSGlobals; 518 bool Changed = false; 519 setMustKeepGlobalVariables(M); 520 521 // Grab all non-const globals. 522 for (auto &GV : M.globals()) { 523 // Merge is safe for "normal" internal or external globals only 524 if (GV.isDeclaration() || GV.isThreadLocal() || GV.hasSection()) 525 continue; 526 527 if (!(MergeExternalGlobals && GV.hasExternalLinkage()) && 528 !GV.hasInternalLinkage()) 529 continue; 530 531 PointerType *PT = dyn_cast<PointerType>(GV.getType()); 532 assert(PT && "Global variable is not a pointer!"); 533 534 unsigned AddressSpace = PT->getAddressSpace(); 535 536 // Ignore fancy-aligned globals for now. 537 unsigned Alignment = DL.getPreferredAlignment(&GV); 538 Type *Ty = GV.getValueType(); 539 if (Alignment > DL.getABITypeAlignment(Ty)) 540 continue; 541 542 // Ignore all 'special' globals. 543 if (GV.getName().startswith("llvm.") || 544 GV.getName().startswith(".llvm.")) 545 continue; 546 547 // Ignore all "required" globals: 548 if (isMustKeepGlobalVariable(&GV)) 549 continue; 550 551 if (DL.getTypeAllocSize(Ty) < MaxOffset) { 552 if (TargetLoweringObjectFile::getKindForGlobal(&GV, *TM).isBSSLocal()) 553 BSSGlobals[AddressSpace].push_back(&GV); 554 else if (GV.isConstant()) 555 ConstGlobals[AddressSpace].push_back(&GV); 556 else 557 Globals[AddressSpace].push_back(&GV); 558 } 559 } 560 561 for (auto &P : Globals) 562 if (P.second.size() > 1) 563 Changed |= doMerge(P.second, M, false, P.first); 564 565 for (auto &P : BSSGlobals) 566 if (P.second.size() > 1) 567 Changed |= doMerge(P.second, M, false, P.first); 568 569 if (EnableGlobalMergeOnConst) 570 for (auto &P : ConstGlobals) 571 if (P.second.size() > 1) 572 Changed |= doMerge(P.second, M, true, P.first); 573 574 return Changed; 575 } 576 577 bool GlobalMerge::runOnFunction(Function &F) { 578 return false; 579 } 580 581 bool GlobalMerge::doFinalization(Module &M) { 582 MustKeepGlobalVariables.clear(); 583 return false; 584 } 585 586 Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset, 587 bool OnlyOptimizeForSize, 588 bool MergeExternalByDefault) { 589 bool MergeExternal = (EnableGlobalMergeOnExternal == cl::BOU_UNSET) ? 590 MergeExternalByDefault : (EnableGlobalMergeOnExternal == cl::BOU_TRUE); 591 return new GlobalMerge(TM, Offset, OnlyOptimizeForSize, MergeExternal); 592 } 593