1 //===-- GlobalMerge.cpp - Internal globals merging -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass merges globals with internal linkage into one. This way all the 10 // globals which were merged into a biggest one can be addressed using offsets 11 // from the same base pointer (no need for separate base pointer for each of the 12 // global). Such a transformation can significantly reduce the register pressure 13 // when many globals are involved. 14 // 15 // For example, consider the code which touches several global variables at 16 // once: 17 // 18 // static int foo[N], bar[N], baz[N]; 19 // 20 // for (i = 0; i < N; ++i) { 21 // foo[i] = bar[i] * baz[i]; 22 // } 23 // 24 // On ARM the addresses of 3 arrays should be kept in the registers, thus 25 // this code has quite large register pressure (loop body): 26 // 27 // ldr r1, [r5], #4 28 // ldr r2, [r6], #4 29 // mul r1, r2, r1 30 // str r1, [r0], #4 31 // 32 // Pass converts the code to something like: 33 // 34 // static struct { 35 // int foo[N]; 36 // int bar[N]; 37 // int baz[N]; 38 // } merged; 39 // 40 // for (i = 0; i < N; ++i) { 41 // merged.foo[i] = merged.bar[i] * merged.baz[i]; 42 // } 43 // 44 // and in ARM code this becomes: 45 // 46 // ldr r0, [r5, #40] 47 // ldr r1, [r5, #80] 48 // mul r0, r1, r0 49 // str r0, [r5], #4 50 // 51 // note that we saved 2 registers here almostly "for free". 52 // 53 // However, merging globals can have tradeoffs: 54 // - it confuses debuggers, tools, and users 55 // - it makes linker optimizations less useful (order files, LOHs, ...) 56 // - it forces usage of indexed addressing (which isn't necessarily "free") 57 // - it can increase register pressure when the uses are disparate enough. 58 // 59 // We use heuristics to discover the best global grouping we can (cf cl::opts). 60 // ===---------------------------------------------------------------------===// 61 62 #include "llvm/ADT/DenseMap.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GlobalVariable.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/Intrinsics.h" 75 #include "llvm/IR/Module.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetLowering.h" 81 #include "llvm/Target/TargetLoweringObjectFile.h" 82 #include "llvm/Target/TargetSubtargetInfo.h" 83 #include <algorithm> 84 using namespace llvm; 85 86 #define DEBUG_TYPE "global-merge" 87 88 // FIXME: This is only useful as a last-resort way to disable the pass. 89 static cl::opt<bool> 90 EnableGlobalMerge("enable-global-merge", cl::Hidden, 91 cl::desc("Enable the global merge pass"), 92 cl::init(true)); 93 94 static cl::opt<unsigned> 95 GlobalMergeMaxOffset("global-merge-max-offset", cl::Hidden, 96 cl::desc("Set maximum offset for global merge pass"), 97 cl::init(0)); 98 99 static cl::opt<bool> GlobalMergeGroupByUse( 100 "global-merge-group-by-use", cl::Hidden, 101 cl::desc("Improve global merge pass to look at uses"), cl::init(true)); 102 103 static cl::opt<bool> GlobalMergeIgnoreSingleUse( 104 "global-merge-ignore-single-use", cl::Hidden, 105 cl::desc("Improve global merge pass to ignore globals only used alone"), 106 cl::init(true)); 107 108 static cl::opt<bool> 109 EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden, 110 cl::desc("Enable global merge pass on constants"), 111 cl::init(false)); 112 113 // FIXME: this could be a transitional option, and we probably need to remove 114 // it if only we are sure this optimization could always benefit all targets. 115 static cl::opt<cl::boolOrDefault> 116 EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden, 117 cl::desc("Enable global merge pass on external linkage")); 118 119 STATISTIC(NumMerged, "Number of globals merged"); 120 namespace { 121 class GlobalMerge : public FunctionPass { 122 const TargetMachine *TM; 123 // FIXME: Infer the maximum possible offset depending on the actual users 124 // (these max offsets are different for the users inside Thumb or ARM 125 // functions), see the code that passes in the offset in the ARM backend 126 // for more information. 127 unsigned MaxOffset; 128 129 /// Whether we should try to optimize for size only. 130 /// Currently, this applies a dead simple heuristic: only consider globals 131 /// used in minsize functions for merging. 132 /// FIXME: This could learn about optsize, and be used in the cost model. 133 bool OnlyOptimizeForSize; 134 135 /// Whether we should merge global variables that have external linkage. 136 bool MergeExternalGlobals; 137 138 bool IsMachO; 139 140 bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals, 141 Module &M, bool isConst, unsigned AddrSpace) const; 142 /// \brief Merge everything in \p Globals for which the corresponding bit 143 /// in \p GlobalSet is set. 144 bool doMerge(const SmallVectorImpl<GlobalVariable *> &Globals, 145 const BitVector &GlobalSet, Module &M, bool isConst, 146 unsigned AddrSpace) const; 147 148 /// \brief Check if the given variable has been identified as must keep 149 /// \pre setMustKeepGlobalVariables must have been called on the Module that 150 /// contains GV 151 bool isMustKeepGlobalVariable(const GlobalVariable *GV) const { 152 return MustKeepGlobalVariables.count(GV); 153 } 154 155 /// Collect every variables marked as "used" or used in a landing pad 156 /// instruction for this Module. 157 void setMustKeepGlobalVariables(Module &M); 158 159 /// Collect every variables marked as "used" 160 void collectUsedGlobalVariables(Module &M); 161 162 /// Keep track of the GlobalVariable that must not be merged away 163 SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables; 164 165 public: 166 static char ID; // Pass identification, replacement for typeid. 167 explicit GlobalMerge() 168 : FunctionPass(ID), TM(nullptr), MaxOffset(GlobalMergeMaxOffset), 169 OnlyOptimizeForSize(false), MergeExternalGlobals(false) { 170 initializeGlobalMergePass(*PassRegistry::getPassRegistry()); 171 } 172 173 explicit GlobalMerge(const TargetMachine *TM, unsigned MaximalOffset, 174 bool OnlyOptimizeForSize, bool MergeExternalGlobals) 175 : FunctionPass(ID), TM(TM), MaxOffset(MaximalOffset), 176 OnlyOptimizeForSize(OnlyOptimizeForSize), 177 MergeExternalGlobals(MergeExternalGlobals) { 178 initializeGlobalMergePass(*PassRegistry::getPassRegistry()); 179 } 180 181 bool doInitialization(Module &M) override; 182 bool runOnFunction(Function &F) override; 183 bool doFinalization(Module &M) override; 184 185 StringRef getPassName() const override { return "Merge internal globals"; } 186 187 void getAnalysisUsage(AnalysisUsage &AU) const override { 188 AU.setPreservesCFG(); 189 FunctionPass::getAnalysisUsage(AU); 190 } 191 }; 192 } // end anonymous namespace 193 194 char GlobalMerge::ID = 0; 195 INITIALIZE_PASS(GlobalMerge, DEBUG_TYPE, "Merge global variables", false, false) 196 197 bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals, 198 Module &M, bool isConst, unsigned AddrSpace) const { 199 auto &DL = M.getDataLayout(); 200 // FIXME: Find better heuristics 201 std::stable_sort(Globals.begin(), Globals.end(), 202 [&DL](const GlobalVariable *GV1, const GlobalVariable *GV2) { 203 return DL.getTypeAllocSize(GV1->getValueType()) < 204 DL.getTypeAllocSize(GV2->getValueType()); 205 }); 206 207 // If we want to just blindly group all globals together, do so. 208 if (!GlobalMergeGroupByUse) { 209 BitVector AllGlobals(Globals.size()); 210 AllGlobals.set(); 211 return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); 212 } 213 214 // If we want to be smarter, look at all uses of each global, to try to 215 // discover all sets of globals used together, and how many times each of 216 // these sets occurred. 217 // 218 // Keep this reasonably efficient, by having an append-only list of all sets 219 // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of 220 // code (currently, a Function) to the set of globals seen so far that are 221 // used together in that unit (GlobalUsesByFunction). 222 // 223 // When we look at the Nth global, we now that any new set is either: 224 // - the singleton set {N}, containing this global only, or 225 // - the union of {N} and a previously-discovered set, containing some 226 // combination of the previous N-1 globals. 227 // Using that knowledge, when looking at the Nth global, we can keep: 228 // - a reference to the singleton set {N} (CurGVOnlySetIdx) 229 // - a list mapping each previous set to its union with {N} (EncounteredUGS), 230 // if it actually occurs. 231 232 // We keep track of the sets of globals used together "close enough". 233 struct UsedGlobalSet { 234 UsedGlobalSet(size_t Size) : Globals(Size), UsageCount(1) {} 235 BitVector Globals; 236 unsigned UsageCount; 237 }; 238 239 // Each set is unique in UsedGlobalSets. 240 std::vector<UsedGlobalSet> UsedGlobalSets; 241 242 // Avoid repeating the create-global-set pattern. 243 auto CreateGlobalSet = [&]() -> UsedGlobalSet & { 244 UsedGlobalSets.emplace_back(Globals.size()); 245 return UsedGlobalSets.back(); 246 }; 247 248 // The first set is the empty set. 249 CreateGlobalSet().UsageCount = 0; 250 251 // We define "close enough" to be "in the same function". 252 // FIXME: Grouping uses by function is way too aggressive, so we should have 253 // a better metric for distance between uses. 254 // The obvious alternative would be to group by BasicBlock, but that's in 255 // turn too conservative.. 256 // Anything in between wouldn't be trivial to compute, so just stick with 257 // per-function grouping. 258 259 // The value type is an index into UsedGlobalSets. 260 // The default (0) conveniently points to the empty set. 261 DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction; 262 263 // Now, look at each merge-eligible global in turn. 264 265 // Keep track of the sets we already encountered to which we added the 266 // current global. 267 // Each element matches the same-index element in UsedGlobalSets. 268 // This lets us efficiently tell whether a set has already been expanded to 269 // include the current global. 270 std::vector<size_t> EncounteredUGS; 271 272 for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) { 273 GlobalVariable *GV = Globals[GI]; 274 275 // Reset the encountered sets for this global... 276 std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0); 277 // ...and grow it in case we created new sets for the previous global. 278 EncounteredUGS.resize(UsedGlobalSets.size()); 279 280 // We might need to create a set that only consists of the current global. 281 // Keep track of its index into UsedGlobalSets. 282 size_t CurGVOnlySetIdx = 0; 283 284 // For each global, look at all its Uses. 285 for (auto &U : GV->uses()) { 286 // This Use might be a ConstantExpr. We're interested in Instruction 287 // users, so look through ConstantExpr... 288 Use *UI, *UE; 289 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) { 290 if (CE->use_empty()) 291 continue; 292 UI = &*CE->use_begin(); 293 UE = nullptr; 294 } else if (isa<Instruction>(U.getUser())) { 295 UI = &U; 296 UE = UI->getNext(); 297 } else { 298 continue; 299 } 300 301 // ...to iterate on all the instruction users of the global. 302 // Note that we iterate on Uses and not on Users to be able to getNext(). 303 for (; UI != UE; UI = UI->getNext()) { 304 Instruction *I = dyn_cast<Instruction>(UI->getUser()); 305 if (!I) 306 continue; 307 308 Function *ParentFn = I->getParent()->getParent(); 309 310 // If we're only optimizing for size, ignore non-minsize functions. 311 if (OnlyOptimizeForSize && !ParentFn->optForMinSize()) 312 continue; 313 314 size_t UGSIdx = GlobalUsesByFunction[ParentFn]; 315 316 // If this is the first global the basic block uses, map it to the set 317 // consisting of this global only. 318 if (!UGSIdx) { 319 // If that set doesn't exist yet, create it. 320 if (!CurGVOnlySetIdx) { 321 CurGVOnlySetIdx = UsedGlobalSets.size(); 322 CreateGlobalSet().Globals.set(GI); 323 } else { 324 ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount; 325 } 326 327 GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx; 328 continue; 329 } 330 331 // If we already encountered this BB, just increment the counter. 332 if (UsedGlobalSets[UGSIdx].Globals.test(GI)) { 333 ++UsedGlobalSets[UGSIdx].UsageCount; 334 continue; 335 } 336 337 // If not, the previous set wasn't actually used in this function. 338 --UsedGlobalSets[UGSIdx].UsageCount; 339 340 // If we already expanded the previous set to include this global, just 341 // reuse that expanded set. 342 if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) { 343 ++UsedGlobalSets[ExpandedIdx].UsageCount; 344 GlobalUsesByFunction[ParentFn] = ExpandedIdx; 345 continue; 346 } 347 348 // If not, create a new set consisting of the union of the previous set 349 // and this global. Mark it as encountered, so we can reuse it later. 350 GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] = 351 UsedGlobalSets.size(); 352 353 UsedGlobalSet &NewUGS = CreateGlobalSet(); 354 NewUGS.Globals.set(GI); 355 NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals; 356 } 357 } 358 } 359 360 // Now we found a bunch of sets of globals used together. We accumulated 361 // the number of times we encountered the sets (i.e., the number of blocks 362 // that use that exact set of globals). 363 // 364 // Multiply that by the size of the set to give us a crude profitability 365 // metric. 366 std::sort(UsedGlobalSets.begin(), UsedGlobalSets.end(), 367 [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) { 368 return UGS1.Globals.count() * UGS1.UsageCount < 369 UGS2.Globals.count() * UGS2.UsageCount; 370 }); 371 372 // We can choose to merge all globals together, but ignore globals never used 373 // with another global. This catches the obviously non-profitable cases of 374 // having a single global, but is aggressive enough for any other case. 375 if (GlobalMergeIgnoreSingleUse) { 376 BitVector AllGlobals(Globals.size()); 377 for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { 378 const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; 379 if (UGS.UsageCount == 0) 380 continue; 381 if (UGS.Globals.count() > 1) 382 AllGlobals |= UGS.Globals; 383 } 384 return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); 385 } 386 387 // Starting from the sets with the best (=biggest) profitability, find a 388 // good combination. 389 // The ideal (and expensive) solution can only be found by trying all 390 // combinations, looking for the one with the best profitability. 391 // Don't be smart about it, and just pick the first compatible combination, 392 // starting with the sets with the best profitability. 393 BitVector PickedGlobals(Globals.size()); 394 bool Changed = false; 395 396 for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { 397 const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; 398 if (UGS.UsageCount == 0) 399 continue; 400 if (PickedGlobals.anyCommon(UGS.Globals)) 401 continue; 402 PickedGlobals |= UGS.Globals; 403 // If the set only contains one global, there's no point in merging. 404 // Ignore the global for inclusion in other sets though, so keep it in 405 // PickedGlobals. 406 if (UGS.Globals.count() < 2) 407 continue; 408 Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace); 409 } 410 411 return Changed; 412 } 413 414 bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals, 415 const BitVector &GlobalSet, Module &M, bool isConst, 416 unsigned AddrSpace) const { 417 assert(Globals.size() > 1); 418 419 Type *Int32Ty = Type::getInt32Ty(M.getContext()); 420 auto &DL = M.getDataLayout(); 421 422 DEBUG(dbgs() << " Trying to merge set, starts with #" 423 << GlobalSet.find_first() << "\n"); 424 425 ssize_t i = GlobalSet.find_first(); 426 while (i != -1) { 427 ssize_t j = 0; 428 uint64_t MergedSize = 0; 429 std::vector<Type*> Tys; 430 std::vector<Constant*> Inits; 431 432 bool HasExternal = false; 433 StringRef FirstExternalName; 434 for (j = i; j != -1; j = GlobalSet.find_next(j)) { 435 Type *Ty = Globals[j]->getValueType(); 436 MergedSize += DL.getTypeAllocSize(Ty); 437 if (MergedSize > MaxOffset) { 438 break; 439 } 440 Tys.push_back(Ty); 441 Inits.push_back(Globals[j]->getInitializer()); 442 443 if (Globals[j]->hasExternalLinkage() && !HasExternal) { 444 HasExternal = true; 445 FirstExternalName = Globals[j]->getName(); 446 } 447 } 448 449 // If merged variables doesn't have external linkage, we needn't to expose 450 // the symbol after merging. 451 GlobalValue::LinkageTypes Linkage = HasExternal 452 ? GlobalValue::ExternalLinkage 453 : GlobalValue::InternalLinkage; 454 StructType *MergedTy = StructType::get(M.getContext(), Tys); 455 Constant *MergedInit = ConstantStruct::get(MergedTy, Inits); 456 457 // On Darwin external linkage needs to be preserved, otherwise 458 // dsymutil cannot preserve the debug info for the merged 459 // variables. If they have external linkage, use the symbol name 460 // of the first variable merged as the suffix of global symbol 461 // name. This avoids a link-time naming conflict for the 462 // _MergedGlobals symbols. 463 Twine MergedName = 464 (IsMachO && HasExternal) 465 ? "_MergedGlobals_" + FirstExternalName 466 : "_MergedGlobals"; 467 auto MergedLinkage = IsMachO ? Linkage : GlobalValue::PrivateLinkage; 468 auto *MergedGV = new GlobalVariable( 469 M, MergedTy, isConst, MergedLinkage, MergedInit, MergedName, nullptr, 470 GlobalVariable::NotThreadLocal, AddrSpace); 471 472 const StructLayout *MergedLayout = DL.getStructLayout(MergedTy); 473 474 for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k), ++idx) { 475 GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage(); 476 std::string Name = Globals[k]->getName(); 477 478 // Copy metadata while adjusting any debug info metadata by the original 479 // global's offset within the merged global. 480 MergedGV->copyMetadata(Globals[k], MergedLayout->getElementOffset(idx)); 481 482 Constant *Idx[2] = { 483 ConstantInt::get(Int32Ty, 0), 484 ConstantInt::get(Int32Ty, idx), 485 }; 486 Constant *GEP = 487 ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx); 488 Globals[k]->replaceAllUsesWith(GEP); 489 Globals[k]->eraseFromParent(); 490 491 // When the linkage is not internal we must emit an alias for the original 492 // variable name as it may be accessed from another object. On non-Mach-O 493 // we can also emit an alias for internal linkage as it's safe to do so. 494 // It's not safe on Mach-O as the alias (and thus the portion of the 495 // MergedGlobals variable) may be dead stripped at link time. 496 if (Linkage != GlobalValue::InternalLinkage || !IsMachO) { 497 GlobalAlias::create(Tys[idx], AddrSpace, Linkage, Name, GEP, &M); 498 } 499 500 NumMerged++; 501 } 502 i = j; 503 } 504 505 return true; 506 } 507 508 void GlobalMerge::collectUsedGlobalVariables(Module &M) { 509 // Extract global variables from llvm.used array 510 const GlobalVariable *GV = M.getGlobalVariable("llvm.used"); 511 if (!GV || !GV->hasInitializer()) return; 512 513 // Should be an array of 'i8*'. 514 const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); 515 516 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 517 if (const GlobalVariable *G = 518 dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts())) 519 MustKeepGlobalVariables.insert(G); 520 } 521 522 void GlobalMerge::setMustKeepGlobalVariables(Module &M) { 523 collectUsedGlobalVariables(M); 524 525 for (Function &F : M) { 526 for (BasicBlock &BB : F) { 527 Instruction *Pad = BB.getFirstNonPHI(); 528 if (!Pad->isEHPad()) 529 continue; 530 531 // Keep globals used by landingpads and catchpads. 532 for (const Use &U : Pad->operands()) { 533 if (const GlobalVariable *GV = 534 dyn_cast<GlobalVariable>(U->stripPointerCasts())) 535 MustKeepGlobalVariables.insert(GV); 536 } 537 } 538 } 539 } 540 541 bool GlobalMerge::doInitialization(Module &M) { 542 if (!EnableGlobalMerge) 543 return false; 544 545 IsMachO = Triple(M.getTargetTriple()).isOSBinFormatMachO(); 546 547 auto &DL = M.getDataLayout(); 548 DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals, 549 BSSGlobals; 550 bool Changed = false; 551 setMustKeepGlobalVariables(M); 552 553 // Grab all non-const globals. 554 for (auto &GV : M.globals()) { 555 // Merge is safe for "normal" internal or external globals only 556 if (GV.isDeclaration() || GV.isThreadLocal() || GV.hasSection()) 557 continue; 558 559 // It's not safe to merge globals that may be preempted 560 if (TM && !TM->shouldAssumeDSOLocal(M, &GV)) 561 continue; 562 563 if (!(MergeExternalGlobals && GV.hasExternalLinkage()) && 564 !GV.hasInternalLinkage()) 565 continue; 566 567 PointerType *PT = dyn_cast<PointerType>(GV.getType()); 568 assert(PT && "Global variable is not a pointer!"); 569 570 unsigned AddressSpace = PT->getAddressSpace(); 571 572 // Ignore fancy-aligned globals for now. 573 unsigned Alignment = DL.getPreferredAlignment(&GV); 574 Type *Ty = GV.getValueType(); 575 if (Alignment > DL.getABITypeAlignment(Ty)) 576 continue; 577 578 // Ignore all 'special' globals. 579 if (GV.getName().startswith("llvm.") || 580 GV.getName().startswith(".llvm.")) 581 continue; 582 583 // Ignore all "required" globals: 584 if (isMustKeepGlobalVariable(&GV)) 585 continue; 586 587 if (DL.getTypeAllocSize(Ty) < MaxOffset) { 588 if (TM && 589 TargetLoweringObjectFile::getKindForGlobal(&GV, *TM).isBSSLocal()) 590 BSSGlobals[AddressSpace].push_back(&GV); 591 else if (GV.isConstant()) 592 ConstGlobals[AddressSpace].push_back(&GV); 593 else 594 Globals[AddressSpace].push_back(&GV); 595 } 596 } 597 598 for (auto &P : Globals) 599 if (P.second.size() > 1) 600 Changed |= doMerge(P.second, M, false, P.first); 601 602 for (auto &P : BSSGlobals) 603 if (P.second.size() > 1) 604 Changed |= doMerge(P.second, M, false, P.first); 605 606 if (EnableGlobalMergeOnConst) 607 for (auto &P : ConstGlobals) 608 if (P.second.size() > 1) 609 Changed |= doMerge(P.second, M, true, P.first); 610 611 return Changed; 612 } 613 614 bool GlobalMerge::runOnFunction(Function &F) { 615 return false; 616 } 617 618 bool GlobalMerge::doFinalization(Module &M) { 619 MustKeepGlobalVariables.clear(); 620 return false; 621 } 622 623 Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset, 624 bool OnlyOptimizeForSize, 625 bool MergeExternalByDefault) { 626 bool MergeExternal = (EnableGlobalMergeOnExternal == cl::BOU_UNSET) ? 627 MergeExternalByDefault : (EnableGlobalMergeOnExternal == cl::BOU_TRUE); 628 return new GlobalMerge(TM, Offset, OnlyOptimizeForSize, MergeExternal); 629 } 630