1 //===-- GlobalMerge.cpp - Internal globals merging -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass merges globals with internal linkage into one. This way all the 10 // globals which were merged into a biggest one can be addressed using offsets 11 // from the same base pointer (no need for separate base pointer for each of the 12 // global). Such a transformation can significantly reduce the register pressure 13 // when many globals are involved. 14 // 15 // For example, consider the code which touches several global variables at 16 // once: 17 // 18 // static int foo[N], bar[N], baz[N]; 19 // 20 // for (i = 0; i < N; ++i) { 21 // foo[i] = bar[i] * baz[i]; 22 // } 23 // 24 // On ARM the addresses of 3 arrays should be kept in the registers, thus 25 // this code has quite large register pressure (loop body): 26 // 27 // ldr r1, [r5], #4 28 // ldr r2, [r6], #4 29 // mul r1, r2, r1 30 // str r1, [r0], #4 31 // 32 // Pass converts the code to something like: 33 // 34 // static struct { 35 // int foo[N]; 36 // int bar[N]; 37 // int baz[N]; 38 // } merged; 39 // 40 // for (i = 0; i < N; ++i) { 41 // merged.foo[i] = merged.bar[i] * merged.baz[i]; 42 // } 43 // 44 // and in ARM code this becomes: 45 // 46 // ldr r0, [r5, #40] 47 // ldr r1, [r5, #80] 48 // mul r0, r1, r0 49 // str r0, [r5], #4 50 // 51 // note that we saved 2 registers here almostly "for free". 52 // 53 // However, merging globals can have tradeoffs: 54 // - it confuses debuggers, tools, and users 55 // - it makes linker optimizations less useful (order files, LOHs, ...) 56 // - it forces usage of indexed addressing (which isn't necessarily "free") 57 // - it can increase register pressure when the uses are disparate enough. 58 // 59 // We use heuristics to discover the best global grouping we can (cf cl::opts). 60 // ===---------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Scalar.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/Statistic.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/IR/Attributes.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/Target/TargetLowering.h" 82 #include "llvm/Target/TargetLoweringObjectFile.h" 83 #include "llvm/Target/TargetSubtargetInfo.h" 84 #include <algorithm> 85 using namespace llvm; 86 87 #define DEBUG_TYPE "global-merge" 88 89 // FIXME: This is only useful as a last-resort way to disable the pass. 90 static cl::opt<bool> 91 EnableGlobalMerge("enable-global-merge", cl::Hidden, 92 cl::desc("Enable the global merge pass"), 93 cl::init(true)); 94 95 static cl::opt<bool> GlobalMergeGroupByUse( 96 "global-merge-group-by-use", cl::Hidden, 97 cl::desc("Improve global merge pass to look at uses"), cl::init(true)); 98 99 static cl::opt<bool> GlobalMergeIgnoreSingleUse( 100 "global-merge-ignore-single-use", cl::Hidden, 101 cl::desc("Improve global merge pass to ignore globals only used alone"), 102 cl::init(true)); 103 104 static cl::opt<bool> 105 EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden, 106 cl::desc("Enable global merge pass on constants"), 107 cl::init(false)); 108 109 // FIXME: this could be a transitional option, and we probably need to remove 110 // it if only we are sure this optimization could always benefit all targets. 111 static cl::opt<bool> 112 EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden, 113 cl::desc("Enable global merge pass on external linkage"), 114 cl::init(false)); 115 116 STATISTIC(NumMerged, "Number of globals merged"); 117 namespace { 118 class GlobalMerge : public FunctionPass { 119 const TargetMachine *TM; 120 const DataLayout *DL; 121 // FIXME: Infer the maximum possible offset depending on the actual users 122 // (these max offsets are different for the users inside Thumb or ARM 123 // functions), see the code that passes in the offset in the ARM backend 124 // for more information. 125 unsigned MaxOffset; 126 127 bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals, 128 Module &M, bool isConst, unsigned AddrSpace) const; 129 /// \brief Merge everything in \p Globals for which the corresponding bit 130 /// in \p GlobalSet is set. 131 bool doMerge(SmallVectorImpl<GlobalVariable *> &Globals, 132 const BitVector &GlobalSet, Module &M, bool isConst, 133 unsigned AddrSpace) const; 134 135 /// \brief Check if the given variable has been identified as must keep 136 /// \pre setMustKeepGlobalVariables must have been called on the Module that 137 /// contains GV 138 bool isMustKeepGlobalVariable(const GlobalVariable *GV) const { 139 return MustKeepGlobalVariables.count(GV); 140 } 141 142 /// Collect every variables marked as "used" or used in a landing pad 143 /// instruction for this Module. 144 void setMustKeepGlobalVariables(Module &M); 145 146 /// Collect every variables marked as "used" 147 void collectUsedGlobalVariables(Module &M); 148 149 /// Keep track of the GlobalVariable that must not be merged away 150 SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables; 151 152 public: 153 static char ID; // Pass identification, replacement for typeid. 154 explicit GlobalMerge(const TargetMachine *TM = nullptr, 155 unsigned MaximalOffset = 0) 156 : FunctionPass(ID), TM(TM), DL(TM->getDataLayout()), 157 MaxOffset(MaximalOffset) { 158 initializeGlobalMergePass(*PassRegistry::getPassRegistry()); 159 } 160 161 bool doInitialization(Module &M) override; 162 bool runOnFunction(Function &F) override; 163 bool doFinalization(Module &M) override; 164 165 const char *getPassName() const override { 166 return "Merge internal globals"; 167 } 168 169 void getAnalysisUsage(AnalysisUsage &AU) const override { 170 AU.setPreservesCFG(); 171 FunctionPass::getAnalysisUsage(AU); 172 } 173 }; 174 } // end anonymous namespace 175 176 char GlobalMerge::ID = 0; 177 INITIALIZE_PASS_BEGIN(GlobalMerge, "global-merge", "Merge global variables", 178 false, false) 179 INITIALIZE_PASS_END(GlobalMerge, "global-merge", "Merge global variables", 180 false, false) 181 182 bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals, 183 Module &M, bool isConst, unsigned AddrSpace) const { 184 // FIXME: Find better heuristics 185 std::stable_sort(Globals.begin(), Globals.end(), 186 [this](const GlobalVariable *GV1, const GlobalVariable *GV2) { 187 Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType(); 188 Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType(); 189 190 return (DL->getTypeAllocSize(Ty1) < DL->getTypeAllocSize(Ty2)); 191 }); 192 193 // If we want to just blindly group all globals together, do so. 194 if (!GlobalMergeGroupByUse) { 195 BitVector AllGlobals(Globals.size()); 196 AllGlobals.set(); 197 return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); 198 } 199 200 // If we want to be smarter, look at all uses of each global, to try to 201 // discover all sets of globals used together, and how many times each of 202 // these sets occured. 203 // 204 // Keep this reasonably efficient, by having an append-only list of all sets 205 // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of 206 // code (currently, a Function) to the set of globals seen so far that are 207 // used together in that unit (GlobalUsesByFunction). 208 // 209 // When we look at the Nth global, we now that any new set is either: 210 // - the singleton set {N}, containing this global only, or 211 // - the union of {N} and a previously-discovered set, containing some 212 // combination of the previous N-1 globals. 213 // Using that knowledge, when looking at the Nth global, we can keep: 214 // - a reference to the singleton set {N} (CurGVOnlySetIdx) 215 // - a list mapping each previous set to its union with {N} (EncounteredUGS), 216 // if it actually occurs. 217 218 // We keep track of the sets of globals used together "close enough". 219 struct UsedGlobalSet { 220 UsedGlobalSet(size_t Size) : Globals(Size), UsageCount(1) {} 221 BitVector Globals; 222 unsigned UsageCount; 223 }; 224 225 // Each set is unique in UsedGlobalSets. 226 std::vector<UsedGlobalSet> UsedGlobalSets; 227 228 // Avoid repeating the create-global-set pattern. 229 auto CreateGlobalSet = [&]() -> UsedGlobalSet & { 230 UsedGlobalSets.emplace_back(Globals.size()); 231 return UsedGlobalSets.back(); 232 }; 233 234 // The first set is the empty set. 235 CreateGlobalSet().UsageCount = 0; 236 237 // We define "close enough" to be "in the same function". 238 // FIXME: Grouping uses by function is way too aggressive, so we should have 239 // a better metric for distance between uses. 240 // The obvious alternative would be to group by BasicBlock, but that's in 241 // turn too conservative.. 242 // Anything in between wouldn't be trivial to compute, so just stick with 243 // per-function grouping. 244 245 // The value type is an index into UsedGlobalSets. 246 // The default (0) conveniently points to the empty set. 247 DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction; 248 249 // Now, look at each merge-eligible global in turn. 250 251 // Keep track of the sets we already encountered to which we added the 252 // current global. 253 // Each element matches the same-index element in UsedGlobalSets. 254 // This lets us efficiently tell whether a set has already been expanded to 255 // include the current global. 256 std::vector<size_t> EncounteredUGS; 257 258 for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) { 259 GlobalVariable *GV = Globals[GI]; 260 261 // Reset the encountered sets for this global... 262 std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0); 263 // ...and grow it in case we created new sets for the previous global. 264 EncounteredUGS.resize(UsedGlobalSets.size()); 265 266 // We might need to create a set that only consists of the current global. 267 // Keep track of its index into UsedGlobalSets. 268 size_t CurGVOnlySetIdx = 0; 269 270 // For each global, look at all its Uses. 271 for (auto &U : GV->uses()) { 272 // This Use might be a ConstantExpr. We're interested in Instruction 273 // users, so look through ConstantExpr... 274 Use *UI, *UE; 275 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) { 276 UI = &*CE->use_begin(); 277 UE = nullptr; 278 } else if (isa<Instruction>(U.getUser())) { 279 UI = &U; 280 UE = UI->getNext(); 281 } else { 282 continue; 283 } 284 285 // ...to iterate on all the instruction users of the global. 286 // Note that we iterate on Uses and not on Users to be able to getNext(). 287 for (; UI != UE; UI = UI->getNext()) { 288 Instruction *I = dyn_cast<Instruction>(UI->getUser()); 289 if (!I) 290 continue; 291 292 Function *ParentFn = I->getParent()->getParent(); 293 size_t UGSIdx = GlobalUsesByFunction[ParentFn]; 294 295 // If this is the first global the basic block uses, map it to the set 296 // consisting of this global only. 297 if (!UGSIdx) { 298 // If that set doesn't exist yet, create it. 299 if (!CurGVOnlySetIdx) { 300 CurGVOnlySetIdx = UsedGlobalSets.size(); 301 CreateGlobalSet().Globals.set(GI); 302 } else { 303 ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount; 304 } 305 306 GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx; 307 continue; 308 } 309 310 // If we already encountered this BB, just increment the counter. 311 if (UsedGlobalSets[UGSIdx].Globals.test(GI)) { 312 ++UsedGlobalSets[UGSIdx].UsageCount; 313 continue; 314 } 315 316 // If not, the previous set wasn't actually used in this function. 317 --UsedGlobalSets[UGSIdx].UsageCount; 318 319 // If we already expanded the previous set to include this global, just 320 // reuse that expanded set. 321 if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) { 322 ++UsedGlobalSets[ExpandedIdx].UsageCount; 323 GlobalUsesByFunction[ParentFn] = ExpandedIdx; 324 continue; 325 } 326 327 // If not, create a new set consisting of the union of the previous set 328 // and this global. Mark it as encountered, so we can reuse it later. 329 GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] = 330 UsedGlobalSets.size(); 331 332 UsedGlobalSet &NewUGS = CreateGlobalSet(); 333 NewUGS.Globals.set(GI); 334 NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals; 335 } 336 } 337 } 338 339 // Now we found a bunch of sets of globals used together. We accumulated 340 // the number of times we encountered the sets (i.e., the number of blocks 341 // that use that exact set of globals). 342 // 343 // Multiply that by the size of the set to give us a crude profitability 344 // metric. 345 std::sort(UsedGlobalSets.begin(), UsedGlobalSets.end(), 346 [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) { 347 return UGS1.Globals.count() * UGS1.UsageCount < 348 UGS2.Globals.count() * UGS2.UsageCount; 349 }); 350 351 // We can choose to merge all globals together, but ignore globals never used 352 // with another global. This catches the obviously non-profitable cases of 353 // having a single global, but is aggressive enough for any other case. 354 if (GlobalMergeIgnoreSingleUse) { 355 BitVector AllGlobals(Globals.size()); 356 for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { 357 const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; 358 if (UGS.UsageCount == 0) 359 continue; 360 if (UGS.Globals.count() > 1) 361 AllGlobals |= UGS.Globals; 362 } 363 return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); 364 } 365 366 // Starting from the sets with the best (=biggest) profitability, find a 367 // good combination. 368 // The ideal (and expensive) solution can only be found by trying all 369 // combinations, looking for the one with the best profitability. 370 // Don't be smart about it, and just pick the first compatible combination, 371 // starting with the sets with the best profitability. 372 BitVector PickedGlobals(Globals.size()); 373 bool Changed = false; 374 375 for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { 376 const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; 377 if (UGS.UsageCount == 0) 378 continue; 379 if (PickedGlobals.anyCommon(UGS.Globals)) 380 continue; 381 PickedGlobals |= UGS.Globals; 382 // If the set only contains one global, there's no point in merging. 383 // Ignore the global for inclusion in other sets though, so keep it in 384 // PickedGlobals. 385 if (UGS.Globals.count() < 2) 386 continue; 387 Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace); 388 } 389 390 return Changed; 391 } 392 393 bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable *> &Globals, 394 const BitVector &GlobalSet, Module &M, bool isConst, 395 unsigned AddrSpace) const { 396 397 Type *Int32Ty = Type::getInt32Ty(M.getContext()); 398 399 assert(Globals.size() > 1); 400 401 DEBUG(dbgs() << " Trying to merge set, starts with #" 402 << GlobalSet.find_first() << "\n"); 403 404 ssize_t i = GlobalSet.find_first(); 405 while (i != -1) { 406 ssize_t j = 0; 407 uint64_t MergedSize = 0; 408 std::vector<Type*> Tys; 409 std::vector<Constant*> Inits; 410 411 bool HasExternal = false; 412 GlobalVariable *TheFirstExternal = 0; 413 for (j = i; j != -1; j = GlobalSet.find_next(j)) { 414 Type *Ty = Globals[j]->getType()->getElementType(); 415 MergedSize += DL->getTypeAllocSize(Ty); 416 if (MergedSize > MaxOffset) { 417 break; 418 } 419 Tys.push_back(Ty); 420 Inits.push_back(Globals[j]->getInitializer()); 421 422 if (Globals[j]->hasExternalLinkage() && !HasExternal) { 423 HasExternal = true; 424 TheFirstExternal = Globals[j]; 425 } 426 } 427 428 // If merged variables doesn't have external linkage, we needn't to expose 429 // the symbol after merging. 430 GlobalValue::LinkageTypes Linkage = HasExternal 431 ? GlobalValue::ExternalLinkage 432 : GlobalValue::InternalLinkage; 433 434 StructType *MergedTy = StructType::get(M.getContext(), Tys); 435 Constant *MergedInit = ConstantStruct::get(MergedTy, Inits); 436 437 // If merged variables have external linkage, we use symbol name of the 438 // first variable merged as the suffix of global symbol name. This would 439 // be able to avoid the link-time naming conflict for globalm symbols. 440 GlobalVariable *MergedGV = new GlobalVariable( 441 M, MergedTy, isConst, Linkage, MergedInit, 442 HasExternal ? "_MergedGlobals_" + TheFirstExternal->getName() 443 : "_MergedGlobals", 444 nullptr, GlobalVariable::NotThreadLocal, AddrSpace); 445 446 for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k)) { 447 GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage(); 448 std::string Name = Globals[k]->getName(); 449 450 Constant *Idx[2] = { 451 ConstantInt::get(Int32Ty, 0), 452 ConstantInt::get(Int32Ty, idx++) 453 }; 454 Constant *GEP = 455 ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx); 456 Globals[k]->replaceAllUsesWith(GEP); 457 Globals[k]->eraseFromParent(); 458 459 if (Linkage != GlobalValue::InternalLinkage) { 460 // Generate a new alias... 461 auto *PTy = cast<PointerType>(GEP->getType()); 462 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 463 Linkage, Name, GEP, &M); 464 } 465 466 NumMerged++; 467 } 468 i = j; 469 } 470 471 return true; 472 } 473 474 void GlobalMerge::collectUsedGlobalVariables(Module &M) { 475 // Extract global variables from llvm.used array 476 const GlobalVariable *GV = M.getGlobalVariable("llvm.used"); 477 if (!GV || !GV->hasInitializer()) return; 478 479 // Should be an array of 'i8*'. 480 const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); 481 482 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 483 if (const GlobalVariable *G = 484 dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts())) 485 MustKeepGlobalVariables.insert(G); 486 } 487 488 void GlobalMerge::setMustKeepGlobalVariables(Module &M) { 489 collectUsedGlobalVariables(M); 490 491 for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn; 492 ++IFn) { 493 for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end(); 494 IBB != IEndBB; ++IBB) { 495 // Follow the invoke link to find the landing pad instruction 496 const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator()); 497 if (!II) continue; 498 499 const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst(); 500 // Look for globals in the clauses of the landing pad instruction 501 for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses(); 502 Idx != NumClauses; ++Idx) 503 if (const GlobalVariable *GV = 504 dyn_cast<GlobalVariable>(LPInst->getClause(Idx) 505 ->stripPointerCasts())) 506 MustKeepGlobalVariables.insert(GV); 507 } 508 } 509 } 510 511 bool GlobalMerge::doInitialization(Module &M) { 512 if (!EnableGlobalMerge) 513 return false; 514 515 DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals, 516 BSSGlobals; 517 bool Changed = false; 518 setMustKeepGlobalVariables(M); 519 520 // Grab all non-const globals. 521 for (Module::global_iterator I = M.global_begin(), 522 E = M.global_end(); I != E; ++I) { 523 // Merge is safe for "normal" internal or external globals only 524 if (I->isDeclaration() || I->isThreadLocal() || I->hasSection()) 525 continue; 526 527 if (!(EnableGlobalMergeOnExternal && I->hasExternalLinkage()) && 528 !I->hasInternalLinkage()) 529 continue; 530 531 PointerType *PT = dyn_cast<PointerType>(I->getType()); 532 assert(PT && "Global variable is not a pointer!"); 533 534 unsigned AddressSpace = PT->getAddressSpace(); 535 536 // Ignore fancy-aligned globals for now. 537 unsigned Alignment = DL->getPreferredAlignment(I); 538 Type *Ty = I->getType()->getElementType(); 539 if (Alignment > DL->getABITypeAlignment(Ty)) 540 continue; 541 542 // Ignore all 'special' globals. 543 if (I->getName().startswith("llvm.") || 544 I->getName().startswith(".llvm.")) 545 continue; 546 547 // Ignore all "required" globals: 548 if (isMustKeepGlobalVariable(I)) 549 continue; 550 551 if (DL->getTypeAllocSize(Ty) < MaxOffset) { 552 if (TargetLoweringObjectFile::getKindForGlobal(I, *TM).isBSSLocal()) 553 BSSGlobals[AddressSpace].push_back(I); 554 else if (I->isConstant()) 555 ConstGlobals[AddressSpace].push_back(I); 556 else 557 Globals[AddressSpace].push_back(I); 558 } 559 } 560 561 for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator 562 I = Globals.begin(), E = Globals.end(); I != E; ++I) 563 if (I->second.size() > 1) 564 Changed |= doMerge(I->second, M, false, I->first); 565 566 for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator 567 I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I) 568 if (I->second.size() > 1) 569 Changed |= doMerge(I->second, M, false, I->first); 570 571 if (EnableGlobalMergeOnConst) 572 for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator 573 I = ConstGlobals.begin(), E = ConstGlobals.end(); I != E; ++I) 574 if (I->second.size() > 1) 575 Changed |= doMerge(I->second, M, true, I->first); 576 577 return Changed; 578 } 579 580 bool GlobalMerge::runOnFunction(Function &F) { 581 return false; 582 } 583 584 bool GlobalMerge::doFinalization(Module &M) { 585 MustKeepGlobalVariables.clear(); 586 return false; 587 } 588 589 Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset) { 590 return new GlobalMerge(TM, Offset); 591 } 592