1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/MachineSizeOpts.h" 28 #include "llvm/CodeGen/RegisterBankInfo.h" 29 #include "llvm/CodeGen/StackProtector.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/Utils/SizeOpts.h" 38 #include <numeric> 39 #include <optional> 40 41 #define DEBUG_TYPE "globalisel-utils" 42 43 using namespace llvm; 44 using namespace MIPatternMatch; 45 46 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 47 const TargetInstrInfo &TII, 48 const RegisterBankInfo &RBI, Register Reg, 49 const TargetRegisterClass &RegClass) { 50 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 51 return MRI.createVirtualRegister(&RegClass); 52 53 return Reg; 54 } 55 56 Register llvm::constrainOperandRegClass( 57 const MachineFunction &MF, const TargetRegisterInfo &TRI, 58 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 59 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 60 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 61 Register Reg = RegMO.getReg(); 62 // Assume physical registers are properly constrained. 63 assert(Reg.isVirtual() && "PhysReg not implemented"); 64 65 // Save the old register class to check whether 66 // the change notifications will be required. 67 // TODO: A better approach would be to pass 68 // the observers to constrainRegToClass(). 69 auto *OldRegClass = MRI.getRegClassOrNull(Reg); 70 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 71 // If we created a new virtual register because the class is not compatible 72 // then create a copy between the new and the old register. 73 if (ConstrainedReg != Reg) { 74 MachineBasicBlock::iterator InsertIt(&InsertPt); 75 MachineBasicBlock &MBB = *InsertPt.getParent(); 76 // FIXME: The copy needs to have the classes constrained for its operands. 77 // Use operand's regbank to get the class for old register (Reg). 78 if (RegMO.isUse()) { 79 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 80 TII.get(TargetOpcode::COPY), ConstrainedReg) 81 .addReg(Reg); 82 } else { 83 assert(RegMO.isDef() && "Must be a definition"); 84 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 85 TII.get(TargetOpcode::COPY), Reg) 86 .addReg(ConstrainedReg); 87 } 88 if (GISelChangeObserver *Observer = MF.getObserver()) { 89 Observer->changingInstr(*RegMO.getParent()); 90 } 91 RegMO.setReg(ConstrainedReg); 92 if (GISelChangeObserver *Observer = MF.getObserver()) { 93 Observer->changedInstr(*RegMO.getParent()); 94 } 95 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) { 96 if (GISelChangeObserver *Observer = MF.getObserver()) { 97 if (!RegMO.isDef()) { 98 MachineInstr *RegDef = MRI.getVRegDef(Reg); 99 Observer->changedInstr(*RegDef); 100 } 101 Observer->changingAllUsesOfReg(MRI, Reg); 102 Observer->finishedChangingAllUsesOfReg(); 103 } 104 } 105 return ConstrainedReg; 106 } 107 108 Register llvm::constrainOperandRegClass( 109 const MachineFunction &MF, const TargetRegisterInfo &TRI, 110 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 111 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 112 MachineOperand &RegMO, unsigned OpIdx) { 113 Register Reg = RegMO.getReg(); 114 // Assume physical registers are properly constrained. 115 assert(Reg.isVirtual() && "PhysReg not implemented"); 116 117 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF); 118 // Some of the target independent instructions, like COPY, may not impose any 119 // register class constraints on some of their operands: If it's a use, we can 120 // skip constraining as the instruction defining the register would constrain 121 // it. 122 123 if (OpRC) { 124 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands 125 // can have multiple regbanks for a superclass that combine different 126 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity 127 // resolved by targets during regbankselect should not be overridden. 128 if (const auto *SubRC = TRI.getCommonSubClass( 129 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI))) 130 OpRC = SubRC; 131 132 OpRC = TRI.getAllocatableClass(OpRC); 133 } 134 135 if (!OpRC) { 136 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 137 "Register class constraint is required unless either the " 138 "instruction is target independent or the operand is a use"); 139 // FIXME: Just bailing out like this here could be not enough, unless we 140 // expect the users of this function to do the right thing for PHIs and 141 // COPY: 142 // v1 = COPY v0 143 // v2 = COPY v1 144 // v1 here may end up not being constrained at all. Please notice that to 145 // reproduce the issue we likely need a destination pattern of a selection 146 // rule producing such extra copies, not just an input GMIR with them as 147 // every existing target using selectImpl handles copies before calling it 148 // and they never reach this function. 149 return Reg; 150 } 151 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC, 152 RegMO); 153 } 154 155 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 156 const TargetInstrInfo &TII, 157 const TargetRegisterInfo &TRI, 158 const RegisterBankInfo &RBI) { 159 assert(!isPreISelGenericOpcode(I.getOpcode()) && 160 "A selected instruction is expected"); 161 MachineBasicBlock &MBB = *I.getParent(); 162 MachineFunction &MF = *MBB.getParent(); 163 MachineRegisterInfo &MRI = MF.getRegInfo(); 164 165 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 166 MachineOperand &MO = I.getOperand(OpI); 167 168 // There's nothing to be done on non-register operands. 169 if (!MO.isReg()) 170 continue; 171 172 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 173 assert(MO.isReg() && "Unsupported non-reg operand"); 174 175 Register Reg = MO.getReg(); 176 // Physical registers don't need to be constrained. 177 if (Reg.isPhysical()) 178 continue; 179 180 // Register operands with a value of 0 (e.g. predicate operands) don't need 181 // to be constrained. 182 if (Reg == 0) 183 continue; 184 185 // If the operand is a vreg, we should constrain its regclass, and only 186 // insert COPYs if that's impossible. 187 // constrainOperandRegClass does that for us. 188 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 189 190 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 191 // done. 192 if (MO.isUse()) { 193 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 194 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 195 I.tieOperands(DefIdx, OpI); 196 } 197 } 198 return true; 199 } 200 201 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 202 MachineRegisterInfo &MRI) { 203 // Give up if either DstReg or SrcReg is a physical register. 204 if (DstReg.isPhysical() || SrcReg.isPhysical()) 205 return false; 206 // Give up if the types don't match. 207 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 208 return false; 209 // Replace if either DstReg has no constraints or the register 210 // constraints match. 211 const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg); 212 if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg)) 213 return true; 214 215 // Otherwise match if the Src is already a regclass that is covered by the Dst 216 // RegBank. 217 return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) && 218 DstRBC.get<const RegisterBank *>()->covers( 219 *MRI.getRegClassOrNull(SrcReg)); 220 } 221 222 bool llvm::isTriviallyDead(const MachineInstr &MI, 223 const MachineRegisterInfo &MRI) { 224 // Instructions without side-effects are dead iff they only define dead regs. 225 // This function is hot and this loop returns early in the common case, 226 // so only perform additional checks before this if absolutely necessary. 227 for (const auto &MO : MI.all_defs()) { 228 Register Reg = MO.getReg(); 229 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg)) 230 return false; 231 } 232 return MI.wouldBeTriviallyDead(); 233 } 234 235 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 236 MachineFunction &MF, 237 const TargetPassConfig &TPC, 238 MachineOptimizationRemarkEmitter &MORE, 239 MachineOptimizationRemarkMissed &R) { 240 bool IsFatal = Severity == DS_Error && 241 TPC.isGlobalISelAbortEnabled(); 242 // Print the function name explicitly if we don't have a debug location (which 243 // makes the diagnostic less useful) or if we're going to emit a raw error. 244 if (!R.getLocation().isValid() || IsFatal) 245 R << (" (in function: " + MF.getName() + ")").str(); 246 247 if (IsFatal) 248 report_fatal_error(Twine(R.getMsg())); 249 else 250 MORE.emit(R); 251 } 252 253 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 254 MachineOptimizationRemarkEmitter &MORE, 255 MachineOptimizationRemarkMissed &R) { 256 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 257 } 258 259 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 260 MachineOptimizationRemarkEmitter &MORE, 261 MachineOptimizationRemarkMissed &R) { 262 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 263 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 264 } 265 266 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 267 MachineOptimizationRemarkEmitter &MORE, 268 const char *PassName, StringRef Msg, 269 const MachineInstr &MI) { 270 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 271 MI.getDebugLoc(), MI.getParent()); 272 R << Msg; 273 // Printing MI is expensive; only do it if expensive remarks are enabled. 274 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 275 R << ": " << ore::MNV("Inst", MI); 276 reportGISelFailure(MF, TPC, MORE, R); 277 } 278 279 std::optional<APInt> llvm::getIConstantVRegVal(Register VReg, 280 const MachineRegisterInfo &MRI) { 281 std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( 282 VReg, MRI, /*LookThroughInstrs*/ false); 283 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 284 "Value found while looking through instrs"); 285 if (!ValAndVReg) 286 return std::nullopt; 287 return ValAndVReg->Value; 288 } 289 290 APInt llvm::getIConstantFromReg(Register Reg, const MachineRegisterInfo &MRI) { 291 MachineInstr *Const = MRI.getVRegDef(Reg); 292 assert((Const && Const->getOpcode() == TargetOpcode::G_CONSTANT) && 293 "expected a G_CONSTANT on Reg"); 294 return Const->getOperand(1).getCImm()->getValue(); 295 } 296 297 std::optional<int64_t> 298 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { 299 std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI); 300 if (Val && Val->getBitWidth() <= 64) 301 return Val->getSExtValue(); 302 return std::nullopt; 303 } 304 305 namespace { 306 307 // This function is used in many places, and as such, it has some 308 // micro-optimizations to try and make it as fast as it can be. 309 // 310 // - We use template arguments to avoid an indirect call caused by passing a 311 // function_ref/std::function 312 // - GetAPCstValue does not return std::optional<APInt> as that's expensive. 313 // Instead it returns true/false and places the result in a pre-constructed 314 // APInt. 315 // 316 // Please change this function carefully and benchmark your changes. 317 template <bool (*IsConstantOpcode)(const MachineInstr *), 318 bool (*GetAPCstValue)(const MachineInstr *MI, APInt &)> 319 std::optional<ValueAndVReg> 320 getConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, 321 bool LookThroughInstrs = true, 322 bool LookThroughAnyExt = false) { 323 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 324 MachineInstr *MI; 325 326 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && 327 LookThroughInstrs) { 328 switch (MI->getOpcode()) { 329 case TargetOpcode::G_ANYEXT: 330 if (!LookThroughAnyExt) 331 return std::nullopt; 332 [[fallthrough]]; 333 case TargetOpcode::G_TRUNC: 334 case TargetOpcode::G_SEXT: 335 case TargetOpcode::G_ZEXT: 336 SeenOpcodes.push_back(std::make_pair( 337 MI->getOpcode(), 338 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 339 VReg = MI->getOperand(1).getReg(); 340 break; 341 case TargetOpcode::COPY: 342 VReg = MI->getOperand(1).getReg(); 343 if (VReg.isPhysical()) 344 return std::nullopt; 345 break; 346 case TargetOpcode::G_INTTOPTR: 347 VReg = MI->getOperand(1).getReg(); 348 break; 349 default: 350 return std::nullopt; 351 } 352 } 353 if (!MI || !IsConstantOpcode(MI)) 354 return std::nullopt; 355 356 APInt Val; 357 if (!GetAPCstValue(MI, Val)) 358 return std::nullopt; 359 for (auto &Pair : reverse(SeenOpcodes)) { 360 switch (Pair.first) { 361 case TargetOpcode::G_TRUNC: 362 Val = Val.trunc(Pair.second); 363 break; 364 case TargetOpcode::G_ANYEXT: 365 case TargetOpcode::G_SEXT: 366 Val = Val.sext(Pair.second); 367 break; 368 case TargetOpcode::G_ZEXT: 369 Val = Val.zext(Pair.second); 370 break; 371 } 372 } 373 374 return ValueAndVReg{std::move(Val), VReg}; 375 } 376 377 bool isIConstant(const MachineInstr *MI) { 378 if (!MI) 379 return false; 380 return MI->getOpcode() == TargetOpcode::G_CONSTANT; 381 } 382 383 bool isFConstant(const MachineInstr *MI) { 384 if (!MI) 385 return false; 386 return MI->getOpcode() == TargetOpcode::G_FCONSTANT; 387 } 388 389 bool isAnyConstant(const MachineInstr *MI) { 390 if (!MI) 391 return false; 392 unsigned Opc = MI->getOpcode(); 393 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; 394 } 395 396 bool getCImmAsAPInt(const MachineInstr *MI, APInt &Result) { 397 const MachineOperand &CstVal = MI->getOperand(1); 398 if (!CstVal.isCImm()) 399 return false; 400 Result = CstVal.getCImm()->getValue(); 401 return true; 402 } 403 404 bool getCImmOrFPImmAsAPInt(const MachineInstr *MI, APInt &Result) { 405 const MachineOperand &CstVal = MI->getOperand(1); 406 if (CstVal.isCImm()) 407 Result = CstVal.getCImm()->getValue(); 408 else if (CstVal.isFPImm()) 409 Result = CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 410 else 411 return false; 412 return true; 413 } 414 415 } // end anonymous namespace 416 417 std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( 418 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 419 return getConstantVRegValWithLookThrough<isIConstant, getCImmAsAPInt>( 420 VReg, MRI, LookThroughInstrs); 421 } 422 423 std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( 424 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 425 bool LookThroughAnyExt) { 426 return getConstantVRegValWithLookThrough<isAnyConstant, 427 getCImmOrFPImmAsAPInt>( 428 VReg, MRI, LookThroughInstrs, LookThroughAnyExt); 429 } 430 431 std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( 432 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 433 auto Reg = 434 getConstantVRegValWithLookThrough<isFConstant, getCImmOrFPImmAsAPInt>( 435 VReg, MRI, LookThroughInstrs); 436 if (!Reg) 437 return std::nullopt; 438 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), 439 Reg->VReg}; 440 } 441 442 const ConstantFP * 443 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 444 MachineInstr *MI = MRI.getVRegDef(VReg); 445 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 446 return nullptr; 447 return MI->getOperand(1).getFPImm(); 448 } 449 450 std::optional<DefinitionAndSourceRegister> 451 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 452 Register DefSrcReg = Reg; 453 auto *DefMI = MRI.getVRegDef(Reg); 454 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 455 if (!DstTy.isValid()) 456 return std::nullopt; 457 unsigned Opc = DefMI->getOpcode(); 458 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 459 Register SrcReg = DefMI->getOperand(1).getReg(); 460 auto SrcTy = MRI.getType(SrcReg); 461 if (!SrcTy.isValid()) 462 break; 463 DefMI = MRI.getVRegDef(SrcReg); 464 DefSrcReg = SrcReg; 465 Opc = DefMI->getOpcode(); 466 } 467 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 468 } 469 470 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 471 const MachineRegisterInfo &MRI) { 472 std::optional<DefinitionAndSourceRegister> DefSrcReg = 473 getDefSrcRegIgnoringCopies(Reg, MRI); 474 return DefSrcReg ? DefSrcReg->MI : nullptr; 475 } 476 477 Register llvm::getSrcRegIgnoringCopies(Register Reg, 478 const MachineRegisterInfo &MRI) { 479 std::optional<DefinitionAndSourceRegister> DefSrcReg = 480 getDefSrcRegIgnoringCopies(Reg, MRI); 481 return DefSrcReg ? DefSrcReg->Reg : Register(); 482 } 483 484 void llvm::extractParts(Register Reg, LLT Ty, int NumParts, 485 SmallVectorImpl<Register> &VRegs, 486 MachineIRBuilder &MIRBuilder, 487 MachineRegisterInfo &MRI) { 488 for (int i = 0; i < NumParts; ++i) 489 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 490 MIRBuilder.buildUnmerge(VRegs, Reg); 491 } 492 493 bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy, 494 SmallVectorImpl<Register> &VRegs, 495 SmallVectorImpl<Register> &LeftoverRegs, 496 MachineIRBuilder &MIRBuilder, 497 MachineRegisterInfo &MRI) { 498 assert(!LeftoverTy.isValid() && "this is an out argument"); 499 500 unsigned RegSize = RegTy.getSizeInBits(); 501 unsigned MainSize = MainTy.getSizeInBits(); 502 unsigned NumParts = RegSize / MainSize; 503 unsigned LeftoverSize = RegSize - NumParts * MainSize; 504 505 // Use an unmerge when possible. 506 if (LeftoverSize == 0) { 507 for (unsigned I = 0; I < NumParts; ++I) 508 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 509 MIRBuilder.buildUnmerge(VRegs, Reg); 510 return true; 511 } 512 513 // Try to use unmerge for irregular vector split where possible 514 // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32> 515 // leftover, it becomes: 516 // <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1 517 // <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3 518 if (RegTy.isVector() && MainTy.isVector()) { 519 unsigned RegNumElts = RegTy.getNumElements(); 520 unsigned MainNumElts = MainTy.getNumElements(); 521 unsigned LeftoverNumElts = RegNumElts % MainNumElts; 522 // If can unmerge to LeftoverTy, do it 523 if (MainNumElts % LeftoverNumElts == 0 && 524 RegNumElts % LeftoverNumElts == 0 && 525 RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() && 526 LeftoverNumElts > 1) { 527 LeftoverTy = 528 LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits()); 529 530 // Unmerge the SrcReg to LeftoverTy vectors 531 SmallVector<Register, 4> UnmergeValues; 532 extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues, 533 MIRBuilder, MRI); 534 535 // Find how many LeftoverTy makes one MainTy 536 unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts; 537 unsigned NumOfLeftoverVal = 538 ((RegNumElts % MainNumElts) / LeftoverNumElts); 539 540 // Create as many MainTy as possible using unmerged value 541 SmallVector<Register, 4> MergeValues; 542 for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) { 543 MergeValues.push_back(UnmergeValues[I]); 544 if (MergeValues.size() == LeftoverPerMain) { 545 VRegs.push_back( 546 MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0)); 547 MergeValues.clear(); 548 } 549 } 550 // Populate LeftoverRegs with the leftovers 551 for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal; 552 I < UnmergeValues.size(); I++) { 553 LeftoverRegs.push_back(UnmergeValues[I]); 554 } 555 return true; 556 } 557 } 558 // Perform irregular split. Leftover is last element of RegPieces. 559 if (MainTy.isVector()) { 560 SmallVector<Register, 8> RegPieces; 561 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder, 562 MRI); 563 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 564 VRegs.push_back(RegPieces[i]); 565 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 566 LeftoverTy = MRI.getType(LeftoverRegs[0]); 567 return true; 568 } 569 570 LeftoverTy = LLT::scalar(LeftoverSize); 571 // For irregular sizes, extract the individual parts. 572 for (unsigned I = 0; I != NumParts; ++I) { 573 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 574 VRegs.push_back(NewReg); 575 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 576 } 577 578 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 579 Offset += LeftoverSize) { 580 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 581 LeftoverRegs.push_back(NewReg); 582 MIRBuilder.buildExtract(NewReg, Reg, Offset); 583 } 584 585 return true; 586 } 587 588 void llvm::extractVectorParts(Register Reg, unsigned NumElts, 589 SmallVectorImpl<Register> &VRegs, 590 MachineIRBuilder &MIRBuilder, 591 MachineRegisterInfo &MRI) { 592 LLT RegTy = MRI.getType(Reg); 593 assert(RegTy.isVector() && "Expected a vector type"); 594 595 LLT EltTy = RegTy.getElementType(); 596 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 597 unsigned RegNumElts = RegTy.getNumElements(); 598 unsigned LeftoverNumElts = RegNumElts % NumElts; 599 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 600 601 // Perfect split without leftover 602 if (LeftoverNumElts == 0) 603 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder, 604 MRI); 605 606 // Irregular split. Provide direct access to all elements for artifact 607 // combiner using unmerge to elements. Then build vectors with NumElts 608 // elements. Remaining element(s) will be (used to build vector) Leftover. 609 SmallVector<Register, 8> Elts; 610 extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI); 611 612 unsigned Offset = 0; 613 // Requested sub-vectors of NarrowTy. 614 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 615 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 616 VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); 617 } 618 619 // Leftover element(s). 620 if (LeftoverNumElts == 1) { 621 VRegs.push_back(Elts[Offset]); 622 } else { 623 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 624 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 625 VRegs.push_back( 626 MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0)); 627 } 628 } 629 630 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 631 const MachineRegisterInfo &MRI) { 632 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 633 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 634 } 635 636 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 637 if (Size == 32) 638 return APFloat(float(Val)); 639 if (Size == 64) 640 return APFloat(Val); 641 if (Size != 16) 642 llvm_unreachable("Unsupported FPConstant size"); 643 bool Ignored; 644 APFloat APF(Val); 645 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 646 return APF; 647 } 648 649 std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, 650 const Register Op1, 651 const Register Op2, 652 const MachineRegisterInfo &MRI) { 653 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); 654 if (!MaybeOp2Cst) 655 return std::nullopt; 656 657 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); 658 if (!MaybeOp1Cst) 659 return std::nullopt; 660 661 const APInt &C1 = MaybeOp1Cst->Value; 662 const APInt &C2 = MaybeOp2Cst->Value; 663 switch (Opcode) { 664 default: 665 break; 666 case TargetOpcode::G_ADD: 667 return C1 + C2; 668 case TargetOpcode::G_PTR_ADD: 669 // Types can be of different width here. 670 // Result needs to be the same width as C1, so trunc or sext C2. 671 return C1 + C2.sextOrTrunc(C1.getBitWidth()); 672 case TargetOpcode::G_AND: 673 return C1 & C2; 674 case TargetOpcode::G_ASHR: 675 return C1.ashr(C2); 676 case TargetOpcode::G_LSHR: 677 return C1.lshr(C2); 678 case TargetOpcode::G_MUL: 679 return C1 * C2; 680 case TargetOpcode::G_OR: 681 return C1 | C2; 682 case TargetOpcode::G_SHL: 683 return C1 << C2; 684 case TargetOpcode::G_SUB: 685 return C1 - C2; 686 case TargetOpcode::G_XOR: 687 return C1 ^ C2; 688 case TargetOpcode::G_UDIV: 689 if (!C2.getBoolValue()) 690 break; 691 return C1.udiv(C2); 692 case TargetOpcode::G_SDIV: 693 if (!C2.getBoolValue()) 694 break; 695 return C1.sdiv(C2); 696 case TargetOpcode::G_UREM: 697 if (!C2.getBoolValue()) 698 break; 699 return C1.urem(C2); 700 case TargetOpcode::G_SREM: 701 if (!C2.getBoolValue()) 702 break; 703 return C1.srem(C2); 704 case TargetOpcode::G_SMIN: 705 return APIntOps::smin(C1, C2); 706 case TargetOpcode::G_SMAX: 707 return APIntOps::smax(C1, C2); 708 case TargetOpcode::G_UMIN: 709 return APIntOps::umin(C1, C2); 710 case TargetOpcode::G_UMAX: 711 return APIntOps::umax(C1, C2); 712 } 713 714 return std::nullopt; 715 } 716 717 std::optional<APFloat> 718 llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, 719 const Register Op2, const MachineRegisterInfo &MRI) { 720 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 721 if (!Op2Cst) 722 return std::nullopt; 723 724 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 725 if (!Op1Cst) 726 return std::nullopt; 727 728 APFloat C1 = Op1Cst->getValueAPF(); 729 const APFloat &C2 = Op2Cst->getValueAPF(); 730 switch (Opcode) { 731 case TargetOpcode::G_FADD: 732 C1.add(C2, APFloat::rmNearestTiesToEven); 733 return C1; 734 case TargetOpcode::G_FSUB: 735 C1.subtract(C2, APFloat::rmNearestTiesToEven); 736 return C1; 737 case TargetOpcode::G_FMUL: 738 C1.multiply(C2, APFloat::rmNearestTiesToEven); 739 return C1; 740 case TargetOpcode::G_FDIV: 741 C1.divide(C2, APFloat::rmNearestTiesToEven); 742 return C1; 743 case TargetOpcode::G_FREM: 744 C1.mod(C2); 745 return C1; 746 case TargetOpcode::G_FCOPYSIGN: 747 C1.copySign(C2); 748 return C1; 749 case TargetOpcode::G_FMINNUM: 750 return minnum(C1, C2); 751 case TargetOpcode::G_FMAXNUM: 752 return maxnum(C1, C2); 753 case TargetOpcode::G_FMINIMUM: 754 return minimum(C1, C2); 755 case TargetOpcode::G_FMAXIMUM: 756 return maximum(C1, C2); 757 case TargetOpcode::G_FMINNUM_IEEE: 758 case TargetOpcode::G_FMAXNUM_IEEE: 759 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not 760 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, 761 // and currently there isn't a nice wrapper in APFloat for the version with 762 // correct snan handling. 763 break; 764 default: 765 break; 766 } 767 768 return std::nullopt; 769 } 770 771 SmallVector<APInt> 772 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, 773 const Register Op2, 774 const MachineRegisterInfo &MRI) { 775 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI); 776 if (!SrcVec2) 777 return SmallVector<APInt>(); 778 779 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI); 780 if (!SrcVec1) 781 return SmallVector<APInt>(); 782 783 SmallVector<APInt> FoldedElements; 784 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { 785 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), 786 SrcVec2->getSourceReg(Idx), MRI); 787 if (!MaybeCst) 788 return SmallVector<APInt>(); 789 FoldedElements.push_back(*MaybeCst); 790 } 791 return FoldedElements; 792 } 793 794 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 795 bool SNaN) { 796 const MachineInstr *DefMI = MRI.getVRegDef(Val); 797 if (!DefMI) 798 return false; 799 800 const TargetMachine& TM = DefMI->getMF()->getTarget(); 801 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 802 return true; 803 804 // If the value is a constant, we can obviously see if it is a NaN or not. 805 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { 806 return !FPVal->getValueAPF().isNaN() || 807 (SNaN && !FPVal->getValueAPF().isSignaling()); 808 } 809 810 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 811 for (const auto &Op : DefMI->uses()) 812 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) 813 return false; 814 return true; 815 } 816 817 switch (DefMI->getOpcode()) { 818 default: 819 break; 820 case TargetOpcode::G_FADD: 821 case TargetOpcode::G_FSUB: 822 case TargetOpcode::G_FMUL: 823 case TargetOpcode::G_FDIV: 824 case TargetOpcode::G_FREM: 825 case TargetOpcode::G_FSIN: 826 case TargetOpcode::G_FCOS: 827 case TargetOpcode::G_FTAN: 828 case TargetOpcode::G_FACOS: 829 case TargetOpcode::G_FASIN: 830 case TargetOpcode::G_FATAN: 831 case TargetOpcode::G_FCOSH: 832 case TargetOpcode::G_FSINH: 833 case TargetOpcode::G_FTANH: 834 case TargetOpcode::G_FMA: 835 case TargetOpcode::G_FMAD: 836 if (SNaN) 837 return true; 838 839 // TODO: Need isKnownNeverInfinity 840 return false; 841 case TargetOpcode::G_FMINNUM_IEEE: 842 case TargetOpcode::G_FMAXNUM_IEEE: { 843 if (SNaN) 844 return true; 845 // This can return a NaN if either operand is an sNaN, or if both operands 846 // are NaN. 847 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && 848 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || 849 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && 850 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); 851 } 852 case TargetOpcode::G_FMINNUM: 853 case TargetOpcode::G_FMAXNUM: { 854 // Only one needs to be known not-nan, since it will be returned if the 855 // other ends up being one. 856 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || 857 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); 858 } 859 } 860 861 if (SNaN) { 862 // FP operations quiet. For now, just handle the ones inserted during 863 // legalization. 864 switch (DefMI->getOpcode()) { 865 case TargetOpcode::G_FPEXT: 866 case TargetOpcode::G_FPTRUNC: 867 case TargetOpcode::G_FCANONICALIZE: 868 return true; 869 default: 870 return false; 871 } 872 } 873 874 return false; 875 } 876 877 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 878 const MachinePointerInfo &MPO) { 879 auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V); 880 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 881 MachineFrameInfo &MFI = MF.getFrameInfo(); 882 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 883 MPO.Offset); 884 } 885 886 if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) { 887 const Module *M = MF.getFunction().getParent(); 888 return V->getPointerAlignment(M->getDataLayout()); 889 } 890 891 return Align(1); 892 } 893 894 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 895 const TargetInstrInfo &TII, 896 MCRegister PhysReg, 897 const TargetRegisterClass &RC, 898 const DebugLoc &DL, LLT RegTy) { 899 MachineBasicBlock &EntryMBB = MF.front(); 900 MachineRegisterInfo &MRI = MF.getRegInfo(); 901 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 902 if (LiveIn) { 903 MachineInstr *Def = MRI.getVRegDef(LiveIn); 904 if (Def) { 905 // FIXME: Should the verifier check this is in the entry block? 906 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 907 return LiveIn; 908 } 909 910 // It's possible the incoming argument register and copy was added during 911 // lowering, but later deleted due to being/becoming dead. If this happens, 912 // re-insert the copy. 913 } else { 914 // The live in register was not present, so add it. 915 LiveIn = MF.addLiveIn(PhysReg, &RC); 916 if (RegTy.isValid()) 917 MRI.setType(LiveIn, RegTy); 918 } 919 920 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 921 .addReg(PhysReg); 922 if (!EntryMBB.isLiveIn(PhysReg)) 923 EntryMBB.addLiveIn(PhysReg); 924 return LiveIn; 925 } 926 927 std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, 928 const Register Op1, uint64_t Imm, 929 const MachineRegisterInfo &MRI) { 930 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); 931 if (MaybeOp1Cst) { 932 switch (Opcode) { 933 default: 934 break; 935 case TargetOpcode::G_SEXT_INREG: { 936 LLT Ty = MRI.getType(Op1); 937 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 938 } 939 } 940 } 941 return std::nullopt; 942 } 943 944 std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy, 945 const Register Op0, 946 const MachineRegisterInfo &MRI) { 947 std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI); 948 if (!Val) 949 return Val; 950 951 const unsigned DstSize = DstTy.getScalarSizeInBits(); 952 953 switch (Opcode) { 954 case TargetOpcode::G_SEXT: 955 return Val->sext(DstSize); 956 case TargetOpcode::G_ZEXT: 957 case TargetOpcode::G_ANYEXT: 958 // TODO: DAG considers target preference when constant folding any_extend. 959 return Val->zext(DstSize); 960 default: 961 break; 962 } 963 964 llvm_unreachable("unexpected cast opcode to constant fold"); 965 } 966 967 std::optional<APFloat> 968 llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, 969 const MachineRegisterInfo &MRI) { 970 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); 971 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { 972 APFloat DstVal(getFltSemanticForLLT(DstTy)); 973 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, 974 APFloat::rmNearestTiesToEven); 975 return DstVal; 976 } 977 return std::nullopt; 978 } 979 980 std::optional<SmallVector<unsigned>> 981 llvm::ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI, 982 std::function<unsigned(APInt)> CB) { 983 LLT Ty = MRI.getType(Src); 984 SmallVector<unsigned> FoldedCTLZs; 985 auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> { 986 auto MaybeCst = getIConstantVRegVal(R, MRI); 987 if (!MaybeCst) 988 return std::nullopt; 989 return CB(*MaybeCst); 990 }; 991 if (Ty.isVector()) { 992 // Try to constant fold each element. 993 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI); 994 if (!BV) 995 return std::nullopt; 996 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 997 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { 998 FoldedCTLZs.emplace_back(*MaybeFold); 999 continue; 1000 } 1001 return std::nullopt; 1002 } 1003 return FoldedCTLZs; 1004 } 1005 if (auto MaybeCst = tryFoldScalar(Src)) { 1006 FoldedCTLZs.emplace_back(*MaybeCst); 1007 return FoldedCTLZs; 1008 } 1009 return std::nullopt; 1010 } 1011 1012 std::optional<SmallVector<APInt>> 1013 llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2, 1014 const MachineRegisterInfo &MRI) { 1015 LLT Ty = MRI.getType(Op1); 1016 if (Ty != MRI.getType(Op2)) 1017 return std::nullopt; 1018 1019 auto TryFoldScalar = [&MRI, Pred](Register LHS, 1020 Register RHS) -> std::optional<APInt> { 1021 auto LHSCst = getIConstantVRegVal(LHS, MRI); 1022 auto RHSCst = getIConstantVRegVal(RHS, MRI); 1023 if (!LHSCst || !RHSCst) 1024 return std::nullopt; 1025 1026 switch (Pred) { 1027 case CmpInst::Predicate::ICMP_EQ: 1028 return APInt(/*numBits=*/1, LHSCst->eq(*RHSCst)); 1029 case CmpInst::Predicate::ICMP_NE: 1030 return APInt(/*numBits=*/1, LHSCst->ne(*RHSCst)); 1031 case CmpInst::Predicate::ICMP_UGT: 1032 return APInt(/*numBits=*/1, LHSCst->ugt(*RHSCst)); 1033 case CmpInst::Predicate::ICMP_UGE: 1034 return APInt(/*numBits=*/1, LHSCst->uge(*RHSCst)); 1035 case CmpInst::Predicate::ICMP_ULT: 1036 return APInt(/*numBits=*/1, LHSCst->ult(*RHSCst)); 1037 case CmpInst::Predicate::ICMP_ULE: 1038 return APInt(/*numBits=*/1, LHSCst->ule(*RHSCst)); 1039 case CmpInst::Predicate::ICMP_SGT: 1040 return APInt(/*numBits=*/1, LHSCst->sgt(*RHSCst)); 1041 case CmpInst::Predicate::ICMP_SGE: 1042 return APInt(/*numBits=*/1, LHSCst->sge(*RHSCst)); 1043 case CmpInst::Predicate::ICMP_SLT: 1044 return APInt(/*numBits=*/1, LHSCst->slt(*RHSCst)); 1045 case CmpInst::Predicate::ICMP_SLE: 1046 return APInt(/*numBits=*/1, LHSCst->sle(*RHSCst)); 1047 default: 1048 return std::nullopt; 1049 } 1050 }; 1051 1052 SmallVector<APInt> FoldedICmps; 1053 1054 if (Ty.isVector()) { 1055 // Try to constant fold each element. 1056 auto *BV1 = getOpcodeDef<GBuildVector>(Op1, MRI); 1057 auto *BV2 = getOpcodeDef<GBuildVector>(Op2, MRI); 1058 if (!BV1 || !BV2) 1059 return std::nullopt; 1060 assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors"); 1061 for (unsigned I = 0; I < BV1->getNumSources(); ++I) { 1062 if (auto MaybeFold = 1063 TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) { 1064 FoldedICmps.emplace_back(*MaybeFold); 1065 continue; 1066 } 1067 return std::nullopt; 1068 } 1069 return FoldedICmps; 1070 } 1071 1072 if (auto MaybeCst = TryFoldScalar(Op1, Op2)) { 1073 FoldedICmps.emplace_back(*MaybeCst); 1074 return FoldedICmps; 1075 } 1076 1077 return std::nullopt; 1078 } 1079 1080 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 1081 GISelKnownBits *KB) { 1082 std::optional<DefinitionAndSourceRegister> DefSrcReg = 1083 getDefSrcRegIgnoringCopies(Reg, MRI); 1084 if (!DefSrcReg) 1085 return false; 1086 1087 const MachineInstr &MI = *DefSrcReg->MI; 1088 const LLT Ty = MRI.getType(Reg); 1089 1090 switch (MI.getOpcode()) { 1091 case TargetOpcode::G_CONSTANT: { 1092 unsigned BitWidth = Ty.getScalarSizeInBits(); 1093 const ConstantInt *CI = MI.getOperand(1).getCImm(); 1094 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 1095 } 1096 case TargetOpcode::G_SHL: { 1097 // A left-shift of a constant one will have exactly one bit set because 1098 // shifting the bit off the end is undefined. 1099 1100 // TODO: Constant splat 1101 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1102 if (*ConstLHS == 1) 1103 return true; 1104 } 1105 1106 break; 1107 } 1108 case TargetOpcode::G_LSHR: { 1109 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1110 if (ConstLHS->isSignMask()) 1111 return true; 1112 } 1113 1114 break; 1115 } 1116 case TargetOpcode::G_BUILD_VECTOR: { 1117 // TODO: Probably should have a recursion depth guard since you could have 1118 // bitcasted vector elements. 1119 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 1120 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB)) 1121 return false; 1122 1123 return true; 1124 } 1125 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1126 // Only handle constants since we would need to know if number of leading 1127 // zeros is greater than the truncation amount. 1128 const unsigned BitWidth = Ty.getScalarSizeInBits(); 1129 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1130 auto Const = getIConstantVRegVal(MO.getReg(), MRI); 1131 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) 1132 return false; 1133 } 1134 1135 return true; 1136 } 1137 default: 1138 break; 1139 } 1140 1141 if (!KB) 1142 return false; 1143 1144 // More could be done here, though the above checks are enough 1145 // to handle some common cases. 1146 1147 // Fall back to computeKnownBits to catch other known cases. 1148 KnownBits Known = KB->getKnownBits(Reg); 1149 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 1150 } 1151 1152 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 1153 AU.addPreserved<StackProtector>(); 1154 } 1155 1156 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 1157 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1158 return OrigTy; 1159 1160 if (OrigTy.isVector() && TargetTy.isVector()) { 1161 LLT OrigElt = OrigTy.getElementType(); 1162 LLT TargetElt = TargetTy.getElementType(); 1163 1164 // TODO: The docstring for this function says the intention is to use this 1165 // function to build MERGE/UNMERGE instructions. It won't be the case that 1166 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1167 // could implement getLCMType between the two in the future if there was a 1168 // need, but it is not worth it now as this function should not be used in 1169 // that way. 1170 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1171 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1172 "getLCMType not implemented between fixed and scalable vectors."); 1173 1174 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 1175 int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(), 1176 TargetTy.getElementCount().getKnownMinValue()); 1177 // Prefer the original element type. 1178 ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy( 1179 TargetTy.getElementCount().getKnownMinValue()); 1180 return LLT::vector(Mul.divideCoefficientBy(GCDMinElts), 1181 OrigTy.getElementType()); 1182 } 1183 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(), 1184 TargetTy.getSizeInBits().getKnownMinValue()); 1185 return LLT::vector( 1186 ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()), 1187 OrigElt); 1188 } 1189 1190 // One type is scalar, one type is vector 1191 if (OrigTy.isVector() || TargetTy.isVector()) { 1192 LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy; 1193 LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy; 1194 LLT EltTy = VecTy.getElementType(); 1195 LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy; 1196 1197 // Prefer scalar type from OrigTy. 1198 if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits()) 1199 return LLT::vector(VecTy.getElementCount(), OrigEltTy); 1200 1201 // Different size scalars. Create vector with the same total size. 1202 // LCM will take fixed/scalable from VecTy. 1203 unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() * 1204 VecTy.getElementCount().getKnownMinValue(), 1205 ScalarTy.getSizeInBits().getFixedValue()); 1206 // Prefer type from OrigTy 1207 return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(), 1208 VecTy.getElementCount().isScalable()), 1209 OrigEltTy); 1210 } 1211 1212 // At this point, both types are scalars of different size 1213 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(), 1214 TargetTy.getSizeInBits().getFixedValue()); 1215 // Preserve pointer types. 1216 if (LCM == OrigTy.getSizeInBits()) 1217 return OrigTy; 1218 if (LCM == TargetTy.getSizeInBits()) 1219 return TargetTy; 1220 return LLT::scalar(LCM); 1221 } 1222 1223 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { 1224 1225 if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) || 1226 (OrigTy.isFixedVector() && TargetTy.isScalableVector())) 1227 llvm_unreachable( 1228 "getCoverTy not implemented between fixed and scalable vectors."); 1229 1230 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || 1231 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) 1232 return getLCMType(OrigTy, TargetTy); 1233 1234 unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue(); 1235 unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue(); 1236 if (OrigTyNumElts % TargetTyNumElts == 0) 1237 return OrigTy; 1238 1239 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts); 1240 return LLT::scalarOrVector(ElementCount::getFixed(NumElts), 1241 OrigTy.getElementType()); 1242 } 1243 1244 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 1245 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1246 return OrigTy; 1247 1248 if (OrigTy.isVector() && TargetTy.isVector()) { 1249 LLT OrigElt = OrigTy.getElementType(); 1250 1251 // TODO: The docstring for this function says the intention is to use this 1252 // function to build MERGE/UNMERGE instructions. It won't be the case that 1253 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1254 // could implement getGCDType between the two in the future if there was a 1255 // need, but it is not worth it now as this function should not be used in 1256 // that way. 1257 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1258 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1259 "getGCDType not implemented between fixed and scalable vectors."); 1260 1261 unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(), 1262 TargetTy.getSizeInBits().getKnownMinValue()); 1263 if (GCD == OrigElt.getSizeInBits()) 1264 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1265 OrigElt); 1266 1267 // Cannot produce original element type, but both have vscale in common. 1268 if (GCD < OrigElt.getSizeInBits()) 1269 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1270 GCD); 1271 1272 return LLT::vector( 1273 ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(), 1274 OrigTy.isScalable()), 1275 OrigElt); 1276 } 1277 1278 // If one type is vector and the element size matches the scalar size, then 1279 // the gcd is the scalar type. 1280 if (OrigTy.isVector() && 1281 OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits()) 1282 return OrigTy.getElementType(); 1283 if (TargetTy.isVector() && 1284 TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits()) 1285 return OrigTy; 1286 1287 // At this point, both types are either scalars of different type or one is a 1288 // vector and one is a scalar. If both types are scalars, the GCD type is the 1289 // GCD between the two scalar sizes. If one is vector and one is scalar, then 1290 // the GCD type is the GCD between the scalar and the vector element size. 1291 LLT OrigScalar = OrigTy.getScalarType(); 1292 LLT TargetScalar = TargetTy.getScalarType(); 1293 unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(), 1294 TargetScalar.getSizeInBits().getFixedValue()); 1295 return LLT::scalar(GCD); 1296 } 1297 1298 std::optional<int> llvm::getSplatIndex(MachineInstr &MI) { 1299 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 1300 "Only G_SHUFFLE_VECTOR can have a splat index!"); 1301 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1302 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 1303 1304 // If all elements are undefined, this shuffle can be considered a splat. 1305 // Return 0 for better potential for callers to simplify. 1306 if (FirstDefinedIdx == Mask.end()) 1307 return 0; 1308 1309 // Make sure all remaining elements are either undef or the same 1310 // as the first non-undef value. 1311 int SplatValue = *FirstDefinedIdx; 1312 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 1313 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 1314 return std::nullopt; 1315 1316 return SplatValue; 1317 } 1318 1319 static bool isBuildVectorOp(unsigned Opcode) { 1320 return Opcode == TargetOpcode::G_BUILD_VECTOR || 1321 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 1322 } 1323 1324 namespace { 1325 1326 std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg, 1327 const MachineRegisterInfo &MRI, 1328 bool AllowUndef) { 1329 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); 1330 if (!MI) 1331 return std::nullopt; 1332 1333 bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS; 1334 if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp) 1335 return std::nullopt; 1336 1337 std::optional<ValueAndVReg> SplatValAndReg; 1338 for (MachineOperand &Op : MI->uses()) { 1339 Register Element = Op.getReg(); 1340 // If we have a G_CONCAT_VECTOR, we recursively look into the 1341 // vectors that we're concatenating to see if they're splats. 1342 auto ElementValAndReg = 1343 isConcatVectorsOp 1344 ? getAnyConstantSplat(Element, MRI, AllowUndef) 1345 : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); 1346 1347 // If AllowUndef, treat undef as value that will result in a constant splat. 1348 if (!ElementValAndReg) { 1349 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element))) 1350 continue; 1351 return std::nullopt; 1352 } 1353 1354 // Record splat value 1355 if (!SplatValAndReg) 1356 SplatValAndReg = ElementValAndReg; 1357 1358 // Different constant than the one already recorded, not a constant splat. 1359 if (SplatValAndReg->Value != ElementValAndReg->Value) 1360 return std::nullopt; 1361 } 1362 1363 return SplatValAndReg; 1364 } 1365 1366 } // end anonymous namespace 1367 1368 bool llvm::isBuildVectorConstantSplat(const Register Reg, 1369 const MachineRegisterInfo &MRI, 1370 int64_t SplatValue, bool AllowUndef) { 1371 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef)) 1372 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); 1373 return false; 1374 } 1375 1376 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, 1377 const MachineRegisterInfo &MRI, 1378 int64_t SplatValue, bool AllowUndef) { 1379 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue, 1380 AllowUndef); 1381 } 1382 1383 std::optional<APInt> 1384 llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) { 1385 if (auto SplatValAndReg = 1386 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) { 1387 if (std::optional<ValueAndVReg> ValAndVReg = 1388 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI)) 1389 return ValAndVReg->Value; 1390 } 1391 1392 return std::nullopt; 1393 } 1394 1395 std::optional<APInt> 1396 llvm::getIConstantSplatVal(const MachineInstr &MI, 1397 const MachineRegisterInfo &MRI) { 1398 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI); 1399 } 1400 1401 std::optional<int64_t> 1402 llvm::getIConstantSplatSExtVal(const Register Reg, 1403 const MachineRegisterInfo &MRI) { 1404 if (auto SplatValAndReg = 1405 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) 1406 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); 1407 return std::nullopt; 1408 } 1409 1410 std::optional<int64_t> 1411 llvm::getIConstantSplatSExtVal(const MachineInstr &MI, 1412 const MachineRegisterInfo &MRI) { 1413 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI); 1414 } 1415 1416 std::optional<FPValueAndVReg> 1417 llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, 1418 bool AllowUndef) { 1419 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) 1420 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1421 return std::nullopt; 1422 } 1423 1424 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 1425 const MachineRegisterInfo &MRI, 1426 bool AllowUndef) { 1427 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); 1428 } 1429 1430 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 1431 const MachineRegisterInfo &MRI, 1432 bool AllowUndef) { 1433 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); 1434 } 1435 1436 std::optional<RegOrConstant> 1437 llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) { 1438 unsigned Opc = MI.getOpcode(); 1439 if (!isBuildVectorOp(Opc)) 1440 return std::nullopt; 1441 if (auto Splat = getIConstantSplatSExtVal(MI, MRI)) 1442 return RegOrConstant(*Splat); 1443 auto Reg = MI.getOperand(1).getReg(); 1444 if (any_of(drop_begin(MI.operands(), 2), 1445 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) 1446 return std::nullopt; 1447 return RegOrConstant(Reg); 1448 } 1449 1450 static bool isConstantScalar(const MachineInstr &MI, 1451 const MachineRegisterInfo &MRI, 1452 bool AllowFP = true, 1453 bool AllowOpaqueConstants = true) { 1454 switch (MI.getOpcode()) { 1455 case TargetOpcode::G_CONSTANT: 1456 case TargetOpcode::G_IMPLICIT_DEF: 1457 return true; 1458 case TargetOpcode::G_FCONSTANT: 1459 return AllowFP; 1460 case TargetOpcode::G_GLOBAL_VALUE: 1461 case TargetOpcode::G_FRAME_INDEX: 1462 case TargetOpcode::G_BLOCK_ADDR: 1463 case TargetOpcode::G_JUMP_TABLE: 1464 return AllowOpaqueConstants; 1465 default: 1466 return false; 1467 } 1468 } 1469 1470 bool llvm::isConstantOrConstantVector(MachineInstr &MI, 1471 const MachineRegisterInfo &MRI) { 1472 Register Def = MI.getOperand(0).getReg(); 1473 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1474 return true; 1475 GBuildVector *BV = dyn_cast<GBuildVector>(&MI); 1476 if (!BV) 1477 return false; 1478 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1479 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || 1480 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI)) 1481 continue; 1482 return false; 1483 } 1484 return true; 1485 } 1486 1487 bool llvm::isConstantOrConstantVector(const MachineInstr &MI, 1488 const MachineRegisterInfo &MRI, 1489 bool AllowFP, bool AllowOpaqueConstants) { 1490 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) 1491 return true; 1492 1493 if (!isBuildVectorOp(MI.getOpcode())) 1494 return false; 1495 1496 const unsigned NumOps = MI.getNumOperands(); 1497 for (unsigned I = 1; I != NumOps; ++I) { 1498 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg()); 1499 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants)) 1500 return false; 1501 } 1502 1503 return true; 1504 } 1505 1506 std::optional<APInt> 1507 llvm::isConstantOrConstantSplatVector(MachineInstr &MI, 1508 const MachineRegisterInfo &MRI) { 1509 Register Def = MI.getOperand(0).getReg(); 1510 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1511 return C->Value; 1512 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI); 1513 if (!MaybeCst) 1514 return std::nullopt; 1515 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); 1516 return APInt(ScalarSize, *MaybeCst, true); 1517 } 1518 1519 bool llvm::isNullOrNullSplat(const MachineInstr &MI, 1520 const MachineRegisterInfo &MRI, bool AllowUndefs) { 1521 switch (MI.getOpcode()) { 1522 case TargetOpcode::G_IMPLICIT_DEF: 1523 return AllowUndefs; 1524 case TargetOpcode::G_CONSTANT: 1525 return MI.getOperand(1).getCImm()->isNullValue(); 1526 case TargetOpcode::G_FCONSTANT: { 1527 const ConstantFP *FPImm = MI.getOperand(1).getFPImm(); 1528 return FPImm->isZero() && !FPImm->isNegative(); 1529 } 1530 default: 1531 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already 1532 return false; 1533 return isBuildVectorAllZeros(MI, MRI); 1534 } 1535 } 1536 1537 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, 1538 const MachineRegisterInfo &MRI, 1539 bool AllowUndefs) { 1540 switch (MI.getOpcode()) { 1541 case TargetOpcode::G_IMPLICIT_DEF: 1542 return AllowUndefs; 1543 case TargetOpcode::G_CONSTANT: 1544 return MI.getOperand(1).getCImm()->isAllOnesValue(); 1545 default: 1546 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already 1547 return false; 1548 return isBuildVectorAllOnes(MI, MRI); 1549 } 1550 } 1551 1552 bool llvm::matchUnaryPredicate( 1553 const MachineRegisterInfo &MRI, Register Reg, 1554 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { 1555 1556 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); 1557 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) 1558 return Match(nullptr); 1559 1560 // TODO: Also handle fconstant 1561 if (Def->getOpcode() == TargetOpcode::G_CONSTANT) 1562 return Match(Def->getOperand(1).getCImm()); 1563 1564 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) 1565 return false; 1566 1567 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { 1568 Register SrcElt = Def->getOperand(I).getReg(); 1569 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); 1570 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { 1571 if (!Match(nullptr)) 1572 return false; 1573 continue; 1574 } 1575 1576 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || 1577 !Match(SrcDef->getOperand(1).getCImm())) 1578 return false; 1579 } 1580 1581 return true; 1582 } 1583 1584 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 1585 bool IsFP) { 1586 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1587 case TargetLowering::UndefinedBooleanContent: 1588 return Val & 0x1; 1589 case TargetLowering::ZeroOrOneBooleanContent: 1590 return Val == 1; 1591 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1592 return Val == -1; 1593 } 1594 llvm_unreachable("Invalid boolean contents"); 1595 } 1596 1597 bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val, 1598 bool IsVector, bool IsFP) { 1599 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1600 case TargetLowering::UndefinedBooleanContent: 1601 return ~Val & 0x1; 1602 case TargetLowering::ZeroOrOneBooleanContent: 1603 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1604 return Val == 0; 1605 } 1606 llvm_unreachable("Invalid boolean contents"); 1607 } 1608 1609 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 1610 bool IsFP) { 1611 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1612 case TargetLowering::UndefinedBooleanContent: 1613 case TargetLowering::ZeroOrOneBooleanContent: 1614 return 1; 1615 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1616 return -1; 1617 } 1618 llvm_unreachable("Invalid boolean contents"); 1619 } 1620 1621 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, 1622 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 1623 const auto &F = MBB.getParent()->getFunction(); 1624 return F.hasOptSize() || F.hasMinSize() || 1625 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); 1626 } 1627 1628 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, 1629 LostDebugLocObserver *LocObserver, 1630 SmallInstListTy &DeadInstChain) { 1631 for (MachineOperand &Op : MI.uses()) { 1632 if (Op.isReg() && Op.getReg().isVirtual()) 1633 DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); 1634 } 1635 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); 1636 DeadInstChain.remove(&MI); 1637 MI.eraseFromParent(); 1638 if (LocObserver) 1639 LocObserver->checkpoint(false); 1640 } 1641 1642 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, 1643 MachineRegisterInfo &MRI, 1644 LostDebugLocObserver *LocObserver) { 1645 SmallInstListTy DeadInstChain; 1646 for (MachineInstr *MI : DeadInstrs) 1647 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); 1648 1649 while (!DeadInstChain.empty()) { 1650 MachineInstr *Inst = DeadInstChain.pop_back_val(); 1651 if (!isTriviallyDead(*Inst, MRI)) 1652 continue; 1653 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); 1654 } 1655 } 1656 1657 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, 1658 LostDebugLocObserver *LocObserver) { 1659 return eraseInstrs({&MI}, MRI, LocObserver); 1660 } 1661 1662 void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) { 1663 for (auto &Def : MI.defs()) { 1664 assert(Def.isReg() && "Must be a reg"); 1665 1666 SmallVector<MachineOperand *, 16> DbgUsers; 1667 for (auto &MOUse : MRI.use_operands(Def.getReg())) { 1668 MachineInstr *DbgValue = MOUse.getParent(); 1669 // Ignore partially formed DBG_VALUEs. 1670 if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) { 1671 DbgUsers.push_back(&MOUse); 1672 } 1673 } 1674 1675 if (!DbgUsers.empty()) { 1676 salvageDebugInfoForDbgValue(MRI, MI, DbgUsers); 1677 } 1678 } 1679 } 1680 1681 bool llvm::isPreISelGenericFloatingPointOpcode(unsigned Opc) { 1682 switch (Opc) { 1683 case TargetOpcode::G_FABS: 1684 case TargetOpcode::G_FADD: 1685 case TargetOpcode::G_FCANONICALIZE: 1686 case TargetOpcode::G_FCEIL: 1687 case TargetOpcode::G_FCONSTANT: 1688 case TargetOpcode::G_FCOPYSIGN: 1689 case TargetOpcode::G_FCOS: 1690 case TargetOpcode::G_FDIV: 1691 case TargetOpcode::G_FEXP2: 1692 case TargetOpcode::G_FEXP: 1693 case TargetOpcode::G_FFLOOR: 1694 case TargetOpcode::G_FLOG10: 1695 case TargetOpcode::G_FLOG2: 1696 case TargetOpcode::G_FLOG: 1697 case TargetOpcode::G_FMA: 1698 case TargetOpcode::G_FMAD: 1699 case TargetOpcode::G_FMAXIMUM: 1700 case TargetOpcode::G_FMAXNUM: 1701 case TargetOpcode::G_FMAXNUM_IEEE: 1702 case TargetOpcode::G_FMINIMUM: 1703 case TargetOpcode::G_FMINNUM: 1704 case TargetOpcode::G_FMINNUM_IEEE: 1705 case TargetOpcode::G_FMUL: 1706 case TargetOpcode::G_FNEARBYINT: 1707 case TargetOpcode::G_FNEG: 1708 case TargetOpcode::G_FPEXT: 1709 case TargetOpcode::G_FPOW: 1710 case TargetOpcode::G_FPTRUNC: 1711 case TargetOpcode::G_FREM: 1712 case TargetOpcode::G_FRINT: 1713 case TargetOpcode::G_FSIN: 1714 case TargetOpcode::G_FTAN: 1715 case TargetOpcode::G_FACOS: 1716 case TargetOpcode::G_FASIN: 1717 case TargetOpcode::G_FATAN: 1718 case TargetOpcode::G_FCOSH: 1719 case TargetOpcode::G_FSINH: 1720 case TargetOpcode::G_FTANH: 1721 case TargetOpcode::G_FSQRT: 1722 case TargetOpcode::G_FSUB: 1723 case TargetOpcode::G_INTRINSIC_ROUND: 1724 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 1725 case TargetOpcode::G_INTRINSIC_TRUNC: 1726 return true; 1727 default: 1728 return false; 1729 } 1730 } 1731 1732 /// Shifts return poison if shiftwidth is larger than the bitwidth. 1733 static bool shiftAmountKnownInRange(Register ShiftAmount, 1734 const MachineRegisterInfo &MRI) { 1735 LLT Ty = MRI.getType(ShiftAmount); 1736 1737 if (Ty.isScalableVector()) 1738 return false; // Can't tell, just return false to be safe 1739 1740 if (Ty.isScalar()) { 1741 std::optional<ValueAndVReg> Val = 1742 getIConstantVRegValWithLookThrough(ShiftAmount, MRI); 1743 if (!Val) 1744 return false; 1745 return Val->Value.ult(Ty.getScalarSizeInBits()); 1746 } 1747 1748 GBuildVector *BV = getOpcodeDef<GBuildVector>(ShiftAmount, MRI); 1749 if (!BV) 1750 return false; 1751 1752 unsigned Sources = BV->getNumSources(); 1753 for (unsigned I = 0; I < Sources; ++I) { 1754 std::optional<ValueAndVReg> Val = 1755 getIConstantVRegValWithLookThrough(BV->getSourceReg(I), MRI); 1756 if (!Val) 1757 return false; 1758 if (!Val->Value.ult(Ty.getScalarSizeInBits())) 1759 return false; 1760 } 1761 1762 return true; 1763 } 1764 1765 namespace { 1766 enum class UndefPoisonKind { 1767 PoisonOnly = (1 << 0), 1768 UndefOnly = (1 << 1), 1769 UndefOrPoison = PoisonOnly | UndefOnly, 1770 }; 1771 } 1772 1773 static bool includesPoison(UndefPoisonKind Kind) { 1774 return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0; 1775 } 1776 1777 static bool includesUndef(UndefPoisonKind Kind) { 1778 return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0; 1779 } 1780 1781 static bool canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI, 1782 bool ConsiderFlagsAndMetadata, 1783 UndefPoisonKind Kind) { 1784 MachineInstr *RegDef = MRI.getVRegDef(Reg); 1785 1786 if (ConsiderFlagsAndMetadata && includesPoison(Kind)) 1787 if (auto *GMI = dyn_cast<GenericMachineInstr>(RegDef)) 1788 if (GMI->hasPoisonGeneratingFlags()) 1789 return true; 1790 1791 // Check whether opcode is a poison/undef-generating operation. 1792 switch (RegDef->getOpcode()) { 1793 case TargetOpcode::G_BUILD_VECTOR: 1794 case TargetOpcode::G_CONSTANT_FOLD_BARRIER: 1795 return false; 1796 case TargetOpcode::G_SHL: 1797 case TargetOpcode::G_ASHR: 1798 case TargetOpcode::G_LSHR: 1799 return includesPoison(Kind) && 1800 !shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI); 1801 case TargetOpcode::G_FPTOSI: 1802 case TargetOpcode::G_FPTOUI: 1803 // fptosi/ui yields poison if the resulting value does not fit in the 1804 // destination type. 1805 return true; 1806 case TargetOpcode::G_CTLZ: 1807 case TargetOpcode::G_CTTZ: 1808 case TargetOpcode::G_ABS: 1809 case TargetOpcode::G_CTPOP: 1810 case TargetOpcode::G_BSWAP: 1811 case TargetOpcode::G_BITREVERSE: 1812 case TargetOpcode::G_FSHL: 1813 case TargetOpcode::G_FSHR: 1814 case TargetOpcode::G_SMAX: 1815 case TargetOpcode::G_SMIN: 1816 case TargetOpcode::G_UMAX: 1817 case TargetOpcode::G_UMIN: 1818 case TargetOpcode::G_PTRMASK: 1819 case TargetOpcode::G_SADDO: 1820 case TargetOpcode::G_SSUBO: 1821 case TargetOpcode::G_UADDO: 1822 case TargetOpcode::G_USUBO: 1823 case TargetOpcode::G_SMULO: 1824 case TargetOpcode::G_UMULO: 1825 case TargetOpcode::G_SADDSAT: 1826 case TargetOpcode::G_UADDSAT: 1827 case TargetOpcode::G_SSUBSAT: 1828 case TargetOpcode::G_USUBSAT: 1829 return false; 1830 case TargetOpcode::G_SSHLSAT: 1831 case TargetOpcode::G_USHLSAT: 1832 return includesPoison(Kind) && 1833 !shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI); 1834 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1835 GInsertVectorElement *Insert = cast<GInsertVectorElement>(RegDef); 1836 if (includesPoison(Kind)) { 1837 std::optional<ValueAndVReg> Index = 1838 getIConstantVRegValWithLookThrough(Insert->getIndexReg(), MRI); 1839 if (!Index) 1840 return true; 1841 LLT VecTy = MRI.getType(Insert->getVectorReg()); 1842 return Index->Value.uge(VecTy.getElementCount().getKnownMinValue()); 1843 } 1844 return false; 1845 } 1846 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1847 GExtractVectorElement *Extract = cast<GExtractVectorElement>(RegDef); 1848 if (includesPoison(Kind)) { 1849 std::optional<ValueAndVReg> Index = 1850 getIConstantVRegValWithLookThrough(Extract->getIndexReg(), MRI); 1851 if (!Index) 1852 return true; 1853 LLT VecTy = MRI.getType(Extract->getVectorReg()); 1854 return Index->Value.uge(VecTy.getElementCount().getKnownMinValue()); 1855 } 1856 return false; 1857 } 1858 case TargetOpcode::G_SHUFFLE_VECTOR: { 1859 GShuffleVector *Shuffle = cast<GShuffleVector>(RegDef); 1860 ArrayRef<int> Mask = Shuffle->getMask(); 1861 return includesPoison(Kind) && is_contained(Mask, -1); 1862 } 1863 case TargetOpcode::G_FNEG: 1864 case TargetOpcode::G_PHI: 1865 case TargetOpcode::G_SELECT: 1866 case TargetOpcode::G_UREM: 1867 case TargetOpcode::G_SREM: 1868 case TargetOpcode::G_FREEZE: 1869 case TargetOpcode::G_ICMP: 1870 case TargetOpcode::G_FCMP: 1871 case TargetOpcode::G_FADD: 1872 case TargetOpcode::G_FSUB: 1873 case TargetOpcode::G_FMUL: 1874 case TargetOpcode::G_FDIV: 1875 case TargetOpcode::G_FREM: 1876 case TargetOpcode::G_PTR_ADD: 1877 return false; 1878 default: 1879 return !isa<GCastOp>(RegDef) && !isa<GBinOp>(RegDef); 1880 } 1881 } 1882 1883 static bool isGuaranteedNotToBeUndefOrPoison(Register Reg, 1884 const MachineRegisterInfo &MRI, 1885 unsigned Depth, 1886 UndefPoisonKind Kind) { 1887 if (Depth >= MaxAnalysisRecursionDepth) 1888 return false; 1889 1890 MachineInstr *RegDef = MRI.getVRegDef(Reg); 1891 1892 switch (RegDef->getOpcode()) { 1893 case TargetOpcode::G_FREEZE: 1894 return true; 1895 case TargetOpcode::G_IMPLICIT_DEF: 1896 return !includesUndef(Kind); 1897 case TargetOpcode::G_CONSTANT: 1898 case TargetOpcode::G_FCONSTANT: 1899 return true; 1900 case TargetOpcode::G_BUILD_VECTOR: { 1901 GBuildVector *BV = cast<GBuildVector>(RegDef); 1902 unsigned NumSources = BV->getNumSources(); 1903 for (unsigned I = 0; I < NumSources; ++I) 1904 if (!::isGuaranteedNotToBeUndefOrPoison(BV->getSourceReg(I), MRI, 1905 Depth + 1, Kind)) 1906 return false; 1907 return true; 1908 } 1909 case TargetOpcode::G_PHI: { 1910 GPhi *Phi = cast<GPhi>(RegDef); 1911 unsigned NumIncoming = Phi->getNumIncomingValues(); 1912 for (unsigned I = 0; I < NumIncoming; ++I) 1913 if (!::isGuaranteedNotToBeUndefOrPoison(Phi->getIncomingValue(I), MRI, 1914 Depth + 1, Kind)) 1915 return false; 1916 return true; 1917 } 1918 default: { 1919 auto MOCheck = [&](const MachineOperand &MO) { 1920 if (!MO.isReg()) 1921 return true; 1922 return ::isGuaranteedNotToBeUndefOrPoison(MO.getReg(), MRI, Depth + 1, 1923 Kind); 1924 }; 1925 return !::canCreateUndefOrPoison(Reg, MRI, 1926 /*ConsiderFlagsAndMetadata=*/true, Kind) && 1927 all_of(RegDef->uses(), MOCheck); 1928 } 1929 } 1930 } 1931 1932 bool llvm::canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI, 1933 bool ConsiderFlagsAndMetadata) { 1934 return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata, 1935 UndefPoisonKind::UndefOrPoison); 1936 } 1937 1938 bool canCreatePoison(Register Reg, const MachineRegisterInfo &MRI, 1939 bool ConsiderFlagsAndMetadata = true) { 1940 return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata, 1941 UndefPoisonKind::PoisonOnly); 1942 } 1943 1944 bool llvm::isGuaranteedNotToBeUndefOrPoison(Register Reg, 1945 const MachineRegisterInfo &MRI, 1946 unsigned Depth) { 1947 return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth, 1948 UndefPoisonKind::UndefOrPoison); 1949 } 1950 1951 bool llvm::isGuaranteedNotToBePoison(Register Reg, 1952 const MachineRegisterInfo &MRI, 1953 unsigned Depth) { 1954 return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth, 1955 UndefPoisonKind::PoisonOnly); 1956 } 1957 1958 bool llvm::isGuaranteedNotToBeUndef(Register Reg, 1959 const MachineRegisterInfo &MRI, 1960 unsigned Depth) { 1961 return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth, 1962 UndefPoisonKind::UndefOnly); 1963 } 1964 1965 Type *llvm::getTypeForLLT(LLT Ty, LLVMContext &C) { 1966 if (Ty.isVector()) 1967 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1968 Ty.getElementCount()); 1969 return IntegerType::get(C, Ty.getSizeInBits()); 1970 } 1971 1972 APInt llvm::GIConstant::getScalarValue() const { 1973 assert(Kind == GIConstantKind::Scalar && "Expected scalar constant"); 1974 1975 return Value; 1976 } 1977 1978 std::optional<GIConstant> 1979 llvm::GIConstant::getConstant(Register Const, const MachineRegisterInfo &MRI) { 1980 MachineInstr *Constant = getDefIgnoringCopies(Const, MRI); 1981 1982 if (GSplatVector *Splat = dyn_cast<GSplatVector>(Constant)) { 1983 std::optional<ValueAndVReg> MayBeConstant = 1984 getIConstantVRegValWithLookThrough(Splat->getScalarReg(), MRI); 1985 if (!MayBeConstant) 1986 return std::nullopt; 1987 return GIConstant(MayBeConstant->Value, GIConstantKind::ScalableVector); 1988 } 1989 1990 if (GBuildVector *Build = dyn_cast<GBuildVector>(Constant)) { 1991 SmallVector<APInt> Values; 1992 unsigned NumSources = Build->getNumSources(); 1993 for (unsigned I = 0; I < NumSources; ++I) { 1994 Register SrcReg = Build->getSourceReg(I); 1995 std::optional<ValueAndVReg> MayBeConstant = 1996 getIConstantVRegValWithLookThrough(SrcReg, MRI); 1997 if (!MayBeConstant) 1998 return std::nullopt; 1999 Values.push_back(MayBeConstant->Value); 2000 } 2001 return GIConstant(Values); 2002 } 2003 2004 std::optional<ValueAndVReg> MayBeConstant = 2005 getIConstantVRegValWithLookThrough(Const, MRI); 2006 if (!MayBeConstant) 2007 return std::nullopt; 2008 2009 return GIConstant(MayBeConstant->Value, GIConstantKind::Scalar); 2010 } 2011