1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 21 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 25 #include "llvm/CodeGen/MachineSizeOpts.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/StackProtector.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/Target/TargetMachine.h" 34 35 #define DEBUG_TYPE "globalisel-utils" 36 37 using namespace llvm; 38 using namespace MIPatternMatch; 39 40 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 41 const TargetInstrInfo &TII, 42 const RegisterBankInfo &RBI, Register Reg, 43 const TargetRegisterClass &RegClass) { 44 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 45 return MRI.createVirtualRegister(&RegClass); 46 47 return Reg; 48 } 49 50 Register llvm::constrainOperandRegClass( 51 const MachineFunction &MF, const TargetRegisterInfo &TRI, 52 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 53 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 54 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 55 Register Reg = RegMO.getReg(); 56 // Assume physical registers are properly constrained. 57 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); 58 59 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 60 // If we created a new virtual register because the class is not compatible 61 // then create a copy between the new and the old register. 62 if (ConstrainedReg != Reg) { 63 MachineBasicBlock::iterator InsertIt(&InsertPt); 64 MachineBasicBlock &MBB = *InsertPt.getParent(); 65 if (RegMO.isUse()) { 66 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 67 TII.get(TargetOpcode::COPY), ConstrainedReg) 68 .addReg(Reg); 69 } else { 70 assert(RegMO.isDef() && "Must be a definition"); 71 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 72 TII.get(TargetOpcode::COPY), Reg) 73 .addReg(ConstrainedReg); 74 } 75 if (GISelChangeObserver *Observer = MF.getObserver()) { 76 Observer->changingInstr(*RegMO.getParent()); 77 } 78 RegMO.setReg(ConstrainedReg); 79 if (GISelChangeObserver *Observer = MF.getObserver()) { 80 Observer->changedInstr(*RegMO.getParent()); 81 } 82 } else { 83 if (GISelChangeObserver *Observer = MF.getObserver()) { 84 if (!RegMO.isDef()) { 85 MachineInstr *RegDef = MRI.getVRegDef(Reg); 86 Observer->changedInstr(*RegDef); 87 } 88 Observer->changingAllUsesOfReg(MRI, Reg); 89 Observer->finishedChangingAllUsesOfReg(); 90 } 91 } 92 return ConstrainedReg; 93 } 94 95 Register llvm::constrainOperandRegClass( 96 const MachineFunction &MF, const TargetRegisterInfo &TRI, 97 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 98 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 99 MachineOperand &RegMO, unsigned OpIdx) { 100 Register Reg = RegMO.getReg(); 101 // Assume physical registers are properly constrained. 102 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); 103 104 const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF); 105 // Some of the target independent instructions, like COPY, may not impose any 106 // register class constraints on some of their operands: If it's a use, we can 107 // skip constraining as the instruction defining the register would constrain 108 // it. 109 110 // We can't constrain unallocatable register classes, because we can't create 111 // virtual registers for these classes, so we need to let targets handled this 112 // case. 113 if (RegClass && !RegClass->isAllocatable()) 114 RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI); 115 116 if (!RegClass) { 117 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 118 "Register class constraint is required unless either the " 119 "instruction is target independent or the operand is a use"); 120 // FIXME: Just bailing out like this here could be not enough, unless we 121 // expect the users of this function to do the right thing for PHIs and 122 // COPY: 123 // v1 = COPY v0 124 // v2 = COPY v1 125 // v1 here may end up not being constrained at all. Please notice that to 126 // reproduce the issue we likely need a destination pattern of a selection 127 // rule producing such extra copies, not just an input GMIR with them as 128 // every existing target using selectImpl handles copies before calling it 129 // and they never reach this function. 130 return Reg; 131 } 132 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass, 133 RegMO); 134 } 135 136 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 137 const TargetInstrInfo &TII, 138 const TargetRegisterInfo &TRI, 139 const RegisterBankInfo &RBI) { 140 assert(!isPreISelGenericOpcode(I.getOpcode()) && 141 "A selected instruction is expected"); 142 MachineBasicBlock &MBB = *I.getParent(); 143 MachineFunction &MF = *MBB.getParent(); 144 MachineRegisterInfo &MRI = MF.getRegInfo(); 145 146 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 147 MachineOperand &MO = I.getOperand(OpI); 148 149 // There's nothing to be done on non-register operands. 150 if (!MO.isReg()) 151 continue; 152 153 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 154 assert(MO.isReg() && "Unsupported non-reg operand"); 155 156 Register Reg = MO.getReg(); 157 // Physical registers don't need to be constrained. 158 if (Register::isPhysicalRegister(Reg)) 159 continue; 160 161 // Register operands with a value of 0 (e.g. predicate operands) don't need 162 // to be constrained. 163 if (Reg == 0) 164 continue; 165 166 // If the operand is a vreg, we should constrain its regclass, and only 167 // insert COPYs if that's impossible. 168 // constrainOperandRegClass does that for us. 169 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 170 171 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 172 // done. 173 if (MO.isUse()) { 174 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 175 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 176 I.tieOperands(DefIdx, OpI); 177 } 178 } 179 return true; 180 } 181 182 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 183 MachineRegisterInfo &MRI) { 184 // Give up if either DstReg or SrcReg is a physical register. 185 if (DstReg.isPhysical() || SrcReg.isPhysical()) 186 return false; 187 // Give up if the types don't match. 188 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 189 return false; 190 // Replace if either DstReg has no constraints or the register 191 // constraints match. 192 return !MRI.getRegClassOrRegBank(DstReg) || 193 MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg); 194 } 195 196 bool llvm::isTriviallyDead(const MachineInstr &MI, 197 const MachineRegisterInfo &MRI) { 198 // FIXME: This logical is mostly duplicated with 199 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 200 // MachineInstr::isLabel? 201 202 // Don't delete frame allocation labels. 203 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 204 return false; 205 // LIFETIME markers should be preserved even if they seem dead. 206 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 207 MI.getOpcode() == TargetOpcode::LIFETIME_END) 208 return false; 209 210 // If we can move an instruction, we can remove it. Otherwise, it has 211 // a side-effect of some sort. 212 bool SawStore = false; 213 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) 214 return false; 215 216 // Instructions without side-effects are dead iff they only define dead vregs. 217 for (auto &MO : MI.operands()) { 218 if (!MO.isReg() || !MO.isDef()) 219 continue; 220 221 Register Reg = MO.getReg(); 222 if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg)) 223 return false; 224 } 225 return true; 226 } 227 228 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 229 MachineFunction &MF, 230 const TargetPassConfig &TPC, 231 MachineOptimizationRemarkEmitter &MORE, 232 MachineOptimizationRemarkMissed &R) { 233 bool IsFatal = Severity == DS_Error && 234 TPC.isGlobalISelAbortEnabled(); 235 // Print the function name explicitly if we don't have a debug location (which 236 // makes the diagnostic less useful) or if we're going to emit a raw error. 237 if (!R.getLocation().isValid() || IsFatal) 238 R << (" (in function: " + MF.getName() + ")").str(); 239 240 if (IsFatal) 241 report_fatal_error(Twine(R.getMsg())); 242 else 243 MORE.emit(R); 244 } 245 246 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 247 MachineOptimizationRemarkEmitter &MORE, 248 MachineOptimizationRemarkMissed &R) { 249 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 250 } 251 252 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 253 MachineOptimizationRemarkEmitter &MORE, 254 MachineOptimizationRemarkMissed &R) { 255 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 256 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 257 } 258 259 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 260 MachineOptimizationRemarkEmitter &MORE, 261 const char *PassName, StringRef Msg, 262 const MachineInstr &MI) { 263 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 264 MI.getDebugLoc(), MI.getParent()); 265 R << Msg; 266 // Printing MI is expensive; only do it if expensive remarks are enabled. 267 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 268 R << ": " << ore::MNV("Inst", MI); 269 reportGISelFailure(MF, TPC, MORE, R); 270 } 271 272 Optional<APInt> llvm::getIConstantVRegVal(Register VReg, 273 const MachineRegisterInfo &MRI) { 274 Optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( 275 VReg, MRI, /*LookThroughInstrs*/ false); 276 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 277 "Value found while looking through instrs"); 278 if (!ValAndVReg) 279 return None; 280 return ValAndVReg->Value; 281 } 282 283 Optional<int64_t> 284 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { 285 Optional<APInt> Val = getIConstantVRegVal(VReg, MRI); 286 if (Val && Val->getBitWidth() <= 64) 287 return Val->getSExtValue(); 288 return None; 289 } 290 291 namespace { 292 293 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn; 294 typedef std::function<Optional<APInt>(const MachineInstr *MI)> GetAPCstFn; 295 296 Optional<ValueAndVReg> getConstantVRegValWithLookThrough( 297 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode, 298 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true, 299 bool LookThroughAnyExt = false) { 300 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 301 MachineInstr *MI; 302 303 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && 304 LookThroughInstrs) { 305 switch (MI->getOpcode()) { 306 case TargetOpcode::G_ANYEXT: 307 if (!LookThroughAnyExt) 308 return None; 309 LLVM_FALLTHROUGH; 310 case TargetOpcode::G_TRUNC: 311 case TargetOpcode::G_SEXT: 312 case TargetOpcode::G_ZEXT: 313 SeenOpcodes.push_back(std::make_pair( 314 MI->getOpcode(), 315 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 316 VReg = MI->getOperand(1).getReg(); 317 break; 318 case TargetOpcode::COPY: 319 VReg = MI->getOperand(1).getReg(); 320 if (Register::isPhysicalRegister(VReg)) 321 return None; 322 break; 323 case TargetOpcode::G_INTTOPTR: 324 VReg = MI->getOperand(1).getReg(); 325 break; 326 default: 327 return None; 328 } 329 } 330 if (!MI || !IsConstantOpcode(MI)) 331 return None; 332 333 Optional<APInt> MaybeVal = getAPCstValue(MI); 334 if (!MaybeVal) 335 return None; 336 APInt &Val = *MaybeVal; 337 while (!SeenOpcodes.empty()) { 338 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val(); 339 switch (OpcodeAndSize.first) { 340 case TargetOpcode::G_TRUNC: 341 Val = Val.trunc(OpcodeAndSize.second); 342 break; 343 case TargetOpcode::G_ANYEXT: 344 case TargetOpcode::G_SEXT: 345 Val = Val.sext(OpcodeAndSize.second); 346 break; 347 case TargetOpcode::G_ZEXT: 348 Val = Val.zext(OpcodeAndSize.second); 349 break; 350 } 351 } 352 353 return ValueAndVReg{Val, VReg}; 354 } 355 356 bool isIConstant(const MachineInstr *MI) { 357 if (!MI) 358 return false; 359 return MI->getOpcode() == TargetOpcode::G_CONSTANT; 360 } 361 362 bool isFConstant(const MachineInstr *MI) { 363 if (!MI) 364 return false; 365 return MI->getOpcode() == TargetOpcode::G_FCONSTANT; 366 } 367 368 bool isAnyConstant(const MachineInstr *MI) { 369 if (!MI) 370 return false; 371 unsigned Opc = MI->getOpcode(); 372 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; 373 } 374 375 Optional<APInt> getCImmAsAPInt(const MachineInstr *MI) { 376 const MachineOperand &CstVal = MI->getOperand(1); 377 if (CstVal.isCImm()) 378 return CstVal.getCImm()->getValue(); 379 return None; 380 } 381 382 Optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) { 383 const MachineOperand &CstVal = MI->getOperand(1); 384 if (CstVal.isCImm()) 385 return CstVal.getCImm()->getValue(); 386 if (CstVal.isFPImm()) 387 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 388 return None; 389 } 390 391 } // end anonymous namespace 392 393 Optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( 394 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 395 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant, 396 getCImmAsAPInt, LookThroughInstrs); 397 } 398 399 Optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( 400 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 401 bool LookThroughAnyExt) { 402 return getConstantVRegValWithLookThrough( 403 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs, 404 LookThroughAnyExt); 405 } 406 407 Optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( 408 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 409 auto Reg = getConstantVRegValWithLookThrough( 410 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs); 411 if (!Reg) 412 return None; 413 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), 414 Reg->VReg}; 415 } 416 417 const ConstantFP * 418 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 419 MachineInstr *MI = MRI.getVRegDef(VReg); 420 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 421 return nullptr; 422 return MI->getOperand(1).getFPImm(); 423 } 424 425 Optional<DefinitionAndSourceRegister> 426 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 427 Register DefSrcReg = Reg; 428 auto *DefMI = MRI.getVRegDef(Reg); 429 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 430 if (!DstTy.isValid()) 431 return None; 432 unsigned Opc = DefMI->getOpcode(); 433 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 434 Register SrcReg = DefMI->getOperand(1).getReg(); 435 auto SrcTy = MRI.getType(SrcReg); 436 if (!SrcTy.isValid()) 437 break; 438 DefMI = MRI.getVRegDef(SrcReg); 439 DefSrcReg = SrcReg; 440 Opc = DefMI->getOpcode(); 441 } 442 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 443 } 444 445 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 446 const MachineRegisterInfo &MRI) { 447 Optional<DefinitionAndSourceRegister> DefSrcReg = 448 getDefSrcRegIgnoringCopies(Reg, MRI); 449 return DefSrcReg ? DefSrcReg->MI : nullptr; 450 } 451 452 Register llvm::getSrcRegIgnoringCopies(Register Reg, 453 const MachineRegisterInfo &MRI) { 454 Optional<DefinitionAndSourceRegister> DefSrcReg = 455 getDefSrcRegIgnoringCopies(Reg, MRI); 456 return DefSrcReg ? DefSrcReg->Reg : Register(); 457 } 458 459 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 460 const MachineRegisterInfo &MRI) { 461 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 462 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 463 } 464 465 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 466 if (Size == 32) 467 return APFloat(float(Val)); 468 if (Size == 64) 469 return APFloat(Val); 470 if (Size != 16) 471 llvm_unreachable("Unsupported FPConstant size"); 472 bool Ignored; 473 APFloat APF(Val); 474 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 475 return APF; 476 } 477 478 Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1, 479 const Register Op2, 480 const MachineRegisterInfo &MRI) { 481 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); 482 if (!MaybeOp2Cst) 483 return None; 484 485 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); 486 if (!MaybeOp1Cst) 487 return None; 488 489 const APInt &C1 = MaybeOp1Cst->Value; 490 const APInt &C2 = MaybeOp2Cst->Value; 491 switch (Opcode) { 492 default: 493 break; 494 case TargetOpcode::G_ADD: 495 return C1 + C2; 496 case TargetOpcode::G_AND: 497 return C1 & C2; 498 case TargetOpcode::G_ASHR: 499 return C1.ashr(C2); 500 case TargetOpcode::G_LSHR: 501 return C1.lshr(C2); 502 case TargetOpcode::G_MUL: 503 return C1 * C2; 504 case TargetOpcode::G_OR: 505 return C1 | C2; 506 case TargetOpcode::G_SHL: 507 return C1 << C2; 508 case TargetOpcode::G_SUB: 509 return C1 - C2; 510 case TargetOpcode::G_XOR: 511 return C1 ^ C2; 512 case TargetOpcode::G_UDIV: 513 if (!C2.getBoolValue()) 514 break; 515 return C1.udiv(C2); 516 case TargetOpcode::G_SDIV: 517 if (!C2.getBoolValue()) 518 break; 519 return C1.sdiv(C2); 520 case TargetOpcode::G_UREM: 521 if (!C2.getBoolValue()) 522 break; 523 return C1.urem(C2); 524 case TargetOpcode::G_SREM: 525 if (!C2.getBoolValue()) 526 break; 527 return C1.srem(C2); 528 } 529 530 return None; 531 } 532 533 Optional<APFloat> llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, 534 const Register Op2, 535 const MachineRegisterInfo &MRI) { 536 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 537 if (!Op2Cst) 538 return None; 539 540 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 541 if (!Op1Cst) 542 return None; 543 544 APFloat C1 = Op1Cst->getValueAPF(); 545 const APFloat &C2 = Op2Cst->getValueAPF(); 546 switch (Opcode) { 547 case TargetOpcode::G_FADD: 548 C1.add(C2, APFloat::rmNearestTiesToEven); 549 return C1; 550 case TargetOpcode::G_FSUB: 551 C1.subtract(C2, APFloat::rmNearestTiesToEven); 552 return C1; 553 case TargetOpcode::G_FMUL: 554 C1.multiply(C2, APFloat::rmNearestTiesToEven); 555 return C1; 556 case TargetOpcode::G_FDIV: 557 C1.divide(C2, APFloat::rmNearestTiesToEven); 558 return C1; 559 case TargetOpcode::G_FREM: 560 C1.mod(C2); 561 return C1; 562 case TargetOpcode::G_FCOPYSIGN: 563 C1.copySign(C2); 564 return C1; 565 case TargetOpcode::G_FMINNUM: 566 return minnum(C1, C2); 567 case TargetOpcode::G_FMAXNUM: 568 return maxnum(C1, C2); 569 case TargetOpcode::G_FMINIMUM: 570 return minimum(C1, C2); 571 case TargetOpcode::G_FMAXIMUM: 572 return maximum(C1, C2); 573 case TargetOpcode::G_FMINNUM_IEEE: 574 case TargetOpcode::G_FMAXNUM_IEEE: 575 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not 576 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, 577 // and currently there isn't a nice wrapper in APFloat for the version with 578 // correct snan handling. 579 break; 580 default: 581 break; 582 } 583 584 return None; 585 } 586 587 Optional<MachineInstr *> 588 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, 589 const Register Op2, 590 const MachineRegisterInfo &MRI, 591 MachineIRBuilder &MIB) { 592 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI); 593 if (!SrcVec1) 594 return None; 595 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI); 596 if (!SrcVec2) 597 return None; 598 599 const LLT EltTy = MRI.getType(SrcVec1->getSourceReg(0)); 600 601 SmallVector<Register, 16> FoldedElements; 602 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { 603 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), 604 SrcVec2->getSourceReg(Idx), MRI); 605 if (!MaybeCst) 606 return None; 607 auto FoldedCstReg = MIB.buildConstant(EltTy, *MaybeCst).getReg(0); 608 FoldedElements.emplace_back(FoldedCstReg); 609 } 610 // Create the new vector constant. 611 auto CstVec = 612 MIB.buildBuildVector(MRI.getType(SrcVec1->getReg(0)), FoldedElements); 613 return &*CstVec; 614 } 615 616 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 617 bool SNaN) { 618 const MachineInstr *DefMI = MRI.getVRegDef(Val); 619 if (!DefMI) 620 return false; 621 622 const TargetMachine& TM = DefMI->getMF()->getTarget(); 623 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 624 return true; 625 626 // If the value is a constant, we can obviously see if it is a NaN or not. 627 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { 628 return !FPVal->getValueAPF().isNaN() || 629 (SNaN && !FPVal->getValueAPF().isSignaling()); 630 } 631 632 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 633 for (const auto &Op : DefMI->uses()) 634 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) 635 return false; 636 return true; 637 } 638 639 switch (DefMI->getOpcode()) { 640 default: 641 break; 642 case TargetOpcode::G_FMINNUM_IEEE: 643 case TargetOpcode::G_FMAXNUM_IEEE: { 644 if (SNaN) 645 return true; 646 // This can return a NaN if either operand is an sNaN, or if both operands 647 // are NaN. 648 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && 649 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || 650 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && 651 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); 652 } 653 case TargetOpcode::G_FMINNUM: 654 case TargetOpcode::G_FMAXNUM: { 655 // Only one needs to be known not-nan, since it will be returned if the 656 // other ends up being one. 657 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || 658 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); 659 } 660 } 661 662 if (SNaN) { 663 // FP operations quiet. For now, just handle the ones inserted during 664 // legalization. 665 switch (DefMI->getOpcode()) { 666 case TargetOpcode::G_FPEXT: 667 case TargetOpcode::G_FPTRUNC: 668 case TargetOpcode::G_FCANONICALIZE: 669 return true; 670 default: 671 return false; 672 } 673 } 674 675 return false; 676 } 677 678 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 679 const MachinePointerInfo &MPO) { 680 auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>(); 681 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 682 MachineFrameInfo &MFI = MF.getFrameInfo(); 683 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 684 MPO.Offset); 685 } 686 687 if (const Value *V = MPO.V.dyn_cast<const Value *>()) { 688 const Module *M = MF.getFunction().getParent(); 689 return V->getPointerAlignment(M->getDataLayout()); 690 } 691 692 return Align(1); 693 } 694 695 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 696 const TargetInstrInfo &TII, 697 MCRegister PhysReg, 698 const TargetRegisterClass &RC, 699 LLT RegTy) { 700 DebugLoc DL; // FIXME: Is no location the right choice? 701 MachineBasicBlock &EntryMBB = MF.front(); 702 MachineRegisterInfo &MRI = MF.getRegInfo(); 703 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 704 if (LiveIn) { 705 MachineInstr *Def = MRI.getVRegDef(LiveIn); 706 if (Def) { 707 // FIXME: Should the verifier check this is in the entry block? 708 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 709 return LiveIn; 710 } 711 712 // It's possible the incoming argument register and copy was added during 713 // lowering, but later deleted due to being/becoming dead. If this happens, 714 // re-insert the copy. 715 } else { 716 // The live in register was not present, so add it. 717 LiveIn = MF.addLiveIn(PhysReg, &RC); 718 if (RegTy.isValid()) 719 MRI.setType(LiveIn, RegTy); 720 } 721 722 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 723 .addReg(PhysReg); 724 if (!EntryMBB.isLiveIn(PhysReg)) 725 EntryMBB.addLiveIn(PhysReg); 726 return LiveIn; 727 } 728 729 Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1, 730 uint64_t Imm, 731 const MachineRegisterInfo &MRI) { 732 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); 733 if (MaybeOp1Cst) { 734 switch (Opcode) { 735 default: 736 break; 737 case TargetOpcode::G_SEXT_INREG: { 738 LLT Ty = MRI.getType(Op1); 739 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 740 } 741 } 742 } 743 return None; 744 } 745 746 Optional<APFloat> llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, 747 Register Src, 748 const MachineRegisterInfo &MRI) { 749 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); 750 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { 751 APFloat DstVal(getFltSemanticForLLT(DstTy)); 752 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, 753 APFloat::rmNearestTiesToEven); 754 return DstVal; 755 } 756 return None; 757 } 758 759 Optional<SmallVector<unsigned>> 760 llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) { 761 LLT Ty = MRI.getType(Src); 762 SmallVector<unsigned> FoldedCTLZs; 763 auto tryFoldScalar = [&](Register R) -> Optional<unsigned> { 764 auto MaybeCst = getIConstantVRegVal(R, MRI); 765 if (!MaybeCst) 766 return None; 767 return MaybeCst->countLeadingZeros(); 768 }; 769 if (Ty.isVector()) { 770 // Try to constant fold each element. 771 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI); 772 if (!BV) 773 return None; 774 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 775 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { 776 FoldedCTLZs.emplace_back(*MaybeFold); 777 continue; 778 } 779 return None; 780 } 781 return FoldedCTLZs; 782 } 783 if (auto MaybeCst = tryFoldScalar(Src)) { 784 FoldedCTLZs.emplace_back(*MaybeCst); 785 return FoldedCTLZs; 786 } 787 return None; 788 } 789 790 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 791 GISelKnownBits *KB) { 792 Optional<DefinitionAndSourceRegister> DefSrcReg = 793 getDefSrcRegIgnoringCopies(Reg, MRI); 794 if (!DefSrcReg) 795 return false; 796 797 const MachineInstr &MI = *DefSrcReg->MI; 798 const LLT Ty = MRI.getType(Reg); 799 800 switch (MI.getOpcode()) { 801 case TargetOpcode::G_CONSTANT: { 802 unsigned BitWidth = Ty.getScalarSizeInBits(); 803 const ConstantInt *CI = MI.getOperand(1).getCImm(); 804 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 805 } 806 case TargetOpcode::G_SHL: { 807 // A left-shift of a constant one will have exactly one bit set because 808 // shifting the bit off the end is undefined. 809 810 // TODO: Constant splat 811 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 812 if (*ConstLHS == 1) 813 return true; 814 } 815 816 break; 817 } 818 case TargetOpcode::G_LSHR: { 819 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 820 if (ConstLHS->isSignMask()) 821 return true; 822 } 823 824 break; 825 } 826 case TargetOpcode::G_BUILD_VECTOR: { 827 // TODO: Probably should have a recursion depth guard since you could have 828 // bitcasted vector elements. 829 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 830 if (!isKnownToBeAPowerOfTwo(MI.getOperand(I).getReg(), MRI, KB)) 831 return false; 832 } 833 834 return true; 835 } 836 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 837 // Only handle constants since we would need to know if number of leading 838 // zeros is greater than the truncation amount. 839 const unsigned BitWidth = Ty.getScalarSizeInBits(); 840 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 841 auto Const = getIConstantVRegVal(MI.getOperand(I).getReg(), MRI); 842 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) 843 return false; 844 } 845 846 return true; 847 } 848 default: 849 break; 850 } 851 852 if (!KB) 853 return false; 854 855 // More could be done here, though the above checks are enough 856 // to handle some common cases. 857 858 // Fall back to computeKnownBits to catch other known cases. 859 KnownBits Known = KB->getKnownBits(Reg); 860 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 861 } 862 863 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 864 AU.addPreserved<StackProtector>(); 865 } 866 867 static unsigned getLCMSize(unsigned OrigSize, unsigned TargetSize) { 868 unsigned Mul = OrigSize * TargetSize; 869 unsigned GCDSize = greatestCommonDivisor(OrigSize, TargetSize); 870 return Mul / GCDSize; 871 } 872 873 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 874 const unsigned OrigSize = OrigTy.getSizeInBits(); 875 const unsigned TargetSize = TargetTy.getSizeInBits(); 876 877 if (OrigSize == TargetSize) 878 return OrigTy; 879 880 if (OrigTy.isVector()) { 881 const LLT OrigElt = OrigTy.getElementType(); 882 883 if (TargetTy.isVector()) { 884 const LLT TargetElt = TargetTy.getElementType(); 885 886 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 887 int GCDElts = greatestCommonDivisor(OrigTy.getNumElements(), 888 TargetTy.getNumElements()); 889 // Prefer the original element type. 890 ElementCount Mul = OrigTy.getElementCount() * TargetTy.getNumElements(); 891 return LLT::vector(Mul.divideCoefficientBy(GCDElts), 892 OrigTy.getElementType()); 893 } 894 } else { 895 if (OrigElt.getSizeInBits() == TargetSize) 896 return OrigTy; 897 } 898 899 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 900 return LLT::fixed_vector(LCMSize / OrigElt.getSizeInBits(), OrigElt); 901 } 902 903 if (TargetTy.isVector()) { 904 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 905 return LLT::fixed_vector(LCMSize / OrigSize, OrigTy); 906 } 907 908 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 909 910 // Preserve pointer types. 911 if (LCMSize == OrigSize) 912 return OrigTy; 913 if (LCMSize == TargetSize) 914 return TargetTy; 915 916 return LLT::scalar(LCMSize); 917 } 918 919 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 920 const unsigned OrigSize = OrigTy.getSizeInBits(); 921 const unsigned TargetSize = TargetTy.getSizeInBits(); 922 923 if (OrigSize == TargetSize) 924 return OrigTy; 925 926 if (OrigTy.isVector()) { 927 LLT OrigElt = OrigTy.getElementType(); 928 if (TargetTy.isVector()) { 929 LLT TargetElt = TargetTy.getElementType(); 930 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 931 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 932 TargetTy.getNumElements()); 933 return LLT::scalarOrVector(ElementCount::getFixed(GCD), OrigElt); 934 } 935 } else { 936 // If the source is a vector of pointers, return a pointer element. 937 if (OrigElt.getSizeInBits() == TargetSize) 938 return OrigElt; 939 } 940 941 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 942 if (GCD == OrigElt.getSizeInBits()) 943 return OrigElt; 944 945 // If we can't produce the original element type, we have to use a smaller 946 // scalar. 947 if (GCD < OrigElt.getSizeInBits()) 948 return LLT::scalar(GCD); 949 return LLT::fixed_vector(GCD / OrigElt.getSizeInBits(), OrigElt); 950 } 951 952 if (TargetTy.isVector()) { 953 // Try to preserve the original element type. 954 LLT TargetElt = TargetTy.getElementType(); 955 if (TargetElt.getSizeInBits() == OrigSize) 956 return OrigTy; 957 } 958 959 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 960 return LLT::scalar(GCD); 961 } 962 963 Optional<int> llvm::getSplatIndex(MachineInstr &MI) { 964 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 965 "Only G_SHUFFLE_VECTOR can have a splat index!"); 966 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 967 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 968 969 // If all elements are undefined, this shuffle can be considered a splat. 970 // Return 0 for better potential for callers to simplify. 971 if (FirstDefinedIdx == Mask.end()) 972 return 0; 973 974 // Make sure all remaining elements are either undef or the same 975 // as the first non-undef value. 976 int SplatValue = *FirstDefinedIdx; 977 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 978 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 979 return None; 980 981 return SplatValue; 982 } 983 984 static bool isBuildVectorOp(unsigned Opcode) { 985 return Opcode == TargetOpcode::G_BUILD_VECTOR || 986 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 987 } 988 989 namespace { 990 991 Optional<ValueAndVReg> getAnyConstantSplat(Register VReg, 992 const MachineRegisterInfo &MRI, 993 bool AllowUndef) { 994 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); 995 if (!MI) 996 return None; 997 998 if (!isBuildVectorOp(MI->getOpcode())) 999 return None; 1000 1001 Optional<ValueAndVReg> SplatValAndReg = None; 1002 for (MachineOperand &Op : MI->uses()) { 1003 Register Element = Op.getReg(); 1004 auto ElementValAndReg = 1005 getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); 1006 1007 // If AllowUndef, treat undef as value that will result in a constant splat. 1008 if (!ElementValAndReg) { 1009 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element))) 1010 continue; 1011 return None; 1012 } 1013 1014 // Record splat value 1015 if (!SplatValAndReg) 1016 SplatValAndReg = ElementValAndReg; 1017 1018 // Different constant then the one already recorded, not a constant splat. 1019 if (SplatValAndReg->Value != ElementValAndReg->Value) 1020 return None; 1021 } 1022 1023 return SplatValAndReg; 1024 } 1025 1026 bool isBuildVectorConstantSplat(const MachineInstr &MI, 1027 const MachineRegisterInfo &MRI, 1028 int64_t SplatValue, bool AllowUndef) { 1029 if (auto SplatValAndReg = 1030 getAnyConstantSplat(MI.getOperand(0).getReg(), MRI, AllowUndef)) 1031 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); 1032 return false; 1033 } 1034 1035 } // end anonymous namespace 1036 1037 Optional<int64_t> 1038 llvm::getBuildVectorConstantSplat(const MachineInstr &MI, 1039 const MachineRegisterInfo &MRI) { 1040 if (auto SplatValAndReg = 1041 getAnyConstantSplat(MI.getOperand(0).getReg(), MRI, false)) 1042 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); 1043 return None; 1044 } 1045 1046 Optional<FPValueAndVReg> llvm::getFConstantSplat(Register VReg, 1047 const MachineRegisterInfo &MRI, 1048 bool AllowUndef) { 1049 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) 1050 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1051 return None; 1052 } 1053 1054 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 1055 const MachineRegisterInfo &MRI, 1056 bool AllowUndef) { 1057 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); 1058 } 1059 1060 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 1061 const MachineRegisterInfo &MRI, 1062 bool AllowUndef) { 1063 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); 1064 } 1065 1066 Optional<RegOrConstant> llvm::getVectorSplat(const MachineInstr &MI, 1067 const MachineRegisterInfo &MRI) { 1068 unsigned Opc = MI.getOpcode(); 1069 if (!isBuildVectorOp(Opc)) 1070 return None; 1071 if (auto Splat = getBuildVectorConstantSplat(MI, MRI)) 1072 return RegOrConstant(*Splat); 1073 auto Reg = MI.getOperand(1).getReg(); 1074 if (any_of(make_range(MI.operands_begin() + 2, MI.operands_end()), 1075 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) 1076 return None; 1077 return RegOrConstant(Reg); 1078 } 1079 1080 bool llvm::isConstantOrConstantVector(MachineInstr &MI, 1081 const MachineRegisterInfo &MRI) { 1082 Register Def = MI.getOperand(0).getReg(); 1083 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1084 return true; 1085 GBuildVector *BV = dyn_cast<GBuildVector>(&MI); 1086 if (!BV) 1087 return false; 1088 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1089 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || 1090 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI)) 1091 continue; 1092 return false; 1093 } 1094 return true; 1095 } 1096 1097 Optional<APInt> 1098 llvm::isConstantOrConstantSplatVector(MachineInstr &MI, 1099 const MachineRegisterInfo &MRI) { 1100 Register Def = MI.getOperand(0).getReg(); 1101 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1102 return C->Value; 1103 auto MaybeCst = getBuildVectorConstantSplat(MI, MRI); 1104 if (!MaybeCst) 1105 return None; 1106 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); 1107 return APInt(ScalarSize, *MaybeCst, true); 1108 } 1109 1110 bool llvm::matchUnaryPredicate( 1111 const MachineRegisterInfo &MRI, Register Reg, 1112 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { 1113 1114 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); 1115 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) 1116 return Match(nullptr); 1117 1118 // TODO: Also handle fconstant 1119 if (Def->getOpcode() == TargetOpcode::G_CONSTANT) 1120 return Match(Def->getOperand(1).getCImm()); 1121 1122 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) 1123 return false; 1124 1125 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { 1126 Register SrcElt = Def->getOperand(I).getReg(); 1127 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); 1128 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { 1129 if (!Match(nullptr)) 1130 return false; 1131 continue; 1132 } 1133 1134 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || 1135 !Match(SrcDef->getOperand(1).getCImm())) 1136 return false; 1137 } 1138 1139 return true; 1140 } 1141 1142 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 1143 bool IsFP) { 1144 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1145 case TargetLowering::UndefinedBooleanContent: 1146 return Val & 0x1; 1147 case TargetLowering::ZeroOrOneBooleanContent: 1148 return Val == 1; 1149 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1150 return Val == -1; 1151 } 1152 llvm_unreachable("Invalid boolean contents"); 1153 } 1154 1155 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 1156 bool IsFP) { 1157 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1158 case TargetLowering::UndefinedBooleanContent: 1159 case TargetLowering::ZeroOrOneBooleanContent: 1160 return 1; 1161 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1162 return -1; 1163 } 1164 llvm_unreachable("Invalid boolean contents"); 1165 } 1166 1167 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, 1168 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 1169 const auto &F = MBB.getParent()->getFunction(); 1170 return F.hasOptSize() || F.hasMinSize() || 1171 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); 1172 } 1173 1174 /// These artifacts generally don't have any debug users because they don't 1175 /// directly originate from IR instructions, but instead usually from 1176 /// legalization. Avoiding checking for debug users improves compile time. 1177 /// Note that truncates or extends aren't included because they have IR 1178 /// counterparts which can have debug users after translation. 1179 static bool shouldSkipDbgValueFor(MachineInstr &MI) { 1180 switch (MI.getOpcode()) { 1181 case TargetOpcode::G_UNMERGE_VALUES: 1182 case TargetOpcode::G_MERGE_VALUES: 1183 case TargetOpcode::G_CONCAT_VECTORS: 1184 case TargetOpcode::G_BUILD_VECTOR: 1185 case TargetOpcode::G_EXTRACT: 1186 case TargetOpcode::G_INSERT: 1187 return true; 1188 default: 1189 return false; 1190 } 1191 } 1192 1193 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, 1194 LostDebugLocObserver *LocObserver, 1195 SmallInstListTy &DeadInstChain) { 1196 for (MachineOperand &Op : MI.uses()) { 1197 if (Op.isReg() && Op.getReg().isVirtual()) 1198 DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); 1199 } 1200 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); 1201 DeadInstChain.remove(&MI); 1202 if (shouldSkipDbgValueFor(MI)) 1203 MI.eraseFromParent(); 1204 else 1205 MI.eraseFromParentAndMarkDBGValuesForRemoval(); 1206 if (LocObserver) 1207 LocObserver->checkpoint(false); 1208 } 1209 1210 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, 1211 MachineRegisterInfo &MRI, 1212 LostDebugLocObserver *LocObserver) { 1213 SmallInstListTy DeadInstChain; 1214 for (MachineInstr *MI : DeadInstrs) 1215 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); 1216 1217 while (!DeadInstChain.empty()) { 1218 MachineInstr *Inst = DeadInstChain.pop_back_val(); 1219 if (!isTriviallyDead(*Inst, MRI)) 1220 continue; 1221 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); 1222 } 1223 } 1224 1225 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, 1226 LostDebugLocObserver *LocObserver) { 1227 return eraseInstrs({&MI}, MRI, LocObserver); 1228 } 1229