1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 18 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/StackProtector.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetPassConfig.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/Target/TargetMachine.h" 31 32 #define DEBUG_TYPE "globalisel-utils" 33 34 using namespace llvm; 35 using namespace MIPatternMatch; 36 37 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 38 const TargetInstrInfo &TII, 39 const RegisterBankInfo &RBI, Register Reg, 40 const TargetRegisterClass &RegClass) { 41 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 42 return MRI.createVirtualRegister(&RegClass); 43 44 return Reg; 45 } 46 47 Register llvm::constrainOperandRegClass( 48 const MachineFunction &MF, const TargetRegisterInfo &TRI, 49 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 50 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 51 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 52 Register Reg = RegMO.getReg(); 53 // Assume physical registers are properly constrained. 54 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); 55 56 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 57 // If we created a new virtual register because the class is not compatible 58 // then create a copy between the new and the old register. 59 if (ConstrainedReg != Reg) { 60 MachineBasicBlock::iterator InsertIt(&InsertPt); 61 MachineBasicBlock &MBB = *InsertPt.getParent(); 62 if (RegMO.isUse()) { 63 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 64 TII.get(TargetOpcode::COPY), ConstrainedReg) 65 .addReg(Reg); 66 } else { 67 assert(RegMO.isDef() && "Must be a definition"); 68 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 69 TII.get(TargetOpcode::COPY), Reg) 70 .addReg(ConstrainedReg); 71 } 72 if (GISelChangeObserver *Observer = MF.getObserver()) { 73 Observer->changingInstr(*RegMO.getParent()); 74 } 75 RegMO.setReg(ConstrainedReg); 76 if (GISelChangeObserver *Observer = MF.getObserver()) { 77 Observer->changedInstr(*RegMO.getParent()); 78 } 79 } else { 80 if (GISelChangeObserver *Observer = MF.getObserver()) { 81 if (!RegMO.isDef()) { 82 MachineInstr *RegDef = MRI.getVRegDef(Reg); 83 Observer->changedInstr(*RegDef); 84 } 85 Observer->changingAllUsesOfReg(MRI, Reg); 86 Observer->finishedChangingAllUsesOfReg(); 87 } 88 } 89 return ConstrainedReg; 90 } 91 92 Register llvm::constrainOperandRegClass( 93 const MachineFunction &MF, const TargetRegisterInfo &TRI, 94 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 95 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 96 MachineOperand &RegMO, unsigned OpIdx) { 97 Register Reg = RegMO.getReg(); 98 // Assume physical registers are properly constrained. 99 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); 100 101 const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF); 102 // Some of the target independent instructions, like COPY, may not impose any 103 // register class constraints on some of their operands: If it's a use, we can 104 // skip constraining as the instruction defining the register would constrain 105 // it. 106 107 // We can't constrain unallocatable register classes, because we can't create 108 // virtual registers for these classes, so we need to let targets handled this 109 // case. 110 if (RegClass && !RegClass->isAllocatable()) 111 RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI); 112 113 if (!RegClass) { 114 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 115 "Register class constraint is required unless either the " 116 "instruction is target independent or the operand is a use"); 117 // FIXME: Just bailing out like this here could be not enough, unless we 118 // expect the users of this function to do the right thing for PHIs and 119 // COPY: 120 // v1 = COPY v0 121 // v2 = COPY v1 122 // v1 here may end up not being constrained at all. Please notice that to 123 // reproduce the issue we likely need a destination pattern of a selection 124 // rule producing such extra copies, not just an input GMIR with them as 125 // every existing target using selectImpl handles copies before calling it 126 // and they never reach this function. 127 return Reg; 128 } 129 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass, 130 RegMO); 131 } 132 133 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 134 const TargetInstrInfo &TII, 135 const TargetRegisterInfo &TRI, 136 const RegisterBankInfo &RBI) { 137 assert(!isPreISelGenericOpcode(I.getOpcode()) && 138 "A selected instruction is expected"); 139 MachineBasicBlock &MBB = *I.getParent(); 140 MachineFunction &MF = *MBB.getParent(); 141 MachineRegisterInfo &MRI = MF.getRegInfo(); 142 143 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 144 MachineOperand &MO = I.getOperand(OpI); 145 146 // There's nothing to be done on non-register operands. 147 if (!MO.isReg()) 148 continue; 149 150 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 151 assert(MO.isReg() && "Unsupported non-reg operand"); 152 153 Register Reg = MO.getReg(); 154 // Physical registers don't need to be constrained. 155 if (Register::isPhysicalRegister(Reg)) 156 continue; 157 158 // Register operands with a value of 0 (e.g. predicate operands) don't need 159 // to be constrained. 160 if (Reg == 0) 161 continue; 162 163 // If the operand is a vreg, we should constrain its regclass, and only 164 // insert COPYs if that's impossible. 165 // constrainOperandRegClass does that for us. 166 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 167 168 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 169 // done. 170 if (MO.isUse()) { 171 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 172 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 173 I.tieOperands(DefIdx, OpI); 174 } 175 } 176 return true; 177 } 178 179 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 180 MachineRegisterInfo &MRI) { 181 // Give up if either DstReg or SrcReg is a physical register. 182 if (DstReg.isPhysical() || SrcReg.isPhysical()) 183 return false; 184 // Give up if the types don't match. 185 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 186 return false; 187 // Replace if either DstReg has no constraints or the register 188 // constraints match. 189 return !MRI.getRegClassOrRegBank(DstReg) || 190 MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg); 191 } 192 193 bool llvm::isTriviallyDead(const MachineInstr &MI, 194 const MachineRegisterInfo &MRI) { 195 // FIXME: This logical is mostly duplicated with 196 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 197 // MachineInstr::isLabel? 198 199 // Don't delete frame allocation labels. 200 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 201 return false; 202 203 // If we can move an instruction, we can remove it. Otherwise, it has 204 // a side-effect of some sort. 205 bool SawStore = false; 206 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) 207 return false; 208 209 // Instructions without side-effects are dead iff they only define dead vregs. 210 for (auto &MO : MI.operands()) { 211 if (!MO.isReg() || !MO.isDef()) 212 continue; 213 214 Register Reg = MO.getReg(); 215 if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg)) 216 return false; 217 } 218 return true; 219 } 220 221 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 222 MachineFunction &MF, 223 const TargetPassConfig &TPC, 224 MachineOptimizationRemarkEmitter &MORE, 225 MachineOptimizationRemarkMissed &R) { 226 bool IsFatal = Severity == DS_Error && 227 TPC.isGlobalISelAbortEnabled(); 228 // Print the function name explicitly if we don't have a debug location (which 229 // makes the diagnostic less useful) or if we're going to emit a raw error. 230 if (!R.getLocation().isValid() || IsFatal) 231 R << (" (in function: " + MF.getName() + ")").str(); 232 233 if (IsFatal) 234 report_fatal_error(R.getMsg()); 235 else 236 MORE.emit(R); 237 } 238 239 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 240 MachineOptimizationRemarkEmitter &MORE, 241 MachineOptimizationRemarkMissed &R) { 242 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 243 } 244 245 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 246 MachineOptimizationRemarkEmitter &MORE, 247 MachineOptimizationRemarkMissed &R) { 248 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 249 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 250 } 251 252 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 253 MachineOptimizationRemarkEmitter &MORE, 254 const char *PassName, StringRef Msg, 255 const MachineInstr &MI) { 256 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 257 MI.getDebugLoc(), MI.getParent()); 258 R << Msg; 259 // Printing MI is expensive; only do it if expensive remarks are enabled. 260 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 261 R << ": " << ore::MNV("Inst", MI); 262 reportGISelFailure(MF, TPC, MORE, R); 263 } 264 265 Optional<APInt> llvm::getConstantVRegVal(Register VReg, 266 const MachineRegisterInfo &MRI) { 267 Optional<ValueAndVReg> ValAndVReg = 268 getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false); 269 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 270 "Value found while looking through instrs"); 271 if (!ValAndVReg) 272 return None; 273 return ValAndVReg->Value; 274 } 275 276 Optional<int64_t> llvm::getConstantVRegSExtVal(Register VReg, 277 const MachineRegisterInfo &MRI) { 278 Optional<APInt> Val = getConstantVRegVal(VReg, MRI); 279 if (Val && Val->getBitWidth() <= 64) 280 return Val->getSExtValue(); 281 return None; 282 } 283 284 Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough( 285 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 286 bool HandleFConstant, bool LookThroughAnyExt) { 287 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 288 MachineInstr *MI; 289 auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) { 290 return Opcode == TargetOpcode::G_CONSTANT || 291 (HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT); 292 }; 293 auto GetImmediateValue = [HandleFConstant, 294 &MRI](const MachineInstr &MI) -> Optional<APInt> { 295 const MachineOperand &CstVal = MI.getOperand(1); 296 if (!CstVal.isImm() && !CstVal.isCImm() && 297 (!HandleFConstant || !CstVal.isFPImm())) 298 return None; 299 if (!CstVal.isFPImm()) { 300 unsigned BitWidth = 301 MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 302 APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm()) 303 : CstVal.getCImm()->getValue(); 304 assert(Val.getBitWidth() == BitWidth && 305 "Value bitwidth doesn't match definition type"); 306 return Val; 307 } 308 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 309 }; 310 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) && 311 LookThroughInstrs) { 312 switch (MI->getOpcode()) { 313 case TargetOpcode::G_ANYEXT: 314 if (!LookThroughAnyExt) 315 return None; 316 LLVM_FALLTHROUGH; 317 case TargetOpcode::G_TRUNC: 318 case TargetOpcode::G_SEXT: 319 case TargetOpcode::G_ZEXT: 320 SeenOpcodes.push_back(std::make_pair( 321 MI->getOpcode(), 322 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 323 VReg = MI->getOperand(1).getReg(); 324 break; 325 case TargetOpcode::COPY: 326 VReg = MI->getOperand(1).getReg(); 327 if (Register::isPhysicalRegister(VReg)) 328 return None; 329 break; 330 case TargetOpcode::G_INTTOPTR: 331 VReg = MI->getOperand(1).getReg(); 332 break; 333 default: 334 return None; 335 } 336 } 337 if (!MI || !IsConstantOpcode(MI->getOpcode())) 338 return None; 339 340 Optional<APInt> MaybeVal = GetImmediateValue(*MI); 341 if (!MaybeVal) 342 return None; 343 APInt &Val = *MaybeVal; 344 while (!SeenOpcodes.empty()) { 345 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val(); 346 switch (OpcodeAndSize.first) { 347 case TargetOpcode::G_TRUNC: 348 Val = Val.trunc(OpcodeAndSize.second); 349 break; 350 case TargetOpcode::G_ANYEXT: 351 case TargetOpcode::G_SEXT: 352 Val = Val.sext(OpcodeAndSize.second); 353 break; 354 case TargetOpcode::G_ZEXT: 355 Val = Val.zext(OpcodeAndSize.second); 356 break; 357 } 358 } 359 360 return ValueAndVReg{Val, VReg}; 361 } 362 363 const ConstantFP * 364 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 365 MachineInstr *MI = MRI.getVRegDef(VReg); 366 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 367 return nullptr; 368 return MI->getOperand(1).getFPImm(); 369 } 370 371 Optional<DefinitionAndSourceRegister> 372 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 373 Register DefSrcReg = Reg; 374 auto *DefMI = MRI.getVRegDef(Reg); 375 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 376 if (!DstTy.isValid()) 377 return None; 378 unsigned Opc = DefMI->getOpcode(); 379 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 380 Register SrcReg = DefMI->getOperand(1).getReg(); 381 auto SrcTy = MRI.getType(SrcReg); 382 if (!SrcTy.isValid()) 383 break; 384 Opc = DefMI->getOpcode(); 385 DefMI = MRI.getVRegDef(SrcReg); 386 DefSrcReg = SrcReg; 387 } 388 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 389 } 390 391 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 392 const MachineRegisterInfo &MRI) { 393 Optional<DefinitionAndSourceRegister> DefSrcReg = 394 getDefSrcRegIgnoringCopies(Reg, MRI); 395 return DefSrcReg ? DefSrcReg->MI : nullptr; 396 } 397 398 Register llvm::getSrcRegIgnoringCopies(Register Reg, 399 const MachineRegisterInfo &MRI) { 400 Optional<DefinitionAndSourceRegister> DefSrcReg = 401 getDefSrcRegIgnoringCopies(Reg, MRI); 402 return DefSrcReg ? DefSrcReg->Reg : Register(); 403 } 404 405 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 406 const MachineRegisterInfo &MRI) { 407 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 408 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 409 } 410 411 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 412 if (Size == 32) 413 return APFloat(float(Val)); 414 if (Size == 64) 415 return APFloat(Val); 416 if (Size != 16) 417 llvm_unreachable("Unsupported FPConstant size"); 418 bool Ignored; 419 APFloat APF(Val); 420 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 421 return APF; 422 } 423 424 Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1, 425 const Register Op2, 426 const MachineRegisterInfo &MRI) { 427 auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI); 428 if (!MaybeOp2Cst) 429 return None; 430 431 auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI); 432 if (!MaybeOp1Cst) 433 return None; 434 435 const APInt &C1 = *MaybeOp1Cst; 436 const APInt &C2 = *MaybeOp2Cst; 437 switch (Opcode) { 438 default: 439 break; 440 case TargetOpcode::G_ADD: 441 return C1 + C2; 442 case TargetOpcode::G_AND: 443 return C1 & C2; 444 case TargetOpcode::G_ASHR: 445 return C1.ashr(C2); 446 case TargetOpcode::G_LSHR: 447 return C1.lshr(C2); 448 case TargetOpcode::G_MUL: 449 return C1 * C2; 450 case TargetOpcode::G_OR: 451 return C1 | C2; 452 case TargetOpcode::G_SHL: 453 return C1 << C2; 454 case TargetOpcode::G_SUB: 455 return C1 - C2; 456 case TargetOpcode::G_XOR: 457 return C1 ^ C2; 458 case TargetOpcode::G_UDIV: 459 if (!C2.getBoolValue()) 460 break; 461 return C1.udiv(C2); 462 case TargetOpcode::G_SDIV: 463 if (!C2.getBoolValue()) 464 break; 465 return C1.sdiv(C2); 466 case TargetOpcode::G_UREM: 467 if (!C2.getBoolValue()) 468 break; 469 return C1.urem(C2); 470 case TargetOpcode::G_SREM: 471 if (!C2.getBoolValue()) 472 break; 473 return C1.srem(C2); 474 } 475 476 return None; 477 } 478 479 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 480 bool SNaN) { 481 const MachineInstr *DefMI = MRI.getVRegDef(Val); 482 if (!DefMI) 483 return false; 484 485 const TargetMachine& TM = DefMI->getMF()->getTarget(); 486 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 487 return true; 488 489 if (SNaN) { 490 // FP operations quiet. For now, just handle the ones inserted during 491 // legalization. 492 switch (DefMI->getOpcode()) { 493 case TargetOpcode::G_FPEXT: 494 case TargetOpcode::G_FPTRUNC: 495 case TargetOpcode::G_FCANONICALIZE: 496 return true; 497 default: 498 return false; 499 } 500 } 501 502 return false; 503 } 504 505 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 506 const MachinePointerInfo &MPO) { 507 auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>(); 508 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 509 MachineFrameInfo &MFI = MF.getFrameInfo(); 510 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 511 MPO.Offset); 512 } 513 514 return Align(1); 515 } 516 517 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 518 const TargetInstrInfo &TII, 519 MCRegister PhysReg, 520 const TargetRegisterClass &RC, 521 LLT RegTy) { 522 DebugLoc DL; // FIXME: Is no location the right choice? 523 MachineBasicBlock &EntryMBB = MF.front(); 524 MachineRegisterInfo &MRI = MF.getRegInfo(); 525 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 526 if (LiveIn) { 527 MachineInstr *Def = MRI.getVRegDef(LiveIn); 528 if (Def) { 529 // FIXME: Should the verifier check this is in the entry block? 530 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 531 return LiveIn; 532 } 533 534 // It's possible the incoming argument register and copy was added during 535 // lowering, but later deleted due to being/becoming dead. If this happens, 536 // re-insert the copy. 537 } else { 538 // The live in register was not present, so add it. 539 LiveIn = MF.addLiveIn(PhysReg, &RC); 540 if (RegTy.isValid()) 541 MRI.setType(LiveIn, RegTy); 542 } 543 544 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 545 .addReg(PhysReg); 546 if (!EntryMBB.isLiveIn(PhysReg)) 547 EntryMBB.addLiveIn(PhysReg); 548 return LiveIn; 549 } 550 551 Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1, 552 uint64_t Imm, 553 const MachineRegisterInfo &MRI) { 554 auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI); 555 if (MaybeOp1Cst) { 556 switch (Opcode) { 557 default: 558 break; 559 case TargetOpcode::G_SEXT_INREG: { 560 LLT Ty = MRI.getType(Op1); 561 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 562 } 563 } 564 } 565 return None; 566 } 567 568 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 569 GISelKnownBits *KB) { 570 Optional<DefinitionAndSourceRegister> DefSrcReg = 571 getDefSrcRegIgnoringCopies(Reg, MRI); 572 if (!DefSrcReg) 573 return false; 574 575 const MachineInstr &MI = *DefSrcReg->MI; 576 const LLT Ty = MRI.getType(Reg); 577 578 switch (MI.getOpcode()) { 579 case TargetOpcode::G_CONSTANT: { 580 unsigned BitWidth = Ty.getScalarSizeInBits(); 581 const ConstantInt *CI = MI.getOperand(1).getCImm(); 582 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 583 } 584 case TargetOpcode::G_SHL: { 585 // A left-shift of a constant one will have exactly one bit set because 586 // shifting the bit off the end is undefined. 587 588 // TODO: Constant splat 589 if (auto ConstLHS = getConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 590 if (*ConstLHS == 1) 591 return true; 592 } 593 594 break; 595 } 596 case TargetOpcode::G_LSHR: { 597 if (auto ConstLHS = getConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 598 if (ConstLHS->isSignMask()) 599 return true; 600 } 601 602 break; 603 } 604 default: 605 break; 606 } 607 608 // TODO: Are all operands of a build vector constant powers of two? 609 if (!KB) 610 return false; 611 612 // More could be done here, though the above checks are enough 613 // to handle some common cases. 614 615 // Fall back to computeKnownBits to catch other known cases. 616 KnownBits Known = KB->getKnownBits(Reg); 617 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 618 } 619 620 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 621 AU.addPreserved<StackProtector>(); 622 } 623 624 static unsigned getLCMSize(unsigned OrigSize, unsigned TargetSize) { 625 unsigned Mul = OrigSize * TargetSize; 626 unsigned GCDSize = greatestCommonDivisor(OrigSize, TargetSize); 627 return Mul / GCDSize; 628 } 629 630 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 631 const unsigned OrigSize = OrigTy.getSizeInBits(); 632 const unsigned TargetSize = TargetTy.getSizeInBits(); 633 634 if (OrigSize == TargetSize) 635 return OrigTy; 636 637 if (OrigTy.isVector()) { 638 const LLT OrigElt = OrigTy.getElementType(); 639 640 if (TargetTy.isVector()) { 641 const LLT TargetElt = TargetTy.getElementType(); 642 643 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 644 int GCDElts = greatestCommonDivisor(OrigTy.getNumElements(), 645 TargetTy.getNumElements()); 646 // Prefer the original element type. 647 int Mul = OrigTy.getNumElements() * TargetTy.getNumElements(); 648 return LLT::vector(Mul / GCDElts, OrigTy.getElementType()); 649 } 650 } else { 651 if (OrigElt.getSizeInBits() == TargetSize) 652 return OrigTy; 653 } 654 655 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 656 return LLT::vector(LCMSize / OrigElt.getSizeInBits(), OrigElt); 657 } 658 659 if (TargetTy.isVector()) { 660 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 661 return LLT::vector(LCMSize / OrigSize, OrigTy); 662 } 663 664 unsigned LCMSize = getLCMSize(OrigSize, TargetSize); 665 666 // Preserve pointer types. 667 if (LCMSize == OrigSize) 668 return OrigTy; 669 if (LCMSize == TargetSize) 670 return TargetTy; 671 672 return LLT::scalar(LCMSize); 673 } 674 675 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 676 const unsigned OrigSize = OrigTy.getSizeInBits(); 677 const unsigned TargetSize = TargetTy.getSizeInBits(); 678 679 if (OrigSize == TargetSize) 680 return OrigTy; 681 682 if (OrigTy.isVector()) { 683 LLT OrigElt = OrigTy.getElementType(); 684 if (TargetTy.isVector()) { 685 LLT TargetElt = TargetTy.getElementType(); 686 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 687 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 688 TargetTy.getNumElements()); 689 return LLT::scalarOrVector(GCD, OrigElt); 690 } 691 } else { 692 // If the source is a vector of pointers, return a pointer element. 693 if (OrigElt.getSizeInBits() == TargetSize) 694 return OrigElt; 695 } 696 697 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 698 if (GCD == OrigElt.getSizeInBits()) 699 return OrigElt; 700 701 // If we can't produce the original element type, we have to use a smaller 702 // scalar. 703 if (GCD < OrigElt.getSizeInBits()) 704 return LLT::scalar(GCD); 705 return LLT::vector(GCD / OrigElt.getSizeInBits(), OrigElt); 706 } 707 708 if (TargetTy.isVector()) { 709 // Try to preserve the original element type. 710 LLT TargetElt = TargetTy.getElementType(); 711 if (TargetElt.getSizeInBits() == OrigSize) 712 return OrigTy; 713 } 714 715 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); 716 return LLT::scalar(GCD); 717 } 718 719 Optional<int> llvm::getSplatIndex(MachineInstr &MI) { 720 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 721 "Only G_SHUFFLE_VECTOR can have a splat index!"); 722 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 723 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 724 725 // If all elements are undefined, this shuffle can be considered a splat. 726 // Return 0 for better potential for callers to simplify. 727 if (FirstDefinedIdx == Mask.end()) 728 return 0; 729 730 // Make sure all remaining elements are either undef or the same 731 // as the first non-undef value. 732 int SplatValue = *FirstDefinedIdx; 733 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 734 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 735 return None; 736 737 return SplatValue; 738 } 739 740 static bool isBuildVectorOp(unsigned Opcode) { 741 return Opcode == TargetOpcode::G_BUILD_VECTOR || 742 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 743 } 744 745 // TODO: Handle mixed undef elements. 746 static bool isBuildVectorConstantSplat(const MachineInstr &MI, 747 const MachineRegisterInfo &MRI, 748 int64_t SplatValue) { 749 if (!isBuildVectorOp(MI.getOpcode())) 750 return false; 751 752 const unsigned NumOps = MI.getNumOperands(); 753 for (unsigned I = 1; I != NumOps; ++I) { 754 Register Element = MI.getOperand(I).getReg(); 755 if (!mi_match(Element, MRI, m_SpecificICst(SplatValue))) 756 return false; 757 } 758 759 return true; 760 } 761 762 Optional<int64_t> 763 llvm::getBuildVectorConstantSplat(const MachineInstr &MI, 764 const MachineRegisterInfo &MRI) { 765 if (!isBuildVectorOp(MI.getOpcode())) 766 return None; 767 768 const unsigned NumOps = MI.getNumOperands(); 769 Optional<int64_t> Scalar; 770 for (unsigned I = 1; I != NumOps; ++I) { 771 Register Element = MI.getOperand(I).getReg(); 772 int64_t ElementValue; 773 if (!mi_match(Element, MRI, m_ICst(ElementValue))) 774 return None; 775 if (!Scalar) 776 Scalar = ElementValue; 777 else if (*Scalar != ElementValue) 778 return None; 779 } 780 781 return Scalar; 782 } 783 784 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 785 const MachineRegisterInfo &MRI) { 786 return isBuildVectorConstantSplat(MI, MRI, 0); 787 } 788 789 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 790 const MachineRegisterInfo &MRI) { 791 return isBuildVectorConstantSplat(MI, MRI, -1); 792 } 793 794 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 795 bool IsFP) { 796 switch (TLI.getBooleanContents(IsVector, IsFP)) { 797 case TargetLowering::UndefinedBooleanContent: 798 return Val & 0x1; 799 case TargetLowering::ZeroOrOneBooleanContent: 800 return Val == 1; 801 case TargetLowering::ZeroOrNegativeOneBooleanContent: 802 return Val == -1; 803 } 804 llvm_unreachable("Invalid boolean contents"); 805 } 806 807 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 808 bool IsFP) { 809 switch (TLI.getBooleanContents(IsVector, IsFP)) { 810 case TargetLowering::UndefinedBooleanContent: 811 case TargetLowering::ZeroOrOneBooleanContent: 812 return 1; 813 case TargetLowering::ZeroOrNegativeOneBooleanContent: 814 return -1; 815 } 816 llvm_unreachable("Invalid boolean contents"); 817 } 818