1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/CodeGen/CodeGenCommonISel.h" 16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/MachineSizeOpts.h" 27 #include "llvm/CodeGen/RegisterBankInfo.h" 28 #include "llvm/CodeGen/StackProtector.h" 29 #include "llvm/CodeGen/TargetInstrInfo.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Transforms/Utils/SizeOpts.h" 36 #include <numeric> 37 #include <optional> 38 39 #define DEBUG_TYPE "globalisel-utils" 40 41 using namespace llvm; 42 using namespace MIPatternMatch; 43 44 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 45 const TargetInstrInfo &TII, 46 const RegisterBankInfo &RBI, Register Reg, 47 const TargetRegisterClass &RegClass) { 48 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 49 return MRI.createVirtualRegister(&RegClass); 50 51 return Reg; 52 } 53 54 Register llvm::constrainOperandRegClass( 55 const MachineFunction &MF, const TargetRegisterInfo &TRI, 56 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 57 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 58 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 59 Register Reg = RegMO.getReg(); 60 // Assume physical registers are properly constrained. 61 assert(Reg.isVirtual() && "PhysReg not implemented"); 62 63 // Save the old register class to check whether 64 // the change notifications will be required. 65 // TODO: A better approach would be to pass 66 // the observers to constrainRegToClass(). 67 auto *OldRegClass = MRI.getRegClassOrNull(Reg); 68 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 69 // If we created a new virtual register because the class is not compatible 70 // then create a copy between the new and the old register. 71 if (ConstrainedReg != Reg) { 72 MachineBasicBlock::iterator InsertIt(&InsertPt); 73 MachineBasicBlock &MBB = *InsertPt.getParent(); 74 // FIXME: The copy needs to have the classes constrained for its operands. 75 // Use operand's regbank to get the class for old register (Reg). 76 if (RegMO.isUse()) { 77 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 78 TII.get(TargetOpcode::COPY), ConstrainedReg) 79 .addReg(Reg); 80 } else { 81 assert(RegMO.isDef() && "Must be a definition"); 82 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 83 TII.get(TargetOpcode::COPY), Reg) 84 .addReg(ConstrainedReg); 85 } 86 if (GISelChangeObserver *Observer = MF.getObserver()) { 87 Observer->changingInstr(*RegMO.getParent()); 88 } 89 RegMO.setReg(ConstrainedReg); 90 if (GISelChangeObserver *Observer = MF.getObserver()) { 91 Observer->changedInstr(*RegMO.getParent()); 92 } 93 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) { 94 if (GISelChangeObserver *Observer = MF.getObserver()) { 95 if (!RegMO.isDef()) { 96 MachineInstr *RegDef = MRI.getVRegDef(Reg); 97 Observer->changedInstr(*RegDef); 98 } 99 Observer->changingAllUsesOfReg(MRI, Reg); 100 Observer->finishedChangingAllUsesOfReg(); 101 } 102 } 103 return ConstrainedReg; 104 } 105 106 Register llvm::constrainOperandRegClass( 107 const MachineFunction &MF, const TargetRegisterInfo &TRI, 108 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 109 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 110 MachineOperand &RegMO, unsigned OpIdx) { 111 Register Reg = RegMO.getReg(); 112 // Assume physical registers are properly constrained. 113 assert(Reg.isVirtual() && "PhysReg not implemented"); 114 115 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF); 116 // Some of the target independent instructions, like COPY, may not impose any 117 // register class constraints on some of their operands: If it's a use, we can 118 // skip constraining as the instruction defining the register would constrain 119 // it. 120 121 if (OpRC) { 122 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands 123 // can have multiple regbanks for a superclass that combine different 124 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity 125 // resolved by targets during regbankselect should not be overridden. 126 if (const auto *SubRC = TRI.getCommonSubClass( 127 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI))) 128 OpRC = SubRC; 129 130 OpRC = TRI.getAllocatableClass(OpRC); 131 } 132 133 if (!OpRC) { 134 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 135 "Register class constraint is required unless either the " 136 "instruction is target independent or the operand is a use"); 137 // FIXME: Just bailing out like this here could be not enough, unless we 138 // expect the users of this function to do the right thing for PHIs and 139 // COPY: 140 // v1 = COPY v0 141 // v2 = COPY v1 142 // v1 here may end up not being constrained at all. Please notice that to 143 // reproduce the issue we likely need a destination pattern of a selection 144 // rule producing such extra copies, not just an input GMIR with them as 145 // every existing target using selectImpl handles copies before calling it 146 // and they never reach this function. 147 return Reg; 148 } 149 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC, 150 RegMO); 151 } 152 153 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 154 const TargetInstrInfo &TII, 155 const TargetRegisterInfo &TRI, 156 const RegisterBankInfo &RBI) { 157 assert(!isPreISelGenericOpcode(I.getOpcode()) && 158 "A selected instruction is expected"); 159 MachineBasicBlock &MBB = *I.getParent(); 160 MachineFunction &MF = *MBB.getParent(); 161 MachineRegisterInfo &MRI = MF.getRegInfo(); 162 163 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 164 MachineOperand &MO = I.getOperand(OpI); 165 166 // There's nothing to be done on non-register operands. 167 if (!MO.isReg()) 168 continue; 169 170 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 171 assert(MO.isReg() && "Unsupported non-reg operand"); 172 173 Register Reg = MO.getReg(); 174 // Physical registers don't need to be constrained. 175 if (Reg.isPhysical()) 176 continue; 177 178 // Register operands with a value of 0 (e.g. predicate operands) don't need 179 // to be constrained. 180 if (Reg == 0) 181 continue; 182 183 // If the operand is a vreg, we should constrain its regclass, and only 184 // insert COPYs if that's impossible. 185 // constrainOperandRegClass does that for us. 186 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 187 188 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 189 // done. 190 if (MO.isUse()) { 191 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 192 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 193 I.tieOperands(DefIdx, OpI); 194 } 195 } 196 return true; 197 } 198 199 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 200 MachineRegisterInfo &MRI) { 201 // Give up if either DstReg or SrcReg is a physical register. 202 if (DstReg.isPhysical() || SrcReg.isPhysical()) 203 return false; 204 // Give up if the types don't match. 205 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 206 return false; 207 // Replace if either DstReg has no constraints or the register 208 // constraints match. 209 const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg); 210 if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg)) 211 return true; 212 213 // Otherwise match if the Src is already a regclass that is covered by the Dst 214 // RegBank. 215 return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) && 216 DstRBC.get<const RegisterBank *>()->covers( 217 *MRI.getRegClassOrNull(SrcReg)); 218 } 219 220 bool llvm::isTriviallyDead(const MachineInstr &MI, 221 const MachineRegisterInfo &MRI) { 222 // FIXME: This logical is mostly duplicated with 223 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 224 // MachineInstr::isLabel? 225 226 // Don't delete frame allocation labels. 227 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 228 return false; 229 // LIFETIME markers should be preserved even if they seem dead. 230 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 231 MI.getOpcode() == TargetOpcode::LIFETIME_END) 232 return false; 233 234 // If we can move an instruction, we can remove it. Otherwise, it has 235 // a side-effect of some sort. 236 bool SawStore = false; 237 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) 238 return false; 239 240 // Instructions without side-effects are dead iff they only define dead vregs. 241 for (const auto &MO : MI.all_defs()) { 242 Register Reg = MO.getReg(); 243 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg)) 244 return false; 245 } 246 return true; 247 } 248 249 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 250 MachineFunction &MF, 251 const TargetPassConfig &TPC, 252 MachineOptimizationRemarkEmitter &MORE, 253 MachineOptimizationRemarkMissed &R) { 254 bool IsFatal = Severity == DS_Error && 255 TPC.isGlobalISelAbortEnabled(); 256 // Print the function name explicitly if we don't have a debug location (which 257 // makes the diagnostic less useful) or if we're going to emit a raw error. 258 if (!R.getLocation().isValid() || IsFatal) 259 R << (" (in function: " + MF.getName() + ")").str(); 260 261 if (IsFatal) 262 report_fatal_error(Twine(R.getMsg())); 263 else 264 MORE.emit(R); 265 } 266 267 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 268 MachineOptimizationRemarkEmitter &MORE, 269 MachineOptimizationRemarkMissed &R) { 270 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 271 } 272 273 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 274 MachineOptimizationRemarkEmitter &MORE, 275 MachineOptimizationRemarkMissed &R) { 276 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 277 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 278 } 279 280 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 281 MachineOptimizationRemarkEmitter &MORE, 282 const char *PassName, StringRef Msg, 283 const MachineInstr &MI) { 284 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 285 MI.getDebugLoc(), MI.getParent()); 286 R << Msg; 287 // Printing MI is expensive; only do it if expensive remarks are enabled. 288 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 289 R << ": " << ore::MNV("Inst", MI); 290 reportGISelFailure(MF, TPC, MORE, R); 291 } 292 293 std::optional<APInt> llvm::getIConstantVRegVal(Register VReg, 294 const MachineRegisterInfo &MRI) { 295 std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( 296 VReg, MRI, /*LookThroughInstrs*/ false); 297 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 298 "Value found while looking through instrs"); 299 if (!ValAndVReg) 300 return std::nullopt; 301 return ValAndVReg->Value; 302 } 303 304 std::optional<int64_t> 305 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { 306 std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI); 307 if (Val && Val->getBitWidth() <= 64) 308 return Val->getSExtValue(); 309 return std::nullopt; 310 } 311 312 namespace { 313 314 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn; 315 typedef std::function<std::optional<APInt>(const MachineInstr *MI)> GetAPCstFn; 316 317 std::optional<ValueAndVReg> getConstantVRegValWithLookThrough( 318 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode, 319 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true, 320 bool LookThroughAnyExt = false) { 321 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 322 MachineInstr *MI; 323 324 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && 325 LookThroughInstrs) { 326 switch (MI->getOpcode()) { 327 case TargetOpcode::G_ANYEXT: 328 if (!LookThroughAnyExt) 329 return std::nullopt; 330 [[fallthrough]]; 331 case TargetOpcode::G_TRUNC: 332 case TargetOpcode::G_SEXT: 333 case TargetOpcode::G_ZEXT: 334 SeenOpcodes.push_back(std::make_pair( 335 MI->getOpcode(), 336 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 337 VReg = MI->getOperand(1).getReg(); 338 break; 339 case TargetOpcode::COPY: 340 VReg = MI->getOperand(1).getReg(); 341 if (VReg.isPhysical()) 342 return std::nullopt; 343 break; 344 case TargetOpcode::G_INTTOPTR: 345 VReg = MI->getOperand(1).getReg(); 346 break; 347 default: 348 return std::nullopt; 349 } 350 } 351 if (!MI || !IsConstantOpcode(MI)) 352 return std::nullopt; 353 354 std::optional<APInt> MaybeVal = getAPCstValue(MI); 355 if (!MaybeVal) 356 return std::nullopt; 357 APInt &Val = *MaybeVal; 358 for (auto [Opcode, Size] : reverse(SeenOpcodes)) { 359 switch (Opcode) { 360 case TargetOpcode::G_TRUNC: 361 Val = Val.trunc(Size); 362 break; 363 case TargetOpcode::G_ANYEXT: 364 case TargetOpcode::G_SEXT: 365 Val = Val.sext(Size); 366 break; 367 case TargetOpcode::G_ZEXT: 368 Val = Val.zext(Size); 369 break; 370 } 371 } 372 373 return ValueAndVReg{Val, VReg}; 374 } 375 376 bool isIConstant(const MachineInstr *MI) { 377 if (!MI) 378 return false; 379 return MI->getOpcode() == TargetOpcode::G_CONSTANT; 380 } 381 382 bool isFConstant(const MachineInstr *MI) { 383 if (!MI) 384 return false; 385 return MI->getOpcode() == TargetOpcode::G_FCONSTANT; 386 } 387 388 bool isAnyConstant(const MachineInstr *MI) { 389 if (!MI) 390 return false; 391 unsigned Opc = MI->getOpcode(); 392 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; 393 } 394 395 std::optional<APInt> getCImmAsAPInt(const MachineInstr *MI) { 396 const MachineOperand &CstVal = MI->getOperand(1); 397 if (CstVal.isCImm()) 398 return CstVal.getCImm()->getValue(); 399 return std::nullopt; 400 } 401 402 std::optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) { 403 const MachineOperand &CstVal = MI->getOperand(1); 404 if (CstVal.isCImm()) 405 return CstVal.getCImm()->getValue(); 406 if (CstVal.isFPImm()) 407 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 408 return std::nullopt; 409 } 410 411 } // end anonymous namespace 412 413 std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( 414 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 415 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant, 416 getCImmAsAPInt, LookThroughInstrs); 417 } 418 419 std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( 420 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 421 bool LookThroughAnyExt) { 422 return getConstantVRegValWithLookThrough( 423 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs, 424 LookThroughAnyExt); 425 } 426 427 std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( 428 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 429 auto Reg = getConstantVRegValWithLookThrough( 430 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs); 431 if (!Reg) 432 return std::nullopt; 433 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), 434 Reg->VReg}; 435 } 436 437 const ConstantFP * 438 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 439 MachineInstr *MI = MRI.getVRegDef(VReg); 440 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 441 return nullptr; 442 return MI->getOperand(1).getFPImm(); 443 } 444 445 std::optional<DefinitionAndSourceRegister> 446 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 447 Register DefSrcReg = Reg; 448 auto *DefMI = MRI.getVRegDef(Reg); 449 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 450 if (!DstTy.isValid()) 451 return std::nullopt; 452 unsigned Opc = DefMI->getOpcode(); 453 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 454 Register SrcReg = DefMI->getOperand(1).getReg(); 455 auto SrcTy = MRI.getType(SrcReg); 456 if (!SrcTy.isValid()) 457 break; 458 DefMI = MRI.getVRegDef(SrcReg); 459 DefSrcReg = SrcReg; 460 Opc = DefMI->getOpcode(); 461 } 462 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 463 } 464 465 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 466 const MachineRegisterInfo &MRI) { 467 std::optional<DefinitionAndSourceRegister> DefSrcReg = 468 getDefSrcRegIgnoringCopies(Reg, MRI); 469 return DefSrcReg ? DefSrcReg->MI : nullptr; 470 } 471 472 Register llvm::getSrcRegIgnoringCopies(Register Reg, 473 const MachineRegisterInfo &MRI) { 474 std::optional<DefinitionAndSourceRegister> DefSrcReg = 475 getDefSrcRegIgnoringCopies(Reg, MRI); 476 return DefSrcReg ? DefSrcReg->Reg : Register(); 477 } 478 479 void llvm::extractParts(Register Reg, LLT Ty, int NumParts, 480 SmallVectorImpl<Register> &VRegs, 481 MachineIRBuilder &MIRBuilder, 482 MachineRegisterInfo &MRI) { 483 for (int i = 0; i < NumParts; ++i) 484 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 485 MIRBuilder.buildUnmerge(VRegs, Reg); 486 } 487 488 bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy, 489 SmallVectorImpl<Register> &VRegs, 490 SmallVectorImpl<Register> &LeftoverRegs, 491 MachineIRBuilder &MIRBuilder, 492 MachineRegisterInfo &MRI) { 493 assert(!LeftoverTy.isValid() && "this is an out argument"); 494 495 unsigned RegSize = RegTy.getSizeInBits(); 496 unsigned MainSize = MainTy.getSizeInBits(); 497 unsigned NumParts = RegSize / MainSize; 498 unsigned LeftoverSize = RegSize - NumParts * MainSize; 499 500 // Use an unmerge when possible. 501 if (LeftoverSize == 0) { 502 for (unsigned I = 0; I < NumParts; ++I) 503 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 504 MIRBuilder.buildUnmerge(VRegs, Reg); 505 return true; 506 } 507 508 // Try to use unmerge for irregular vector split where possible 509 // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32> 510 // leftover, it becomes: 511 // <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1 512 // <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3 513 if (RegTy.isVector() && MainTy.isVector()) { 514 unsigned RegNumElts = RegTy.getNumElements(); 515 unsigned MainNumElts = MainTy.getNumElements(); 516 unsigned LeftoverNumElts = RegNumElts % MainNumElts; 517 // If can unmerge to LeftoverTy, do it 518 if (MainNumElts % LeftoverNumElts == 0 && 519 RegNumElts % LeftoverNumElts == 0 && 520 RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() && 521 LeftoverNumElts > 1) { 522 LeftoverTy = 523 LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits()); 524 525 // Unmerge the SrcReg to LeftoverTy vectors 526 SmallVector<Register, 4> UnmergeValues; 527 extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues, 528 MIRBuilder, MRI); 529 530 // Find how many LeftoverTy makes one MainTy 531 unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts; 532 unsigned NumOfLeftoverVal = 533 ((RegNumElts % MainNumElts) / LeftoverNumElts); 534 535 // Create as many MainTy as possible using unmerged value 536 SmallVector<Register, 4> MergeValues; 537 for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) { 538 MergeValues.push_back(UnmergeValues[I]); 539 if (MergeValues.size() == LeftoverPerMain) { 540 VRegs.push_back( 541 MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0)); 542 MergeValues.clear(); 543 } 544 } 545 // Populate LeftoverRegs with the leftovers 546 for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal; 547 I < UnmergeValues.size(); I++) { 548 LeftoverRegs.push_back(UnmergeValues[I]); 549 } 550 return true; 551 } 552 } 553 // Perform irregular split. Leftover is last element of RegPieces. 554 if (MainTy.isVector()) { 555 SmallVector<Register, 8> RegPieces; 556 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder, 557 MRI); 558 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 559 VRegs.push_back(RegPieces[i]); 560 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 561 LeftoverTy = MRI.getType(LeftoverRegs[0]); 562 return true; 563 } 564 565 LeftoverTy = LLT::scalar(LeftoverSize); 566 // For irregular sizes, extract the individual parts. 567 for (unsigned I = 0; I != NumParts; ++I) { 568 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 569 VRegs.push_back(NewReg); 570 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 571 } 572 573 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 574 Offset += LeftoverSize) { 575 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 576 LeftoverRegs.push_back(NewReg); 577 MIRBuilder.buildExtract(NewReg, Reg, Offset); 578 } 579 580 return true; 581 } 582 583 void llvm::extractVectorParts(Register Reg, unsigned NumElts, 584 SmallVectorImpl<Register> &VRegs, 585 MachineIRBuilder &MIRBuilder, 586 MachineRegisterInfo &MRI) { 587 LLT RegTy = MRI.getType(Reg); 588 assert(RegTy.isVector() && "Expected a vector type"); 589 590 LLT EltTy = RegTy.getElementType(); 591 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 592 unsigned RegNumElts = RegTy.getNumElements(); 593 unsigned LeftoverNumElts = RegNumElts % NumElts; 594 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 595 596 // Perfect split without leftover 597 if (LeftoverNumElts == 0) 598 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder, 599 MRI); 600 601 // Irregular split. Provide direct access to all elements for artifact 602 // combiner using unmerge to elements. Then build vectors with NumElts 603 // elements. Remaining element(s) will be (used to build vector) Leftover. 604 SmallVector<Register, 8> Elts; 605 extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI); 606 607 unsigned Offset = 0; 608 // Requested sub-vectors of NarrowTy. 609 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 610 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 611 VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); 612 } 613 614 // Leftover element(s). 615 if (LeftoverNumElts == 1) { 616 VRegs.push_back(Elts[Offset]); 617 } else { 618 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 619 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 620 VRegs.push_back( 621 MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0)); 622 } 623 } 624 625 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 626 const MachineRegisterInfo &MRI) { 627 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 628 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 629 } 630 631 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 632 if (Size == 32) 633 return APFloat(float(Val)); 634 if (Size == 64) 635 return APFloat(Val); 636 if (Size != 16) 637 llvm_unreachable("Unsupported FPConstant size"); 638 bool Ignored; 639 APFloat APF(Val); 640 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 641 return APF; 642 } 643 644 std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, 645 const Register Op1, 646 const Register Op2, 647 const MachineRegisterInfo &MRI) { 648 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); 649 if (!MaybeOp2Cst) 650 return std::nullopt; 651 652 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); 653 if (!MaybeOp1Cst) 654 return std::nullopt; 655 656 const APInt &C1 = MaybeOp1Cst->Value; 657 const APInt &C2 = MaybeOp2Cst->Value; 658 switch (Opcode) { 659 default: 660 break; 661 case TargetOpcode::G_ADD: 662 return C1 + C2; 663 case TargetOpcode::G_PTR_ADD: 664 // Types can be of different width here. 665 // Result needs to be the same width as C1, so trunc or sext C2. 666 return C1 + C2.sextOrTrunc(C1.getBitWidth()); 667 case TargetOpcode::G_AND: 668 return C1 & C2; 669 case TargetOpcode::G_ASHR: 670 return C1.ashr(C2); 671 case TargetOpcode::G_LSHR: 672 return C1.lshr(C2); 673 case TargetOpcode::G_MUL: 674 return C1 * C2; 675 case TargetOpcode::G_OR: 676 return C1 | C2; 677 case TargetOpcode::G_SHL: 678 return C1 << C2; 679 case TargetOpcode::G_SUB: 680 return C1 - C2; 681 case TargetOpcode::G_XOR: 682 return C1 ^ C2; 683 case TargetOpcode::G_UDIV: 684 if (!C2.getBoolValue()) 685 break; 686 return C1.udiv(C2); 687 case TargetOpcode::G_SDIV: 688 if (!C2.getBoolValue()) 689 break; 690 return C1.sdiv(C2); 691 case TargetOpcode::G_UREM: 692 if (!C2.getBoolValue()) 693 break; 694 return C1.urem(C2); 695 case TargetOpcode::G_SREM: 696 if (!C2.getBoolValue()) 697 break; 698 return C1.srem(C2); 699 case TargetOpcode::G_SMIN: 700 return APIntOps::smin(C1, C2); 701 case TargetOpcode::G_SMAX: 702 return APIntOps::smax(C1, C2); 703 case TargetOpcode::G_UMIN: 704 return APIntOps::umin(C1, C2); 705 case TargetOpcode::G_UMAX: 706 return APIntOps::umax(C1, C2); 707 } 708 709 return std::nullopt; 710 } 711 712 std::optional<APFloat> 713 llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, 714 const Register Op2, const MachineRegisterInfo &MRI) { 715 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 716 if (!Op2Cst) 717 return std::nullopt; 718 719 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 720 if (!Op1Cst) 721 return std::nullopt; 722 723 APFloat C1 = Op1Cst->getValueAPF(); 724 const APFloat &C2 = Op2Cst->getValueAPF(); 725 switch (Opcode) { 726 case TargetOpcode::G_FADD: 727 C1.add(C2, APFloat::rmNearestTiesToEven); 728 return C1; 729 case TargetOpcode::G_FSUB: 730 C1.subtract(C2, APFloat::rmNearestTiesToEven); 731 return C1; 732 case TargetOpcode::G_FMUL: 733 C1.multiply(C2, APFloat::rmNearestTiesToEven); 734 return C1; 735 case TargetOpcode::G_FDIV: 736 C1.divide(C2, APFloat::rmNearestTiesToEven); 737 return C1; 738 case TargetOpcode::G_FREM: 739 C1.mod(C2); 740 return C1; 741 case TargetOpcode::G_FCOPYSIGN: 742 C1.copySign(C2); 743 return C1; 744 case TargetOpcode::G_FMINNUM: 745 return minnum(C1, C2); 746 case TargetOpcode::G_FMAXNUM: 747 return maxnum(C1, C2); 748 case TargetOpcode::G_FMINIMUM: 749 return minimum(C1, C2); 750 case TargetOpcode::G_FMAXIMUM: 751 return maximum(C1, C2); 752 case TargetOpcode::G_FMINNUM_IEEE: 753 case TargetOpcode::G_FMAXNUM_IEEE: 754 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not 755 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, 756 // and currently there isn't a nice wrapper in APFloat for the version with 757 // correct snan handling. 758 break; 759 default: 760 break; 761 } 762 763 return std::nullopt; 764 } 765 766 SmallVector<APInt> 767 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, 768 const Register Op2, 769 const MachineRegisterInfo &MRI) { 770 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI); 771 if (!SrcVec2) 772 return SmallVector<APInt>(); 773 774 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI); 775 if (!SrcVec1) 776 return SmallVector<APInt>(); 777 778 SmallVector<APInt> FoldedElements; 779 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { 780 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), 781 SrcVec2->getSourceReg(Idx), MRI); 782 if (!MaybeCst) 783 return SmallVector<APInt>(); 784 FoldedElements.push_back(*MaybeCst); 785 } 786 return FoldedElements; 787 } 788 789 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 790 bool SNaN) { 791 const MachineInstr *DefMI = MRI.getVRegDef(Val); 792 if (!DefMI) 793 return false; 794 795 const TargetMachine& TM = DefMI->getMF()->getTarget(); 796 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 797 return true; 798 799 // If the value is a constant, we can obviously see if it is a NaN or not. 800 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { 801 return !FPVal->getValueAPF().isNaN() || 802 (SNaN && !FPVal->getValueAPF().isSignaling()); 803 } 804 805 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 806 for (const auto &Op : DefMI->uses()) 807 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) 808 return false; 809 return true; 810 } 811 812 switch (DefMI->getOpcode()) { 813 default: 814 break; 815 case TargetOpcode::G_FADD: 816 case TargetOpcode::G_FSUB: 817 case TargetOpcode::G_FMUL: 818 case TargetOpcode::G_FDIV: 819 case TargetOpcode::G_FREM: 820 case TargetOpcode::G_FSIN: 821 case TargetOpcode::G_FCOS: 822 case TargetOpcode::G_FMA: 823 case TargetOpcode::G_FMAD: 824 if (SNaN) 825 return true; 826 827 // TODO: Need isKnownNeverInfinity 828 return false; 829 case TargetOpcode::G_FMINNUM_IEEE: 830 case TargetOpcode::G_FMAXNUM_IEEE: { 831 if (SNaN) 832 return true; 833 // This can return a NaN if either operand is an sNaN, or if both operands 834 // are NaN. 835 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && 836 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || 837 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && 838 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); 839 } 840 case TargetOpcode::G_FMINNUM: 841 case TargetOpcode::G_FMAXNUM: { 842 // Only one needs to be known not-nan, since it will be returned if the 843 // other ends up being one. 844 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || 845 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); 846 } 847 } 848 849 if (SNaN) { 850 // FP operations quiet. For now, just handle the ones inserted during 851 // legalization. 852 switch (DefMI->getOpcode()) { 853 case TargetOpcode::G_FPEXT: 854 case TargetOpcode::G_FPTRUNC: 855 case TargetOpcode::G_FCANONICALIZE: 856 return true; 857 default: 858 return false; 859 } 860 } 861 862 return false; 863 } 864 865 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 866 const MachinePointerInfo &MPO) { 867 auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V); 868 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 869 MachineFrameInfo &MFI = MF.getFrameInfo(); 870 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 871 MPO.Offset); 872 } 873 874 if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) { 875 const Module *M = MF.getFunction().getParent(); 876 return V->getPointerAlignment(M->getDataLayout()); 877 } 878 879 return Align(1); 880 } 881 882 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 883 const TargetInstrInfo &TII, 884 MCRegister PhysReg, 885 const TargetRegisterClass &RC, 886 const DebugLoc &DL, LLT RegTy) { 887 MachineBasicBlock &EntryMBB = MF.front(); 888 MachineRegisterInfo &MRI = MF.getRegInfo(); 889 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 890 if (LiveIn) { 891 MachineInstr *Def = MRI.getVRegDef(LiveIn); 892 if (Def) { 893 // FIXME: Should the verifier check this is in the entry block? 894 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 895 return LiveIn; 896 } 897 898 // It's possible the incoming argument register and copy was added during 899 // lowering, but later deleted due to being/becoming dead. If this happens, 900 // re-insert the copy. 901 } else { 902 // The live in register was not present, so add it. 903 LiveIn = MF.addLiveIn(PhysReg, &RC); 904 if (RegTy.isValid()) 905 MRI.setType(LiveIn, RegTy); 906 } 907 908 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 909 .addReg(PhysReg); 910 if (!EntryMBB.isLiveIn(PhysReg)) 911 EntryMBB.addLiveIn(PhysReg); 912 return LiveIn; 913 } 914 915 std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, 916 const Register Op1, uint64_t Imm, 917 const MachineRegisterInfo &MRI) { 918 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); 919 if (MaybeOp1Cst) { 920 switch (Opcode) { 921 default: 922 break; 923 case TargetOpcode::G_SEXT_INREG: { 924 LLT Ty = MRI.getType(Op1); 925 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 926 } 927 } 928 } 929 return std::nullopt; 930 } 931 932 std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy, 933 const Register Op0, 934 const MachineRegisterInfo &MRI) { 935 std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI); 936 if (!Val) 937 return Val; 938 939 const unsigned DstSize = DstTy.getScalarSizeInBits(); 940 941 switch (Opcode) { 942 case TargetOpcode::G_SEXT: 943 return Val->sext(DstSize); 944 case TargetOpcode::G_ZEXT: 945 case TargetOpcode::G_ANYEXT: 946 // TODO: DAG considers target preference when constant folding any_extend. 947 return Val->zext(DstSize); 948 default: 949 break; 950 } 951 952 llvm_unreachable("unexpected cast opcode to constant fold"); 953 } 954 955 std::optional<APFloat> 956 llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, 957 const MachineRegisterInfo &MRI) { 958 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); 959 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { 960 APFloat DstVal(getFltSemanticForLLT(DstTy)); 961 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, 962 APFloat::rmNearestTiesToEven); 963 return DstVal; 964 } 965 return std::nullopt; 966 } 967 968 std::optional<SmallVector<unsigned>> 969 llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) { 970 LLT Ty = MRI.getType(Src); 971 SmallVector<unsigned> FoldedCTLZs; 972 auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> { 973 auto MaybeCst = getIConstantVRegVal(R, MRI); 974 if (!MaybeCst) 975 return std::nullopt; 976 return MaybeCst->countl_zero(); 977 }; 978 if (Ty.isVector()) { 979 // Try to constant fold each element. 980 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI); 981 if (!BV) 982 return std::nullopt; 983 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 984 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { 985 FoldedCTLZs.emplace_back(*MaybeFold); 986 continue; 987 } 988 return std::nullopt; 989 } 990 return FoldedCTLZs; 991 } 992 if (auto MaybeCst = tryFoldScalar(Src)) { 993 FoldedCTLZs.emplace_back(*MaybeCst); 994 return FoldedCTLZs; 995 } 996 return std::nullopt; 997 } 998 999 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 1000 GISelKnownBits *KB) { 1001 std::optional<DefinitionAndSourceRegister> DefSrcReg = 1002 getDefSrcRegIgnoringCopies(Reg, MRI); 1003 if (!DefSrcReg) 1004 return false; 1005 1006 const MachineInstr &MI = *DefSrcReg->MI; 1007 const LLT Ty = MRI.getType(Reg); 1008 1009 switch (MI.getOpcode()) { 1010 case TargetOpcode::G_CONSTANT: { 1011 unsigned BitWidth = Ty.getScalarSizeInBits(); 1012 const ConstantInt *CI = MI.getOperand(1).getCImm(); 1013 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 1014 } 1015 case TargetOpcode::G_SHL: { 1016 // A left-shift of a constant one will have exactly one bit set because 1017 // shifting the bit off the end is undefined. 1018 1019 // TODO: Constant splat 1020 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1021 if (*ConstLHS == 1) 1022 return true; 1023 } 1024 1025 break; 1026 } 1027 case TargetOpcode::G_LSHR: { 1028 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1029 if (ConstLHS->isSignMask()) 1030 return true; 1031 } 1032 1033 break; 1034 } 1035 case TargetOpcode::G_BUILD_VECTOR: { 1036 // TODO: Probably should have a recursion depth guard since you could have 1037 // bitcasted vector elements. 1038 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 1039 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB)) 1040 return false; 1041 1042 return true; 1043 } 1044 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1045 // Only handle constants since we would need to know if number of leading 1046 // zeros is greater than the truncation amount. 1047 const unsigned BitWidth = Ty.getScalarSizeInBits(); 1048 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1049 auto Const = getIConstantVRegVal(MO.getReg(), MRI); 1050 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) 1051 return false; 1052 } 1053 1054 return true; 1055 } 1056 default: 1057 break; 1058 } 1059 1060 if (!KB) 1061 return false; 1062 1063 // More could be done here, though the above checks are enough 1064 // to handle some common cases. 1065 1066 // Fall back to computeKnownBits to catch other known cases. 1067 KnownBits Known = KB->getKnownBits(Reg); 1068 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 1069 } 1070 1071 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 1072 AU.addPreserved<StackProtector>(); 1073 } 1074 1075 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 1076 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1077 return OrigTy; 1078 1079 if (OrigTy.isVector() && TargetTy.isVector()) { 1080 LLT OrigElt = OrigTy.getElementType(); 1081 LLT TargetElt = TargetTy.getElementType(); 1082 1083 // TODO: The docstring for this function says the intention is to use this 1084 // function to build MERGE/UNMERGE instructions. It won't be the case that 1085 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1086 // could implement getLCMType between the two in the future if there was a 1087 // need, but it is not worth it now as this function should not be used in 1088 // that way. 1089 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1090 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1091 "getLCMType not implemented between fixed and scalable vectors."); 1092 1093 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 1094 int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(), 1095 TargetTy.getElementCount().getKnownMinValue()); 1096 // Prefer the original element type. 1097 ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy( 1098 TargetTy.getElementCount().getKnownMinValue()); 1099 return LLT::vector(Mul.divideCoefficientBy(GCDMinElts), 1100 OrigTy.getElementType()); 1101 } 1102 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(), 1103 TargetTy.getSizeInBits().getKnownMinValue()); 1104 return LLT::vector( 1105 ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()), 1106 OrigElt); 1107 } 1108 1109 // One type is scalar, one type is vector 1110 if (OrigTy.isVector() || TargetTy.isVector()) { 1111 LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy; 1112 LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy; 1113 LLT EltTy = VecTy.getElementType(); 1114 LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy; 1115 1116 // Prefer scalar type from OrigTy. 1117 if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits()) 1118 return LLT::vector(VecTy.getElementCount(), OrigEltTy); 1119 1120 // Different size scalars. Create vector with the same total size. 1121 // LCM will take fixed/scalable from VecTy. 1122 unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() * 1123 VecTy.getElementCount().getKnownMinValue(), 1124 ScalarTy.getSizeInBits().getFixedValue()); 1125 // Prefer type from OrigTy 1126 return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(), 1127 VecTy.getElementCount().isScalable()), 1128 OrigEltTy); 1129 } 1130 1131 // At this point, both types are scalars of different size 1132 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(), 1133 TargetTy.getSizeInBits().getFixedValue()); 1134 // Preserve pointer types. 1135 if (LCM == OrigTy.getSizeInBits()) 1136 return OrigTy; 1137 if (LCM == TargetTy.getSizeInBits()) 1138 return TargetTy; 1139 return LLT::scalar(LCM); 1140 } 1141 1142 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { 1143 1144 if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) || 1145 (OrigTy.isFixedVector() && TargetTy.isScalableVector())) 1146 llvm_unreachable( 1147 "getCoverTy not implemented between fixed and scalable vectors."); 1148 1149 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || 1150 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) 1151 return getLCMType(OrigTy, TargetTy); 1152 1153 unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue(); 1154 unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue(); 1155 if (OrigTyNumElts % TargetTyNumElts == 0) 1156 return OrigTy; 1157 1158 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts); 1159 return LLT::scalarOrVector(ElementCount::getFixed(NumElts), 1160 OrigTy.getElementType()); 1161 } 1162 1163 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 1164 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1165 return OrigTy; 1166 1167 if (OrigTy.isVector() && TargetTy.isVector()) { 1168 LLT OrigElt = OrigTy.getElementType(); 1169 1170 // TODO: The docstring for this function says the intention is to use this 1171 // function to build MERGE/UNMERGE instructions. It won't be the case that 1172 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1173 // could implement getGCDType between the two in the future if there was a 1174 // need, but it is not worth it now as this function should not be used in 1175 // that way. 1176 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1177 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1178 "getGCDType not implemented between fixed and scalable vectors."); 1179 1180 unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(), 1181 TargetTy.getSizeInBits().getKnownMinValue()); 1182 if (GCD == OrigElt.getSizeInBits()) 1183 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1184 OrigElt); 1185 1186 // Cannot produce original element type, but both have vscale in common. 1187 if (GCD < OrigElt.getSizeInBits()) 1188 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1189 GCD); 1190 1191 return LLT::vector( 1192 ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(), 1193 OrigTy.isScalable()), 1194 OrigElt); 1195 } 1196 1197 // If one type is vector and the element size matches the scalar size, then 1198 // the gcd is the scalar type. 1199 if (OrigTy.isVector() && 1200 OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits()) 1201 return OrigTy.getElementType(); 1202 if (TargetTy.isVector() && 1203 TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits()) 1204 return OrigTy; 1205 1206 // At this point, both types are either scalars of different type or one is a 1207 // vector and one is a scalar. If both types are scalars, the GCD type is the 1208 // GCD between the two scalar sizes. If one is vector and one is scalar, then 1209 // the GCD type is the GCD between the scalar and the vector element size. 1210 LLT OrigScalar = OrigTy.getScalarType(); 1211 LLT TargetScalar = TargetTy.getScalarType(); 1212 unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(), 1213 TargetScalar.getSizeInBits().getFixedValue()); 1214 return LLT::scalar(GCD); 1215 } 1216 1217 std::optional<int> llvm::getSplatIndex(MachineInstr &MI) { 1218 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 1219 "Only G_SHUFFLE_VECTOR can have a splat index!"); 1220 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1221 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 1222 1223 // If all elements are undefined, this shuffle can be considered a splat. 1224 // Return 0 for better potential for callers to simplify. 1225 if (FirstDefinedIdx == Mask.end()) 1226 return 0; 1227 1228 // Make sure all remaining elements are either undef or the same 1229 // as the first non-undef value. 1230 int SplatValue = *FirstDefinedIdx; 1231 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 1232 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 1233 return std::nullopt; 1234 1235 return SplatValue; 1236 } 1237 1238 static bool isBuildVectorOp(unsigned Opcode) { 1239 return Opcode == TargetOpcode::G_BUILD_VECTOR || 1240 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 1241 } 1242 1243 namespace { 1244 1245 std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg, 1246 const MachineRegisterInfo &MRI, 1247 bool AllowUndef) { 1248 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); 1249 if (!MI) 1250 return std::nullopt; 1251 1252 bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS; 1253 if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp) 1254 return std::nullopt; 1255 1256 std::optional<ValueAndVReg> SplatValAndReg; 1257 for (MachineOperand &Op : MI->uses()) { 1258 Register Element = Op.getReg(); 1259 // If we have a G_CONCAT_VECTOR, we recursively look into the 1260 // vectors that we're concatenating to see if they're splats. 1261 auto ElementValAndReg = 1262 isConcatVectorsOp 1263 ? getAnyConstantSplat(Element, MRI, AllowUndef) 1264 : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); 1265 1266 // If AllowUndef, treat undef as value that will result in a constant splat. 1267 if (!ElementValAndReg) { 1268 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element))) 1269 continue; 1270 return std::nullopt; 1271 } 1272 1273 // Record splat value 1274 if (!SplatValAndReg) 1275 SplatValAndReg = ElementValAndReg; 1276 1277 // Different constant than the one already recorded, not a constant splat. 1278 if (SplatValAndReg->Value != ElementValAndReg->Value) 1279 return std::nullopt; 1280 } 1281 1282 return SplatValAndReg; 1283 } 1284 1285 } // end anonymous namespace 1286 1287 bool llvm::isBuildVectorConstantSplat(const Register Reg, 1288 const MachineRegisterInfo &MRI, 1289 int64_t SplatValue, bool AllowUndef) { 1290 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef)) 1291 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); 1292 return false; 1293 } 1294 1295 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, 1296 const MachineRegisterInfo &MRI, 1297 int64_t SplatValue, bool AllowUndef) { 1298 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue, 1299 AllowUndef); 1300 } 1301 1302 std::optional<APInt> 1303 llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) { 1304 if (auto SplatValAndReg = 1305 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) { 1306 if (std::optional<ValueAndVReg> ValAndVReg = 1307 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI)) 1308 return ValAndVReg->Value; 1309 } 1310 1311 return std::nullopt; 1312 } 1313 1314 std::optional<APInt> 1315 llvm::getIConstantSplatVal(const MachineInstr &MI, 1316 const MachineRegisterInfo &MRI) { 1317 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI); 1318 } 1319 1320 std::optional<int64_t> 1321 llvm::getIConstantSplatSExtVal(const Register Reg, 1322 const MachineRegisterInfo &MRI) { 1323 if (auto SplatValAndReg = 1324 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) 1325 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); 1326 return std::nullopt; 1327 } 1328 1329 std::optional<int64_t> 1330 llvm::getIConstantSplatSExtVal(const MachineInstr &MI, 1331 const MachineRegisterInfo &MRI) { 1332 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI); 1333 } 1334 1335 std::optional<FPValueAndVReg> 1336 llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, 1337 bool AllowUndef) { 1338 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) 1339 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1340 return std::nullopt; 1341 } 1342 1343 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 1344 const MachineRegisterInfo &MRI, 1345 bool AllowUndef) { 1346 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); 1347 } 1348 1349 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 1350 const MachineRegisterInfo &MRI, 1351 bool AllowUndef) { 1352 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); 1353 } 1354 1355 std::optional<RegOrConstant> 1356 llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) { 1357 unsigned Opc = MI.getOpcode(); 1358 if (!isBuildVectorOp(Opc)) 1359 return std::nullopt; 1360 if (auto Splat = getIConstantSplatSExtVal(MI, MRI)) 1361 return RegOrConstant(*Splat); 1362 auto Reg = MI.getOperand(1).getReg(); 1363 if (any_of(drop_begin(MI.operands(), 2), 1364 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) 1365 return std::nullopt; 1366 return RegOrConstant(Reg); 1367 } 1368 1369 static bool isConstantScalar(const MachineInstr &MI, 1370 const MachineRegisterInfo &MRI, 1371 bool AllowFP = true, 1372 bool AllowOpaqueConstants = true) { 1373 switch (MI.getOpcode()) { 1374 case TargetOpcode::G_CONSTANT: 1375 case TargetOpcode::G_IMPLICIT_DEF: 1376 return true; 1377 case TargetOpcode::G_FCONSTANT: 1378 return AllowFP; 1379 case TargetOpcode::G_GLOBAL_VALUE: 1380 case TargetOpcode::G_FRAME_INDEX: 1381 case TargetOpcode::G_BLOCK_ADDR: 1382 case TargetOpcode::G_JUMP_TABLE: 1383 return AllowOpaqueConstants; 1384 default: 1385 return false; 1386 } 1387 } 1388 1389 bool llvm::isConstantOrConstantVector(MachineInstr &MI, 1390 const MachineRegisterInfo &MRI) { 1391 Register Def = MI.getOperand(0).getReg(); 1392 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1393 return true; 1394 GBuildVector *BV = dyn_cast<GBuildVector>(&MI); 1395 if (!BV) 1396 return false; 1397 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1398 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || 1399 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI)) 1400 continue; 1401 return false; 1402 } 1403 return true; 1404 } 1405 1406 bool llvm::isConstantOrConstantVector(const MachineInstr &MI, 1407 const MachineRegisterInfo &MRI, 1408 bool AllowFP, bool AllowOpaqueConstants) { 1409 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) 1410 return true; 1411 1412 if (!isBuildVectorOp(MI.getOpcode())) 1413 return false; 1414 1415 const unsigned NumOps = MI.getNumOperands(); 1416 for (unsigned I = 1; I != NumOps; ++I) { 1417 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg()); 1418 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants)) 1419 return false; 1420 } 1421 1422 return true; 1423 } 1424 1425 std::optional<APInt> 1426 llvm::isConstantOrConstantSplatVector(MachineInstr &MI, 1427 const MachineRegisterInfo &MRI) { 1428 Register Def = MI.getOperand(0).getReg(); 1429 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1430 return C->Value; 1431 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI); 1432 if (!MaybeCst) 1433 return std::nullopt; 1434 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); 1435 return APInt(ScalarSize, *MaybeCst, true); 1436 } 1437 1438 bool llvm::isNullOrNullSplat(const MachineInstr &MI, 1439 const MachineRegisterInfo &MRI, bool AllowUndefs) { 1440 switch (MI.getOpcode()) { 1441 case TargetOpcode::G_IMPLICIT_DEF: 1442 return AllowUndefs; 1443 case TargetOpcode::G_CONSTANT: 1444 return MI.getOperand(1).getCImm()->isNullValue(); 1445 case TargetOpcode::G_FCONSTANT: { 1446 const ConstantFP *FPImm = MI.getOperand(1).getFPImm(); 1447 return FPImm->isZero() && !FPImm->isNegative(); 1448 } 1449 default: 1450 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already 1451 return false; 1452 return isBuildVectorAllZeros(MI, MRI); 1453 } 1454 } 1455 1456 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, 1457 const MachineRegisterInfo &MRI, 1458 bool AllowUndefs) { 1459 switch (MI.getOpcode()) { 1460 case TargetOpcode::G_IMPLICIT_DEF: 1461 return AllowUndefs; 1462 case TargetOpcode::G_CONSTANT: 1463 return MI.getOperand(1).getCImm()->isAllOnesValue(); 1464 default: 1465 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already 1466 return false; 1467 return isBuildVectorAllOnes(MI, MRI); 1468 } 1469 } 1470 1471 bool llvm::matchUnaryPredicate( 1472 const MachineRegisterInfo &MRI, Register Reg, 1473 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { 1474 1475 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); 1476 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) 1477 return Match(nullptr); 1478 1479 // TODO: Also handle fconstant 1480 if (Def->getOpcode() == TargetOpcode::G_CONSTANT) 1481 return Match(Def->getOperand(1).getCImm()); 1482 1483 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) 1484 return false; 1485 1486 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { 1487 Register SrcElt = Def->getOperand(I).getReg(); 1488 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); 1489 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { 1490 if (!Match(nullptr)) 1491 return false; 1492 continue; 1493 } 1494 1495 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || 1496 !Match(SrcDef->getOperand(1).getCImm())) 1497 return false; 1498 } 1499 1500 return true; 1501 } 1502 1503 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 1504 bool IsFP) { 1505 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1506 case TargetLowering::UndefinedBooleanContent: 1507 return Val & 0x1; 1508 case TargetLowering::ZeroOrOneBooleanContent: 1509 return Val == 1; 1510 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1511 return Val == -1; 1512 } 1513 llvm_unreachable("Invalid boolean contents"); 1514 } 1515 1516 bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val, 1517 bool IsVector, bool IsFP) { 1518 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1519 case TargetLowering::UndefinedBooleanContent: 1520 return ~Val & 0x1; 1521 case TargetLowering::ZeroOrOneBooleanContent: 1522 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1523 return Val == 0; 1524 } 1525 llvm_unreachable("Invalid boolean contents"); 1526 } 1527 1528 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 1529 bool IsFP) { 1530 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1531 case TargetLowering::UndefinedBooleanContent: 1532 case TargetLowering::ZeroOrOneBooleanContent: 1533 return 1; 1534 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1535 return -1; 1536 } 1537 llvm_unreachable("Invalid boolean contents"); 1538 } 1539 1540 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, 1541 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 1542 const auto &F = MBB.getParent()->getFunction(); 1543 return F.hasOptSize() || F.hasMinSize() || 1544 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); 1545 } 1546 1547 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, 1548 LostDebugLocObserver *LocObserver, 1549 SmallInstListTy &DeadInstChain) { 1550 for (MachineOperand &Op : MI.uses()) { 1551 if (Op.isReg() && Op.getReg().isVirtual()) 1552 DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); 1553 } 1554 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); 1555 DeadInstChain.remove(&MI); 1556 MI.eraseFromParent(); 1557 if (LocObserver) 1558 LocObserver->checkpoint(false); 1559 } 1560 1561 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, 1562 MachineRegisterInfo &MRI, 1563 LostDebugLocObserver *LocObserver) { 1564 SmallInstListTy DeadInstChain; 1565 for (MachineInstr *MI : DeadInstrs) 1566 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); 1567 1568 while (!DeadInstChain.empty()) { 1569 MachineInstr *Inst = DeadInstChain.pop_back_val(); 1570 if (!isTriviallyDead(*Inst, MRI)) 1571 continue; 1572 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); 1573 } 1574 } 1575 1576 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, 1577 LostDebugLocObserver *LocObserver) { 1578 return eraseInstrs({&MI}, MRI, LocObserver); 1579 } 1580 1581 void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) { 1582 for (auto &Def : MI.defs()) { 1583 assert(Def.isReg() && "Must be a reg"); 1584 1585 SmallVector<MachineOperand *, 16> DbgUsers; 1586 for (auto &MOUse : MRI.use_operands(Def.getReg())) { 1587 MachineInstr *DbgValue = MOUse.getParent(); 1588 // Ignore partially formed DBG_VALUEs. 1589 if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) { 1590 DbgUsers.push_back(&MOUse); 1591 } 1592 } 1593 1594 if (!DbgUsers.empty()) { 1595 salvageDebugInfoForDbgValue(MRI, MI, DbgUsers); 1596 } 1597 } 1598 } 1599