1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/CodeGen/CodeGenCommonISel.h" 16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/MachineSizeOpts.h" 27 #include "llvm/CodeGen/RegisterBankInfo.h" 28 #include "llvm/CodeGen/StackProtector.h" 29 #include "llvm/CodeGen/TargetInstrInfo.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Transforms/Utils/SizeOpts.h" 36 #include <numeric> 37 #include <optional> 38 39 #define DEBUG_TYPE "globalisel-utils" 40 41 using namespace llvm; 42 using namespace MIPatternMatch; 43 44 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 45 const TargetInstrInfo &TII, 46 const RegisterBankInfo &RBI, Register Reg, 47 const TargetRegisterClass &RegClass) { 48 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 49 return MRI.createVirtualRegister(&RegClass); 50 51 return Reg; 52 } 53 54 Register llvm::constrainOperandRegClass( 55 const MachineFunction &MF, const TargetRegisterInfo &TRI, 56 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 57 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 58 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 59 Register Reg = RegMO.getReg(); 60 // Assume physical registers are properly constrained. 61 assert(Reg.isVirtual() && "PhysReg not implemented"); 62 63 // Save the old register class to check whether 64 // the change notifications will be required. 65 // TODO: A better approach would be to pass 66 // the observers to constrainRegToClass(). 67 auto *OldRegClass = MRI.getRegClassOrNull(Reg); 68 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 69 // If we created a new virtual register because the class is not compatible 70 // then create a copy between the new and the old register. 71 if (ConstrainedReg != Reg) { 72 MachineBasicBlock::iterator InsertIt(&InsertPt); 73 MachineBasicBlock &MBB = *InsertPt.getParent(); 74 // FIXME: The copy needs to have the classes constrained for its operands. 75 // Use operand's regbank to get the class for old register (Reg). 76 if (RegMO.isUse()) { 77 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 78 TII.get(TargetOpcode::COPY), ConstrainedReg) 79 .addReg(Reg); 80 } else { 81 assert(RegMO.isDef() && "Must be a definition"); 82 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 83 TII.get(TargetOpcode::COPY), Reg) 84 .addReg(ConstrainedReg); 85 } 86 if (GISelChangeObserver *Observer = MF.getObserver()) { 87 Observer->changingInstr(*RegMO.getParent()); 88 } 89 RegMO.setReg(ConstrainedReg); 90 if (GISelChangeObserver *Observer = MF.getObserver()) { 91 Observer->changedInstr(*RegMO.getParent()); 92 } 93 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) { 94 if (GISelChangeObserver *Observer = MF.getObserver()) { 95 if (!RegMO.isDef()) { 96 MachineInstr *RegDef = MRI.getVRegDef(Reg); 97 Observer->changedInstr(*RegDef); 98 } 99 Observer->changingAllUsesOfReg(MRI, Reg); 100 Observer->finishedChangingAllUsesOfReg(); 101 } 102 } 103 return ConstrainedReg; 104 } 105 106 Register llvm::constrainOperandRegClass( 107 const MachineFunction &MF, const TargetRegisterInfo &TRI, 108 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 109 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 110 MachineOperand &RegMO, unsigned OpIdx) { 111 Register Reg = RegMO.getReg(); 112 // Assume physical registers are properly constrained. 113 assert(Reg.isVirtual() && "PhysReg not implemented"); 114 115 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF); 116 // Some of the target independent instructions, like COPY, may not impose any 117 // register class constraints on some of their operands: If it's a use, we can 118 // skip constraining as the instruction defining the register would constrain 119 // it. 120 121 if (OpRC) { 122 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands 123 // can have multiple regbanks for a superclass that combine different 124 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity 125 // resolved by targets during regbankselect should not be overridden. 126 if (const auto *SubRC = TRI.getCommonSubClass( 127 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI))) 128 OpRC = SubRC; 129 130 OpRC = TRI.getAllocatableClass(OpRC); 131 } 132 133 if (!OpRC) { 134 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 135 "Register class constraint is required unless either the " 136 "instruction is target independent or the operand is a use"); 137 // FIXME: Just bailing out like this here could be not enough, unless we 138 // expect the users of this function to do the right thing for PHIs and 139 // COPY: 140 // v1 = COPY v0 141 // v2 = COPY v1 142 // v1 here may end up not being constrained at all. Please notice that to 143 // reproduce the issue we likely need a destination pattern of a selection 144 // rule producing such extra copies, not just an input GMIR with them as 145 // every existing target using selectImpl handles copies before calling it 146 // and they never reach this function. 147 return Reg; 148 } 149 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC, 150 RegMO); 151 } 152 153 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 154 const TargetInstrInfo &TII, 155 const TargetRegisterInfo &TRI, 156 const RegisterBankInfo &RBI) { 157 assert(!isPreISelGenericOpcode(I.getOpcode()) && 158 "A selected instruction is expected"); 159 MachineBasicBlock &MBB = *I.getParent(); 160 MachineFunction &MF = *MBB.getParent(); 161 MachineRegisterInfo &MRI = MF.getRegInfo(); 162 163 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 164 MachineOperand &MO = I.getOperand(OpI); 165 166 // There's nothing to be done on non-register operands. 167 if (!MO.isReg()) 168 continue; 169 170 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 171 assert(MO.isReg() && "Unsupported non-reg operand"); 172 173 Register Reg = MO.getReg(); 174 // Physical registers don't need to be constrained. 175 if (Reg.isPhysical()) 176 continue; 177 178 // Register operands with a value of 0 (e.g. predicate operands) don't need 179 // to be constrained. 180 if (Reg == 0) 181 continue; 182 183 // If the operand is a vreg, we should constrain its regclass, and only 184 // insert COPYs if that's impossible. 185 // constrainOperandRegClass does that for us. 186 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 187 188 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 189 // done. 190 if (MO.isUse()) { 191 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 192 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 193 I.tieOperands(DefIdx, OpI); 194 } 195 } 196 return true; 197 } 198 199 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 200 MachineRegisterInfo &MRI) { 201 // Give up if either DstReg or SrcReg is a physical register. 202 if (DstReg.isPhysical() || SrcReg.isPhysical()) 203 return false; 204 // Give up if the types don't match. 205 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 206 return false; 207 // Replace if either DstReg has no constraints or the register 208 // constraints match. 209 const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg); 210 if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg)) 211 return true; 212 213 // Otherwise match if the Src is already a regclass that is covered by the Dst 214 // RegBank. 215 return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) && 216 DstRBC.get<const RegisterBank *>()->covers( 217 *MRI.getRegClassOrNull(SrcReg)); 218 } 219 220 bool llvm::isTriviallyDead(const MachineInstr &MI, 221 const MachineRegisterInfo &MRI) { 222 // FIXME: This logical is mostly duplicated with 223 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 224 // MachineInstr::isLabel? 225 226 // Don't delete frame allocation labels. 227 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 228 return false; 229 // LIFETIME markers should be preserved even if they seem dead. 230 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 231 MI.getOpcode() == TargetOpcode::LIFETIME_END) 232 return false; 233 234 // If we can move an instruction, we can remove it. Otherwise, it has 235 // a side-effect of some sort. 236 bool SawStore = false; 237 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) 238 return false; 239 240 // Instructions without side-effects are dead iff they only define dead vregs. 241 for (const auto &MO : MI.all_defs()) { 242 Register Reg = MO.getReg(); 243 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg)) 244 return false; 245 } 246 return true; 247 } 248 249 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 250 MachineFunction &MF, 251 const TargetPassConfig &TPC, 252 MachineOptimizationRemarkEmitter &MORE, 253 MachineOptimizationRemarkMissed &R) { 254 bool IsFatal = Severity == DS_Error && 255 TPC.isGlobalISelAbortEnabled(); 256 // Print the function name explicitly if we don't have a debug location (which 257 // makes the diagnostic less useful) or if we're going to emit a raw error. 258 if (!R.getLocation().isValid() || IsFatal) 259 R << (" (in function: " + MF.getName() + ")").str(); 260 261 if (IsFatal) 262 report_fatal_error(Twine(R.getMsg())); 263 else 264 MORE.emit(R); 265 } 266 267 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 268 MachineOptimizationRemarkEmitter &MORE, 269 MachineOptimizationRemarkMissed &R) { 270 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 271 } 272 273 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 274 MachineOptimizationRemarkEmitter &MORE, 275 MachineOptimizationRemarkMissed &R) { 276 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 277 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 278 } 279 280 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 281 MachineOptimizationRemarkEmitter &MORE, 282 const char *PassName, StringRef Msg, 283 const MachineInstr &MI) { 284 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 285 MI.getDebugLoc(), MI.getParent()); 286 R << Msg; 287 // Printing MI is expensive; only do it if expensive remarks are enabled. 288 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 289 R << ": " << ore::MNV("Inst", MI); 290 reportGISelFailure(MF, TPC, MORE, R); 291 } 292 293 std::optional<APInt> llvm::getIConstantVRegVal(Register VReg, 294 const MachineRegisterInfo &MRI) { 295 std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( 296 VReg, MRI, /*LookThroughInstrs*/ false); 297 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 298 "Value found while looking through instrs"); 299 if (!ValAndVReg) 300 return std::nullopt; 301 return ValAndVReg->Value; 302 } 303 304 std::optional<int64_t> 305 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { 306 std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI); 307 if (Val && Val->getBitWidth() <= 64) 308 return Val->getSExtValue(); 309 return std::nullopt; 310 } 311 312 namespace { 313 314 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn; 315 typedef std::function<std::optional<APInt>(const MachineInstr *MI)> GetAPCstFn; 316 317 std::optional<ValueAndVReg> getConstantVRegValWithLookThrough( 318 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode, 319 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true, 320 bool LookThroughAnyExt = false) { 321 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 322 MachineInstr *MI; 323 324 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && 325 LookThroughInstrs) { 326 switch (MI->getOpcode()) { 327 case TargetOpcode::G_ANYEXT: 328 if (!LookThroughAnyExt) 329 return std::nullopt; 330 [[fallthrough]]; 331 case TargetOpcode::G_TRUNC: 332 case TargetOpcode::G_SEXT: 333 case TargetOpcode::G_ZEXT: 334 SeenOpcodes.push_back(std::make_pair( 335 MI->getOpcode(), 336 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 337 VReg = MI->getOperand(1).getReg(); 338 break; 339 case TargetOpcode::COPY: 340 VReg = MI->getOperand(1).getReg(); 341 if (VReg.isPhysical()) 342 return std::nullopt; 343 break; 344 case TargetOpcode::G_INTTOPTR: 345 VReg = MI->getOperand(1).getReg(); 346 break; 347 default: 348 return std::nullopt; 349 } 350 } 351 if (!MI || !IsConstantOpcode(MI)) 352 return std::nullopt; 353 354 std::optional<APInt> MaybeVal = getAPCstValue(MI); 355 if (!MaybeVal) 356 return std::nullopt; 357 APInt &Val = *MaybeVal; 358 while (!SeenOpcodes.empty()) { 359 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val(); 360 switch (OpcodeAndSize.first) { 361 case TargetOpcode::G_TRUNC: 362 Val = Val.trunc(OpcodeAndSize.second); 363 break; 364 case TargetOpcode::G_ANYEXT: 365 case TargetOpcode::G_SEXT: 366 Val = Val.sext(OpcodeAndSize.second); 367 break; 368 case TargetOpcode::G_ZEXT: 369 Val = Val.zext(OpcodeAndSize.second); 370 break; 371 } 372 } 373 374 return ValueAndVReg{Val, VReg}; 375 } 376 377 bool isIConstant(const MachineInstr *MI) { 378 if (!MI) 379 return false; 380 return MI->getOpcode() == TargetOpcode::G_CONSTANT; 381 } 382 383 bool isFConstant(const MachineInstr *MI) { 384 if (!MI) 385 return false; 386 return MI->getOpcode() == TargetOpcode::G_FCONSTANT; 387 } 388 389 bool isAnyConstant(const MachineInstr *MI) { 390 if (!MI) 391 return false; 392 unsigned Opc = MI->getOpcode(); 393 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; 394 } 395 396 std::optional<APInt> getCImmAsAPInt(const MachineInstr *MI) { 397 const MachineOperand &CstVal = MI->getOperand(1); 398 if (CstVal.isCImm()) 399 return CstVal.getCImm()->getValue(); 400 return std::nullopt; 401 } 402 403 std::optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) { 404 const MachineOperand &CstVal = MI->getOperand(1); 405 if (CstVal.isCImm()) 406 return CstVal.getCImm()->getValue(); 407 if (CstVal.isFPImm()) 408 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 409 return std::nullopt; 410 } 411 412 } // end anonymous namespace 413 414 std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( 415 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 416 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant, 417 getCImmAsAPInt, LookThroughInstrs); 418 } 419 420 std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( 421 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 422 bool LookThroughAnyExt) { 423 return getConstantVRegValWithLookThrough( 424 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs, 425 LookThroughAnyExt); 426 } 427 428 std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( 429 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 430 auto Reg = getConstantVRegValWithLookThrough( 431 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs); 432 if (!Reg) 433 return std::nullopt; 434 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), 435 Reg->VReg}; 436 } 437 438 const ConstantFP * 439 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 440 MachineInstr *MI = MRI.getVRegDef(VReg); 441 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 442 return nullptr; 443 return MI->getOperand(1).getFPImm(); 444 } 445 446 std::optional<DefinitionAndSourceRegister> 447 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 448 Register DefSrcReg = Reg; 449 auto *DefMI = MRI.getVRegDef(Reg); 450 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 451 if (!DstTy.isValid()) 452 return std::nullopt; 453 unsigned Opc = DefMI->getOpcode(); 454 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 455 Register SrcReg = DefMI->getOperand(1).getReg(); 456 auto SrcTy = MRI.getType(SrcReg); 457 if (!SrcTy.isValid()) 458 break; 459 DefMI = MRI.getVRegDef(SrcReg); 460 DefSrcReg = SrcReg; 461 Opc = DefMI->getOpcode(); 462 } 463 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 464 } 465 466 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 467 const MachineRegisterInfo &MRI) { 468 std::optional<DefinitionAndSourceRegister> DefSrcReg = 469 getDefSrcRegIgnoringCopies(Reg, MRI); 470 return DefSrcReg ? DefSrcReg->MI : nullptr; 471 } 472 473 Register llvm::getSrcRegIgnoringCopies(Register Reg, 474 const MachineRegisterInfo &MRI) { 475 std::optional<DefinitionAndSourceRegister> DefSrcReg = 476 getDefSrcRegIgnoringCopies(Reg, MRI); 477 return DefSrcReg ? DefSrcReg->Reg : Register(); 478 } 479 480 void llvm::extractParts(Register Reg, LLT Ty, int NumParts, 481 SmallVectorImpl<Register> &VRegs, 482 MachineIRBuilder &MIRBuilder, 483 MachineRegisterInfo &MRI) { 484 for (int i = 0; i < NumParts; ++i) 485 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 486 MIRBuilder.buildUnmerge(VRegs, Reg); 487 } 488 489 bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy, 490 SmallVectorImpl<Register> &VRegs, 491 SmallVectorImpl<Register> &LeftoverRegs, 492 MachineIRBuilder &MIRBuilder, 493 MachineRegisterInfo &MRI) { 494 assert(!LeftoverTy.isValid() && "this is an out argument"); 495 496 unsigned RegSize = RegTy.getSizeInBits(); 497 unsigned MainSize = MainTy.getSizeInBits(); 498 unsigned NumParts = RegSize / MainSize; 499 unsigned LeftoverSize = RegSize - NumParts * MainSize; 500 501 // Use an unmerge when possible. 502 if (LeftoverSize == 0) { 503 for (unsigned I = 0; I < NumParts; ++I) 504 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 505 MIRBuilder.buildUnmerge(VRegs, Reg); 506 return true; 507 } 508 509 // Try to use unmerge for irregular vector split where possible 510 // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32> 511 // leftover, it becomes: 512 // <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1 513 // <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3 514 if (RegTy.isVector() && MainTy.isVector()) { 515 unsigned RegNumElts = RegTy.getNumElements(); 516 unsigned MainNumElts = MainTy.getNumElements(); 517 unsigned LeftoverNumElts = RegNumElts % MainNumElts; 518 // If can unmerge to LeftoverTy, do it 519 if (MainNumElts % LeftoverNumElts == 0 && 520 RegNumElts % LeftoverNumElts == 0 && 521 RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() && 522 LeftoverNumElts > 1) { 523 LeftoverTy = 524 LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits()); 525 526 // Unmerge the SrcReg to LeftoverTy vectors 527 SmallVector<Register, 4> UnmergeValues; 528 extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues, 529 MIRBuilder, MRI); 530 531 // Find how many LeftoverTy makes one MainTy 532 unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts; 533 unsigned NumOfLeftoverVal = 534 ((RegNumElts % MainNumElts) / LeftoverNumElts); 535 536 // Create as many MainTy as possible using unmerged value 537 SmallVector<Register, 4> MergeValues; 538 for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) { 539 MergeValues.push_back(UnmergeValues[I]); 540 if (MergeValues.size() == LeftoverPerMain) { 541 VRegs.push_back( 542 MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0)); 543 MergeValues.clear(); 544 } 545 } 546 // Populate LeftoverRegs with the leftovers 547 for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal; 548 I < UnmergeValues.size(); I++) { 549 LeftoverRegs.push_back(UnmergeValues[I]); 550 } 551 return true; 552 } 553 } 554 // Perform irregular split. Leftover is last element of RegPieces. 555 if (MainTy.isVector()) { 556 SmallVector<Register, 8> RegPieces; 557 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder, 558 MRI); 559 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 560 VRegs.push_back(RegPieces[i]); 561 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 562 LeftoverTy = MRI.getType(LeftoverRegs[0]); 563 return true; 564 } 565 566 LeftoverTy = LLT::scalar(LeftoverSize); 567 // For irregular sizes, extract the individual parts. 568 for (unsigned I = 0; I != NumParts; ++I) { 569 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 570 VRegs.push_back(NewReg); 571 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 572 } 573 574 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 575 Offset += LeftoverSize) { 576 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 577 LeftoverRegs.push_back(NewReg); 578 MIRBuilder.buildExtract(NewReg, Reg, Offset); 579 } 580 581 return true; 582 } 583 584 void llvm::extractVectorParts(Register Reg, unsigned NumElts, 585 SmallVectorImpl<Register> &VRegs, 586 MachineIRBuilder &MIRBuilder, 587 MachineRegisterInfo &MRI) { 588 LLT RegTy = MRI.getType(Reg); 589 assert(RegTy.isVector() && "Expected a vector type"); 590 591 LLT EltTy = RegTy.getElementType(); 592 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 593 unsigned RegNumElts = RegTy.getNumElements(); 594 unsigned LeftoverNumElts = RegNumElts % NumElts; 595 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 596 597 // Perfect split without leftover 598 if (LeftoverNumElts == 0) 599 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder, 600 MRI); 601 602 // Irregular split. Provide direct access to all elements for artifact 603 // combiner using unmerge to elements. Then build vectors with NumElts 604 // elements. Remaining element(s) will be (used to build vector) Leftover. 605 SmallVector<Register, 8> Elts; 606 extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI); 607 608 unsigned Offset = 0; 609 // Requested sub-vectors of NarrowTy. 610 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 611 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 612 VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); 613 } 614 615 // Leftover element(s). 616 if (LeftoverNumElts == 1) { 617 VRegs.push_back(Elts[Offset]); 618 } else { 619 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 620 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 621 VRegs.push_back( 622 MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0)); 623 } 624 } 625 626 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 627 const MachineRegisterInfo &MRI) { 628 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 629 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 630 } 631 632 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 633 if (Size == 32) 634 return APFloat(float(Val)); 635 if (Size == 64) 636 return APFloat(Val); 637 if (Size != 16) 638 llvm_unreachable("Unsupported FPConstant size"); 639 bool Ignored; 640 APFloat APF(Val); 641 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 642 return APF; 643 } 644 645 std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, 646 const Register Op1, 647 const Register Op2, 648 const MachineRegisterInfo &MRI) { 649 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); 650 if (!MaybeOp2Cst) 651 return std::nullopt; 652 653 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); 654 if (!MaybeOp1Cst) 655 return std::nullopt; 656 657 const APInt &C1 = MaybeOp1Cst->Value; 658 const APInt &C2 = MaybeOp2Cst->Value; 659 switch (Opcode) { 660 default: 661 break; 662 case TargetOpcode::G_ADD: 663 return C1 + C2; 664 case TargetOpcode::G_PTR_ADD: 665 // Types can be of different width here. 666 // Result needs to be the same width as C1, so trunc or sext C2. 667 return C1 + C2.sextOrTrunc(C1.getBitWidth()); 668 case TargetOpcode::G_AND: 669 return C1 & C2; 670 case TargetOpcode::G_ASHR: 671 return C1.ashr(C2); 672 case TargetOpcode::G_LSHR: 673 return C1.lshr(C2); 674 case TargetOpcode::G_MUL: 675 return C1 * C2; 676 case TargetOpcode::G_OR: 677 return C1 | C2; 678 case TargetOpcode::G_SHL: 679 return C1 << C2; 680 case TargetOpcode::G_SUB: 681 return C1 - C2; 682 case TargetOpcode::G_XOR: 683 return C1 ^ C2; 684 case TargetOpcode::G_UDIV: 685 if (!C2.getBoolValue()) 686 break; 687 return C1.udiv(C2); 688 case TargetOpcode::G_SDIV: 689 if (!C2.getBoolValue()) 690 break; 691 return C1.sdiv(C2); 692 case TargetOpcode::G_UREM: 693 if (!C2.getBoolValue()) 694 break; 695 return C1.urem(C2); 696 case TargetOpcode::G_SREM: 697 if (!C2.getBoolValue()) 698 break; 699 return C1.srem(C2); 700 case TargetOpcode::G_SMIN: 701 return APIntOps::smin(C1, C2); 702 case TargetOpcode::G_SMAX: 703 return APIntOps::smax(C1, C2); 704 case TargetOpcode::G_UMIN: 705 return APIntOps::umin(C1, C2); 706 case TargetOpcode::G_UMAX: 707 return APIntOps::umax(C1, C2); 708 } 709 710 return std::nullopt; 711 } 712 713 std::optional<APFloat> 714 llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, 715 const Register Op2, const MachineRegisterInfo &MRI) { 716 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 717 if (!Op2Cst) 718 return std::nullopt; 719 720 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 721 if (!Op1Cst) 722 return std::nullopt; 723 724 APFloat C1 = Op1Cst->getValueAPF(); 725 const APFloat &C2 = Op2Cst->getValueAPF(); 726 switch (Opcode) { 727 case TargetOpcode::G_FADD: 728 C1.add(C2, APFloat::rmNearestTiesToEven); 729 return C1; 730 case TargetOpcode::G_FSUB: 731 C1.subtract(C2, APFloat::rmNearestTiesToEven); 732 return C1; 733 case TargetOpcode::G_FMUL: 734 C1.multiply(C2, APFloat::rmNearestTiesToEven); 735 return C1; 736 case TargetOpcode::G_FDIV: 737 C1.divide(C2, APFloat::rmNearestTiesToEven); 738 return C1; 739 case TargetOpcode::G_FREM: 740 C1.mod(C2); 741 return C1; 742 case TargetOpcode::G_FCOPYSIGN: 743 C1.copySign(C2); 744 return C1; 745 case TargetOpcode::G_FMINNUM: 746 return minnum(C1, C2); 747 case TargetOpcode::G_FMAXNUM: 748 return maxnum(C1, C2); 749 case TargetOpcode::G_FMINIMUM: 750 return minimum(C1, C2); 751 case TargetOpcode::G_FMAXIMUM: 752 return maximum(C1, C2); 753 case TargetOpcode::G_FMINNUM_IEEE: 754 case TargetOpcode::G_FMAXNUM_IEEE: 755 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not 756 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, 757 // and currently there isn't a nice wrapper in APFloat for the version with 758 // correct snan handling. 759 break; 760 default: 761 break; 762 } 763 764 return std::nullopt; 765 } 766 767 SmallVector<APInt> 768 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, 769 const Register Op2, 770 const MachineRegisterInfo &MRI) { 771 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI); 772 if (!SrcVec2) 773 return SmallVector<APInt>(); 774 775 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI); 776 if (!SrcVec1) 777 return SmallVector<APInt>(); 778 779 SmallVector<APInt> FoldedElements; 780 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { 781 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), 782 SrcVec2->getSourceReg(Idx), MRI); 783 if (!MaybeCst) 784 return SmallVector<APInt>(); 785 FoldedElements.push_back(*MaybeCst); 786 } 787 return FoldedElements; 788 } 789 790 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 791 bool SNaN) { 792 const MachineInstr *DefMI = MRI.getVRegDef(Val); 793 if (!DefMI) 794 return false; 795 796 const TargetMachine& TM = DefMI->getMF()->getTarget(); 797 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 798 return true; 799 800 // If the value is a constant, we can obviously see if it is a NaN or not. 801 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { 802 return !FPVal->getValueAPF().isNaN() || 803 (SNaN && !FPVal->getValueAPF().isSignaling()); 804 } 805 806 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 807 for (const auto &Op : DefMI->uses()) 808 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) 809 return false; 810 return true; 811 } 812 813 switch (DefMI->getOpcode()) { 814 default: 815 break; 816 case TargetOpcode::G_FADD: 817 case TargetOpcode::G_FSUB: 818 case TargetOpcode::G_FMUL: 819 case TargetOpcode::G_FDIV: 820 case TargetOpcode::G_FREM: 821 case TargetOpcode::G_FSIN: 822 case TargetOpcode::G_FCOS: 823 case TargetOpcode::G_FMA: 824 case TargetOpcode::G_FMAD: 825 if (SNaN) 826 return true; 827 828 // TODO: Need isKnownNeverInfinity 829 return false; 830 case TargetOpcode::G_FMINNUM_IEEE: 831 case TargetOpcode::G_FMAXNUM_IEEE: { 832 if (SNaN) 833 return true; 834 // This can return a NaN if either operand is an sNaN, or if both operands 835 // are NaN. 836 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && 837 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || 838 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && 839 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); 840 } 841 case TargetOpcode::G_FMINNUM: 842 case TargetOpcode::G_FMAXNUM: { 843 // Only one needs to be known not-nan, since it will be returned if the 844 // other ends up being one. 845 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || 846 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); 847 } 848 } 849 850 if (SNaN) { 851 // FP operations quiet. For now, just handle the ones inserted during 852 // legalization. 853 switch (DefMI->getOpcode()) { 854 case TargetOpcode::G_FPEXT: 855 case TargetOpcode::G_FPTRUNC: 856 case TargetOpcode::G_FCANONICALIZE: 857 return true; 858 default: 859 return false; 860 } 861 } 862 863 return false; 864 } 865 866 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 867 const MachinePointerInfo &MPO) { 868 auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V); 869 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 870 MachineFrameInfo &MFI = MF.getFrameInfo(); 871 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 872 MPO.Offset); 873 } 874 875 if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) { 876 const Module *M = MF.getFunction().getParent(); 877 return V->getPointerAlignment(M->getDataLayout()); 878 } 879 880 return Align(1); 881 } 882 883 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 884 const TargetInstrInfo &TII, 885 MCRegister PhysReg, 886 const TargetRegisterClass &RC, 887 const DebugLoc &DL, LLT RegTy) { 888 MachineBasicBlock &EntryMBB = MF.front(); 889 MachineRegisterInfo &MRI = MF.getRegInfo(); 890 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 891 if (LiveIn) { 892 MachineInstr *Def = MRI.getVRegDef(LiveIn); 893 if (Def) { 894 // FIXME: Should the verifier check this is in the entry block? 895 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 896 return LiveIn; 897 } 898 899 // It's possible the incoming argument register and copy was added during 900 // lowering, but later deleted due to being/becoming dead. If this happens, 901 // re-insert the copy. 902 } else { 903 // The live in register was not present, so add it. 904 LiveIn = MF.addLiveIn(PhysReg, &RC); 905 if (RegTy.isValid()) 906 MRI.setType(LiveIn, RegTy); 907 } 908 909 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 910 .addReg(PhysReg); 911 if (!EntryMBB.isLiveIn(PhysReg)) 912 EntryMBB.addLiveIn(PhysReg); 913 return LiveIn; 914 } 915 916 std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, 917 const Register Op1, uint64_t Imm, 918 const MachineRegisterInfo &MRI) { 919 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); 920 if (MaybeOp1Cst) { 921 switch (Opcode) { 922 default: 923 break; 924 case TargetOpcode::G_SEXT_INREG: { 925 LLT Ty = MRI.getType(Op1); 926 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 927 } 928 } 929 } 930 return std::nullopt; 931 } 932 933 std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy, 934 const Register Op0, 935 const MachineRegisterInfo &MRI) { 936 std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI); 937 if (!Val) 938 return Val; 939 940 const unsigned DstSize = DstTy.getScalarSizeInBits(); 941 942 switch (Opcode) { 943 case TargetOpcode::G_SEXT: 944 return Val->sext(DstSize); 945 case TargetOpcode::G_ZEXT: 946 case TargetOpcode::G_ANYEXT: 947 // TODO: DAG considers target preference when constant folding any_extend. 948 return Val->zext(DstSize); 949 default: 950 break; 951 } 952 953 llvm_unreachable("unexpected cast opcode to constant fold"); 954 } 955 956 std::optional<APFloat> 957 llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, 958 const MachineRegisterInfo &MRI) { 959 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); 960 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { 961 APFloat DstVal(getFltSemanticForLLT(DstTy)); 962 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, 963 APFloat::rmNearestTiesToEven); 964 return DstVal; 965 } 966 return std::nullopt; 967 } 968 969 std::optional<SmallVector<unsigned>> 970 llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) { 971 LLT Ty = MRI.getType(Src); 972 SmallVector<unsigned> FoldedCTLZs; 973 auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> { 974 auto MaybeCst = getIConstantVRegVal(R, MRI); 975 if (!MaybeCst) 976 return std::nullopt; 977 return MaybeCst->countl_zero(); 978 }; 979 if (Ty.isVector()) { 980 // Try to constant fold each element. 981 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI); 982 if (!BV) 983 return std::nullopt; 984 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 985 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { 986 FoldedCTLZs.emplace_back(*MaybeFold); 987 continue; 988 } 989 return std::nullopt; 990 } 991 return FoldedCTLZs; 992 } 993 if (auto MaybeCst = tryFoldScalar(Src)) { 994 FoldedCTLZs.emplace_back(*MaybeCst); 995 return FoldedCTLZs; 996 } 997 return std::nullopt; 998 } 999 1000 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 1001 GISelKnownBits *KB) { 1002 std::optional<DefinitionAndSourceRegister> DefSrcReg = 1003 getDefSrcRegIgnoringCopies(Reg, MRI); 1004 if (!DefSrcReg) 1005 return false; 1006 1007 const MachineInstr &MI = *DefSrcReg->MI; 1008 const LLT Ty = MRI.getType(Reg); 1009 1010 switch (MI.getOpcode()) { 1011 case TargetOpcode::G_CONSTANT: { 1012 unsigned BitWidth = Ty.getScalarSizeInBits(); 1013 const ConstantInt *CI = MI.getOperand(1).getCImm(); 1014 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 1015 } 1016 case TargetOpcode::G_SHL: { 1017 // A left-shift of a constant one will have exactly one bit set because 1018 // shifting the bit off the end is undefined. 1019 1020 // TODO: Constant splat 1021 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1022 if (*ConstLHS == 1) 1023 return true; 1024 } 1025 1026 break; 1027 } 1028 case TargetOpcode::G_LSHR: { 1029 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1030 if (ConstLHS->isSignMask()) 1031 return true; 1032 } 1033 1034 break; 1035 } 1036 case TargetOpcode::G_BUILD_VECTOR: { 1037 // TODO: Probably should have a recursion depth guard since you could have 1038 // bitcasted vector elements. 1039 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 1040 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB)) 1041 return false; 1042 1043 return true; 1044 } 1045 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1046 // Only handle constants since we would need to know if number of leading 1047 // zeros is greater than the truncation amount. 1048 const unsigned BitWidth = Ty.getScalarSizeInBits(); 1049 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1050 auto Const = getIConstantVRegVal(MO.getReg(), MRI); 1051 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) 1052 return false; 1053 } 1054 1055 return true; 1056 } 1057 default: 1058 break; 1059 } 1060 1061 if (!KB) 1062 return false; 1063 1064 // More could be done here, though the above checks are enough 1065 // to handle some common cases. 1066 1067 // Fall back to computeKnownBits to catch other known cases. 1068 KnownBits Known = KB->getKnownBits(Reg); 1069 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 1070 } 1071 1072 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 1073 AU.addPreserved<StackProtector>(); 1074 } 1075 1076 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 1077 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1078 return OrigTy; 1079 1080 if (OrigTy.isVector() && TargetTy.isVector()) { 1081 LLT OrigElt = OrigTy.getElementType(); 1082 LLT TargetElt = TargetTy.getElementType(); 1083 1084 // TODO: The docstring for this function says the intention is to use this 1085 // function to build MERGE/UNMERGE instructions. It won't be the case that 1086 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1087 // could implement getLCMType between the two in the future if there was a 1088 // need, but it is not worth it now as this function should not be used in 1089 // that way. 1090 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1091 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1092 "getLCMType not implemented between fixed and scalable vectors."); 1093 1094 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 1095 int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(), 1096 TargetTy.getElementCount().getKnownMinValue()); 1097 // Prefer the original element type. 1098 ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy( 1099 TargetTy.getElementCount().getKnownMinValue()); 1100 return LLT::vector(Mul.divideCoefficientBy(GCDMinElts), 1101 OrigTy.getElementType()); 1102 } 1103 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(), 1104 TargetTy.getSizeInBits().getKnownMinValue()); 1105 return LLT::vector( 1106 ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()), 1107 OrigElt); 1108 } 1109 1110 // One type is scalar, one type is vector 1111 if (OrigTy.isVector() || TargetTy.isVector()) { 1112 LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy; 1113 LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy; 1114 LLT EltTy = VecTy.getElementType(); 1115 LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy; 1116 1117 // Prefer scalar type from OrigTy. 1118 if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits()) 1119 return LLT::vector(VecTy.getElementCount(), OrigEltTy); 1120 1121 // Different size scalars. Create vector with the same total size. 1122 // LCM will take fixed/scalable from VecTy. 1123 unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() * 1124 VecTy.getElementCount().getKnownMinValue(), 1125 ScalarTy.getSizeInBits().getFixedValue()); 1126 // Prefer type from OrigTy 1127 return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(), 1128 VecTy.getElementCount().isScalable()), 1129 OrigEltTy); 1130 } 1131 1132 // At this point, both types are scalars of different size 1133 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(), 1134 TargetTy.getSizeInBits().getFixedValue()); 1135 // Preserve pointer types. 1136 if (LCM == OrigTy.getSizeInBits()) 1137 return OrigTy; 1138 if (LCM == TargetTy.getSizeInBits()) 1139 return TargetTy; 1140 return LLT::scalar(LCM); 1141 } 1142 1143 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { 1144 1145 if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) || 1146 (OrigTy.isFixedVector() && TargetTy.isScalableVector())) 1147 llvm_unreachable( 1148 "getCoverTy not implemented between fixed and scalable vectors."); 1149 1150 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || 1151 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) 1152 return getLCMType(OrigTy, TargetTy); 1153 1154 unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue(); 1155 unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue(); 1156 if (OrigTyNumElts % TargetTyNumElts == 0) 1157 return OrigTy; 1158 1159 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts); 1160 return LLT::scalarOrVector(ElementCount::getFixed(NumElts), 1161 OrigTy.getElementType()); 1162 } 1163 1164 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 1165 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1166 return OrigTy; 1167 1168 if (OrigTy.isVector() && TargetTy.isVector()) { 1169 LLT OrigElt = OrigTy.getElementType(); 1170 1171 // TODO: The docstring for this function says the intention is to use this 1172 // function to build MERGE/UNMERGE instructions. It won't be the case that 1173 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1174 // could implement getGCDType between the two in the future if there was a 1175 // need, but it is not worth it now as this function should not be used in 1176 // that way. 1177 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1178 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1179 "getGCDType not implemented between fixed and scalable vectors."); 1180 1181 unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(), 1182 TargetTy.getSizeInBits().getKnownMinValue()); 1183 if (GCD == OrigElt.getSizeInBits()) 1184 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1185 OrigElt); 1186 1187 // Cannot produce original element type, but both have vscale in common. 1188 if (GCD < OrigElt.getSizeInBits()) 1189 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1190 GCD); 1191 1192 return LLT::vector( 1193 ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(), 1194 OrigTy.isScalable()), 1195 OrigElt); 1196 } 1197 1198 // If one type is vector and the element size matches the scalar size, then 1199 // the gcd is the scalar type. 1200 if (OrigTy.isVector() && 1201 OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits()) 1202 return OrigTy.getElementType(); 1203 if (TargetTy.isVector() && 1204 TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits()) 1205 return OrigTy; 1206 1207 // At this point, both types are either scalars of different type or one is a 1208 // vector and one is a scalar. If both types are scalars, the GCD type is the 1209 // GCD between the two scalar sizes. If one is vector and one is scalar, then 1210 // the GCD type is the GCD between the scalar and the vector element size. 1211 LLT OrigScalar = OrigTy.getScalarType(); 1212 LLT TargetScalar = TargetTy.getScalarType(); 1213 unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(), 1214 TargetScalar.getSizeInBits().getFixedValue()); 1215 return LLT::scalar(GCD); 1216 } 1217 1218 std::optional<int> llvm::getSplatIndex(MachineInstr &MI) { 1219 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 1220 "Only G_SHUFFLE_VECTOR can have a splat index!"); 1221 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1222 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 1223 1224 // If all elements are undefined, this shuffle can be considered a splat. 1225 // Return 0 for better potential for callers to simplify. 1226 if (FirstDefinedIdx == Mask.end()) 1227 return 0; 1228 1229 // Make sure all remaining elements are either undef or the same 1230 // as the first non-undef value. 1231 int SplatValue = *FirstDefinedIdx; 1232 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 1233 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 1234 return std::nullopt; 1235 1236 return SplatValue; 1237 } 1238 1239 static bool isBuildVectorOp(unsigned Opcode) { 1240 return Opcode == TargetOpcode::G_BUILD_VECTOR || 1241 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 1242 } 1243 1244 namespace { 1245 1246 std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg, 1247 const MachineRegisterInfo &MRI, 1248 bool AllowUndef) { 1249 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); 1250 if (!MI) 1251 return std::nullopt; 1252 1253 bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS; 1254 if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp) 1255 return std::nullopt; 1256 1257 std::optional<ValueAndVReg> SplatValAndReg; 1258 for (MachineOperand &Op : MI->uses()) { 1259 Register Element = Op.getReg(); 1260 // If we have a G_CONCAT_VECTOR, we recursively look into the 1261 // vectors that we're concatenating to see if they're splats. 1262 auto ElementValAndReg = 1263 isConcatVectorsOp 1264 ? getAnyConstantSplat(Element, MRI, AllowUndef) 1265 : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); 1266 1267 // If AllowUndef, treat undef as value that will result in a constant splat. 1268 if (!ElementValAndReg) { 1269 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element))) 1270 continue; 1271 return std::nullopt; 1272 } 1273 1274 // Record splat value 1275 if (!SplatValAndReg) 1276 SplatValAndReg = ElementValAndReg; 1277 1278 // Different constant than the one already recorded, not a constant splat. 1279 if (SplatValAndReg->Value != ElementValAndReg->Value) 1280 return std::nullopt; 1281 } 1282 1283 return SplatValAndReg; 1284 } 1285 1286 } // end anonymous namespace 1287 1288 bool llvm::isBuildVectorConstantSplat(const Register Reg, 1289 const MachineRegisterInfo &MRI, 1290 int64_t SplatValue, bool AllowUndef) { 1291 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef)) 1292 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); 1293 return false; 1294 } 1295 1296 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, 1297 const MachineRegisterInfo &MRI, 1298 int64_t SplatValue, bool AllowUndef) { 1299 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue, 1300 AllowUndef); 1301 } 1302 1303 std::optional<APInt> 1304 llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) { 1305 if (auto SplatValAndReg = 1306 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) { 1307 if (std::optional<ValueAndVReg> ValAndVReg = 1308 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI)) 1309 return ValAndVReg->Value; 1310 } 1311 1312 return std::nullopt; 1313 } 1314 1315 std::optional<APInt> 1316 llvm::getIConstantSplatVal(const MachineInstr &MI, 1317 const MachineRegisterInfo &MRI) { 1318 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI); 1319 } 1320 1321 std::optional<int64_t> 1322 llvm::getIConstantSplatSExtVal(const Register Reg, 1323 const MachineRegisterInfo &MRI) { 1324 if (auto SplatValAndReg = 1325 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) 1326 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); 1327 return std::nullopt; 1328 } 1329 1330 std::optional<int64_t> 1331 llvm::getIConstantSplatSExtVal(const MachineInstr &MI, 1332 const MachineRegisterInfo &MRI) { 1333 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI); 1334 } 1335 1336 std::optional<FPValueAndVReg> 1337 llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, 1338 bool AllowUndef) { 1339 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) 1340 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1341 return std::nullopt; 1342 } 1343 1344 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 1345 const MachineRegisterInfo &MRI, 1346 bool AllowUndef) { 1347 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); 1348 } 1349 1350 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 1351 const MachineRegisterInfo &MRI, 1352 bool AllowUndef) { 1353 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); 1354 } 1355 1356 std::optional<RegOrConstant> 1357 llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) { 1358 unsigned Opc = MI.getOpcode(); 1359 if (!isBuildVectorOp(Opc)) 1360 return std::nullopt; 1361 if (auto Splat = getIConstantSplatSExtVal(MI, MRI)) 1362 return RegOrConstant(*Splat); 1363 auto Reg = MI.getOperand(1).getReg(); 1364 if (any_of(drop_begin(MI.operands(), 2), 1365 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) 1366 return std::nullopt; 1367 return RegOrConstant(Reg); 1368 } 1369 1370 static bool isConstantScalar(const MachineInstr &MI, 1371 const MachineRegisterInfo &MRI, 1372 bool AllowFP = true, 1373 bool AllowOpaqueConstants = true) { 1374 switch (MI.getOpcode()) { 1375 case TargetOpcode::G_CONSTANT: 1376 case TargetOpcode::G_IMPLICIT_DEF: 1377 return true; 1378 case TargetOpcode::G_FCONSTANT: 1379 return AllowFP; 1380 case TargetOpcode::G_GLOBAL_VALUE: 1381 case TargetOpcode::G_FRAME_INDEX: 1382 case TargetOpcode::G_BLOCK_ADDR: 1383 case TargetOpcode::G_JUMP_TABLE: 1384 return AllowOpaqueConstants; 1385 default: 1386 return false; 1387 } 1388 } 1389 1390 bool llvm::isConstantOrConstantVector(MachineInstr &MI, 1391 const MachineRegisterInfo &MRI) { 1392 Register Def = MI.getOperand(0).getReg(); 1393 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1394 return true; 1395 GBuildVector *BV = dyn_cast<GBuildVector>(&MI); 1396 if (!BV) 1397 return false; 1398 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1399 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || 1400 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI)) 1401 continue; 1402 return false; 1403 } 1404 return true; 1405 } 1406 1407 bool llvm::isConstantOrConstantVector(const MachineInstr &MI, 1408 const MachineRegisterInfo &MRI, 1409 bool AllowFP, bool AllowOpaqueConstants) { 1410 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) 1411 return true; 1412 1413 if (!isBuildVectorOp(MI.getOpcode())) 1414 return false; 1415 1416 const unsigned NumOps = MI.getNumOperands(); 1417 for (unsigned I = 1; I != NumOps; ++I) { 1418 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg()); 1419 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants)) 1420 return false; 1421 } 1422 1423 return true; 1424 } 1425 1426 std::optional<APInt> 1427 llvm::isConstantOrConstantSplatVector(MachineInstr &MI, 1428 const MachineRegisterInfo &MRI) { 1429 Register Def = MI.getOperand(0).getReg(); 1430 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1431 return C->Value; 1432 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI); 1433 if (!MaybeCst) 1434 return std::nullopt; 1435 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); 1436 return APInt(ScalarSize, *MaybeCst, true); 1437 } 1438 1439 bool llvm::isNullOrNullSplat(const MachineInstr &MI, 1440 const MachineRegisterInfo &MRI, bool AllowUndefs) { 1441 switch (MI.getOpcode()) { 1442 case TargetOpcode::G_IMPLICIT_DEF: 1443 return AllowUndefs; 1444 case TargetOpcode::G_CONSTANT: 1445 return MI.getOperand(1).getCImm()->isNullValue(); 1446 case TargetOpcode::G_FCONSTANT: { 1447 const ConstantFP *FPImm = MI.getOperand(1).getFPImm(); 1448 return FPImm->isZero() && !FPImm->isNegative(); 1449 } 1450 default: 1451 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already 1452 return false; 1453 return isBuildVectorAllZeros(MI, MRI); 1454 } 1455 } 1456 1457 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, 1458 const MachineRegisterInfo &MRI, 1459 bool AllowUndefs) { 1460 switch (MI.getOpcode()) { 1461 case TargetOpcode::G_IMPLICIT_DEF: 1462 return AllowUndefs; 1463 case TargetOpcode::G_CONSTANT: 1464 return MI.getOperand(1).getCImm()->isAllOnesValue(); 1465 default: 1466 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already 1467 return false; 1468 return isBuildVectorAllOnes(MI, MRI); 1469 } 1470 } 1471 1472 bool llvm::matchUnaryPredicate( 1473 const MachineRegisterInfo &MRI, Register Reg, 1474 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { 1475 1476 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); 1477 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) 1478 return Match(nullptr); 1479 1480 // TODO: Also handle fconstant 1481 if (Def->getOpcode() == TargetOpcode::G_CONSTANT) 1482 return Match(Def->getOperand(1).getCImm()); 1483 1484 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) 1485 return false; 1486 1487 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { 1488 Register SrcElt = Def->getOperand(I).getReg(); 1489 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); 1490 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { 1491 if (!Match(nullptr)) 1492 return false; 1493 continue; 1494 } 1495 1496 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || 1497 !Match(SrcDef->getOperand(1).getCImm())) 1498 return false; 1499 } 1500 1501 return true; 1502 } 1503 1504 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 1505 bool IsFP) { 1506 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1507 case TargetLowering::UndefinedBooleanContent: 1508 return Val & 0x1; 1509 case TargetLowering::ZeroOrOneBooleanContent: 1510 return Val == 1; 1511 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1512 return Val == -1; 1513 } 1514 llvm_unreachable("Invalid boolean contents"); 1515 } 1516 1517 bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val, 1518 bool IsVector, bool IsFP) { 1519 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1520 case TargetLowering::UndefinedBooleanContent: 1521 return ~Val & 0x1; 1522 case TargetLowering::ZeroOrOneBooleanContent: 1523 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1524 return Val == 0; 1525 } 1526 llvm_unreachable("Invalid boolean contents"); 1527 } 1528 1529 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 1530 bool IsFP) { 1531 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1532 case TargetLowering::UndefinedBooleanContent: 1533 case TargetLowering::ZeroOrOneBooleanContent: 1534 return 1; 1535 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1536 return -1; 1537 } 1538 llvm_unreachable("Invalid boolean contents"); 1539 } 1540 1541 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, 1542 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 1543 const auto &F = MBB.getParent()->getFunction(); 1544 return F.hasOptSize() || F.hasMinSize() || 1545 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); 1546 } 1547 1548 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, 1549 LostDebugLocObserver *LocObserver, 1550 SmallInstListTy &DeadInstChain) { 1551 for (MachineOperand &Op : MI.uses()) { 1552 if (Op.isReg() && Op.getReg().isVirtual()) 1553 DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); 1554 } 1555 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); 1556 DeadInstChain.remove(&MI); 1557 MI.eraseFromParent(); 1558 if (LocObserver) 1559 LocObserver->checkpoint(false); 1560 } 1561 1562 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, 1563 MachineRegisterInfo &MRI, 1564 LostDebugLocObserver *LocObserver) { 1565 SmallInstListTy DeadInstChain; 1566 for (MachineInstr *MI : DeadInstrs) 1567 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); 1568 1569 while (!DeadInstChain.empty()) { 1570 MachineInstr *Inst = DeadInstChain.pop_back_val(); 1571 if (!isTriviallyDead(*Inst, MRI)) 1572 continue; 1573 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); 1574 } 1575 } 1576 1577 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, 1578 LostDebugLocObserver *LocObserver) { 1579 return eraseInstrs({&MI}, MRI, LocObserver); 1580 } 1581 1582 void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) { 1583 for (auto &Def : MI.defs()) { 1584 assert(Def.isReg() && "Must be a reg"); 1585 1586 SmallVector<MachineOperand *, 16> DbgUsers; 1587 for (auto &MOUse : MRI.use_operands(Def.getReg())) { 1588 MachineInstr *DbgValue = MOUse.getParent(); 1589 // Ignore partially formed DBG_VALUEs. 1590 if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) { 1591 DbgUsers.push_back(&MOUse); 1592 } 1593 } 1594 1595 if (!DbgUsers.empty()) { 1596 salvageDebugInfoForDbgValue(MRI, MI, DbgUsers); 1597 } 1598 } 1599 } 1600