1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/MachineSizeOpts.h" 28 #include "llvm/CodeGen/RegisterBankInfo.h" 29 #include "llvm/CodeGen/StackProtector.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Transforms/Utils/SizeOpts.h" 38 #include <numeric> 39 #include <optional> 40 41 #define DEBUG_TYPE "globalisel-utils" 42 43 using namespace llvm; 44 using namespace MIPatternMatch; 45 46 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 47 const TargetInstrInfo &TII, 48 const RegisterBankInfo &RBI, Register Reg, 49 const TargetRegisterClass &RegClass) { 50 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 51 return MRI.createVirtualRegister(&RegClass); 52 53 return Reg; 54 } 55 56 Register llvm::constrainOperandRegClass( 57 const MachineFunction &MF, const TargetRegisterInfo &TRI, 58 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 59 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 60 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 61 Register Reg = RegMO.getReg(); 62 // Assume physical registers are properly constrained. 63 assert(Reg.isVirtual() && "PhysReg not implemented"); 64 65 // Save the old register class to check whether 66 // the change notifications will be required. 67 // TODO: A better approach would be to pass 68 // the observers to constrainRegToClass(). 69 auto *OldRegClass = MRI.getRegClassOrNull(Reg); 70 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 71 // If we created a new virtual register because the class is not compatible 72 // then create a copy between the new and the old register. 73 if (ConstrainedReg != Reg) { 74 MachineBasicBlock::iterator InsertIt(&InsertPt); 75 MachineBasicBlock &MBB = *InsertPt.getParent(); 76 // FIXME: The copy needs to have the classes constrained for its operands. 77 // Use operand's regbank to get the class for old register (Reg). 78 if (RegMO.isUse()) { 79 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 80 TII.get(TargetOpcode::COPY), ConstrainedReg) 81 .addReg(Reg); 82 } else { 83 assert(RegMO.isDef() && "Must be a definition"); 84 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 85 TII.get(TargetOpcode::COPY), Reg) 86 .addReg(ConstrainedReg); 87 } 88 if (GISelChangeObserver *Observer = MF.getObserver()) { 89 Observer->changingInstr(*RegMO.getParent()); 90 } 91 RegMO.setReg(ConstrainedReg); 92 if (GISelChangeObserver *Observer = MF.getObserver()) { 93 Observer->changedInstr(*RegMO.getParent()); 94 } 95 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) { 96 if (GISelChangeObserver *Observer = MF.getObserver()) { 97 if (!RegMO.isDef()) { 98 MachineInstr *RegDef = MRI.getVRegDef(Reg); 99 Observer->changedInstr(*RegDef); 100 } 101 Observer->changingAllUsesOfReg(MRI, Reg); 102 Observer->finishedChangingAllUsesOfReg(); 103 } 104 } 105 return ConstrainedReg; 106 } 107 108 Register llvm::constrainOperandRegClass( 109 const MachineFunction &MF, const TargetRegisterInfo &TRI, 110 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 111 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 112 MachineOperand &RegMO, unsigned OpIdx) { 113 Register Reg = RegMO.getReg(); 114 // Assume physical registers are properly constrained. 115 assert(Reg.isVirtual() && "PhysReg not implemented"); 116 117 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF); 118 // Some of the target independent instructions, like COPY, may not impose any 119 // register class constraints on some of their operands: If it's a use, we can 120 // skip constraining as the instruction defining the register would constrain 121 // it. 122 123 if (OpRC) { 124 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands 125 // can have multiple regbanks for a superclass that combine different 126 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity 127 // resolved by targets during regbankselect should not be overridden. 128 if (const auto *SubRC = TRI.getCommonSubClass( 129 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI))) 130 OpRC = SubRC; 131 132 OpRC = TRI.getAllocatableClass(OpRC); 133 } 134 135 if (!OpRC) { 136 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 137 "Register class constraint is required unless either the " 138 "instruction is target independent or the operand is a use"); 139 // FIXME: Just bailing out like this here could be not enough, unless we 140 // expect the users of this function to do the right thing for PHIs and 141 // COPY: 142 // v1 = COPY v0 143 // v2 = COPY v1 144 // v1 here may end up not being constrained at all. Please notice that to 145 // reproduce the issue we likely need a destination pattern of a selection 146 // rule producing such extra copies, not just an input GMIR with them as 147 // every existing target using selectImpl handles copies before calling it 148 // and they never reach this function. 149 return Reg; 150 } 151 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC, 152 RegMO); 153 } 154 155 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 156 const TargetInstrInfo &TII, 157 const TargetRegisterInfo &TRI, 158 const RegisterBankInfo &RBI) { 159 assert(!isPreISelGenericOpcode(I.getOpcode()) && 160 "A selected instruction is expected"); 161 MachineBasicBlock &MBB = *I.getParent(); 162 MachineFunction &MF = *MBB.getParent(); 163 MachineRegisterInfo &MRI = MF.getRegInfo(); 164 165 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 166 MachineOperand &MO = I.getOperand(OpI); 167 168 // There's nothing to be done on non-register operands. 169 if (!MO.isReg()) 170 continue; 171 172 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 173 assert(MO.isReg() && "Unsupported non-reg operand"); 174 175 Register Reg = MO.getReg(); 176 // Physical registers don't need to be constrained. 177 if (Reg.isPhysical()) 178 continue; 179 180 // Register operands with a value of 0 (e.g. predicate operands) don't need 181 // to be constrained. 182 if (Reg == 0) 183 continue; 184 185 // If the operand is a vreg, we should constrain its regclass, and only 186 // insert COPYs if that's impossible. 187 // constrainOperandRegClass does that for us. 188 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 189 190 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 191 // done. 192 if (MO.isUse()) { 193 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 194 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 195 I.tieOperands(DefIdx, OpI); 196 } 197 } 198 return true; 199 } 200 201 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 202 MachineRegisterInfo &MRI) { 203 // Give up if either DstReg or SrcReg is a physical register. 204 if (DstReg.isPhysical() || SrcReg.isPhysical()) 205 return false; 206 // Give up if the types don't match. 207 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 208 return false; 209 // Replace if either DstReg has no constraints or the register 210 // constraints match. 211 const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg); 212 if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg)) 213 return true; 214 215 // Otherwise match if the Src is already a regclass that is covered by the Dst 216 // RegBank. 217 return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) && 218 DstRBC.get<const RegisterBank *>()->covers( 219 *MRI.getRegClassOrNull(SrcReg)); 220 } 221 222 bool llvm::isTriviallyDead(const MachineInstr &MI, 223 const MachineRegisterInfo &MRI) { 224 // FIXME: This logical is mostly duplicated with 225 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 226 // MachineInstr::isLabel? 227 228 // Don't delete frame allocation labels. 229 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 230 return false; 231 // Don't delete fake uses. 232 if (MI.getOpcode() == TargetOpcode::FAKE_USE) 233 return false; 234 // LIFETIME markers should be preserved even if they seem dead. 235 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 236 MI.getOpcode() == TargetOpcode::LIFETIME_END) 237 return false; 238 239 // If we can move an instruction, we can remove it. Otherwise, it has 240 // a side-effect of some sort. 241 bool SawStore = false; 242 if (!MI.isSafeToMove(SawStore) && !MI.isPHI()) 243 return false; 244 245 // Instructions without side-effects are dead iff they only define dead vregs. 246 for (const auto &MO : MI.all_defs()) { 247 Register Reg = MO.getReg(); 248 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg)) 249 return false; 250 } 251 return true; 252 } 253 254 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 255 MachineFunction &MF, 256 const TargetPassConfig &TPC, 257 MachineOptimizationRemarkEmitter &MORE, 258 MachineOptimizationRemarkMissed &R) { 259 bool IsFatal = Severity == DS_Error && 260 TPC.isGlobalISelAbortEnabled(); 261 // Print the function name explicitly if we don't have a debug location (which 262 // makes the diagnostic less useful) or if we're going to emit a raw error. 263 if (!R.getLocation().isValid() || IsFatal) 264 R << (" (in function: " + MF.getName() + ")").str(); 265 266 if (IsFatal) 267 report_fatal_error(Twine(R.getMsg())); 268 else 269 MORE.emit(R); 270 } 271 272 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 273 MachineOptimizationRemarkEmitter &MORE, 274 MachineOptimizationRemarkMissed &R) { 275 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 276 } 277 278 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 279 MachineOptimizationRemarkEmitter &MORE, 280 MachineOptimizationRemarkMissed &R) { 281 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 282 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 283 } 284 285 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 286 MachineOptimizationRemarkEmitter &MORE, 287 const char *PassName, StringRef Msg, 288 const MachineInstr &MI) { 289 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 290 MI.getDebugLoc(), MI.getParent()); 291 R << Msg; 292 // Printing MI is expensive; only do it if expensive remarks are enabled. 293 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 294 R << ": " << ore::MNV("Inst", MI); 295 reportGISelFailure(MF, TPC, MORE, R); 296 } 297 298 std::optional<APInt> llvm::getIConstantVRegVal(Register VReg, 299 const MachineRegisterInfo &MRI) { 300 std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( 301 VReg, MRI, /*LookThroughInstrs*/ false); 302 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 303 "Value found while looking through instrs"); 304 if (!ValAndVReg) 305 return std::nullopt; 306 return ValAndVReg->Value; 307 } 308 309 APInt llvm::getIConstantFromReg(Register Reg, const MachineRegisterInfo &MRI) { 310 MachineInstr *Const = MRI.getVRegDef(Reg); 311 assert((Const && Const->getOpcode() == TargetOpcode::G_CONSTANT) && 312 "expected a G_CONSTANT on Reg"); 313 return Const->getOperand(1).getCImm()->getValue(); 314 } 315 316 std::optional<int64_t> 317 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { 318 std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI); 319 if (Val && Val->getBitWidth() <= 64) 320 return Val->getSExtValue(); 321 return std::nullopt; 322 } 323 324 namespace { 325 326 // This function is used in many places, and as such, it has some 327 // micro-optimizations to try and make it as fast as it can be. 328 // 329 // - We use template arguments to avoid an indirect call caused by passing a 330 // function_ref/std::function 331 // - GetAPCstValue does not return std::optional<APInt> as that's expensive. 332 // Instead it returns true/false and places the result in a pre-constructed 333 // APInt. 334 // 335 // Please change this function carefully and benchmark your changes. 336 template <bool (*IsConstantOpcode)(const MachineInstr *), 337 bool (*GetAPCstValue)(const MachineInstr *MI, APInt &)> 338 std::optional<ValueAndVReg> 339 getConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, 340 bool LookThroughInstrs = true, 341 bool LookThroughAnyExt = false) { 342 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 343 MachineInstr *MI; 344 345 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && 346 LookThroughInstrs) { 347 switch (MI->getOpcode()) { 348 case TargetOpcode::G_ANYEXT: 349 if (!LookThroughAnyExt) 350 return std::nullopt; 351 [[fallthrough]]; 352 case TargetOpcode::G_TRUNC: 353 case TargetOpcode::G_SEXT: 354 case TargetOpcode::G_ZEXT: 355 SeenOpcodes.push_back(std::make_pair( 356 MI->getOpcode(), 357 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 358 VReg = MI->getOperand(1).getReg(); 359 break; 360 case TargetOpcode::COPY: 361 VReg = MI->getOperand(1).getReg(); 362 if (VReg.isPhysical()) 363 return std::nullopt; 364 break; 365 case TargetOpcode::G_INTTOPTR: 366 VReg = MI->getOperand(1).getReg(); 367 break; 368 default: 369 return std::nullopt; 370 } 371 } 372 if (!MI || !IsConstantOpcode(MI)) 373 return std::nullopt; 374 375 APInt Val; 376 if (!GetAPCstValue(MI, Val)) 377 return std::nullopt; 378 for (auto &Pair : reverse(SeenOpcodes)) { 379 switch (Pair.first) { 380 case TargetOpcode::G_TRUNC: 381 Val = Val.trunc(Pair.second); 382 break; 383 case TargetOpcode::G_ANYEXT: 384 case TargetOpcode::G_SEXT: 385 Val = Val.sext(Pair.second); 386 break; 387 case TargetOpcode::G_ZEXT: 388 Val = Val.zext(Pair.second); 389 break; 390 } 391 } 392 393 return ValueAndVReg{std::move(Val), VReg}; 394 } 395 396 bool isIConstant(const MachineInstr *MI) { 397 if (!MI) 398 return false; 399 return MI->getOpcode() == TargetOpcode::G_CONSTANT; 400 } 401 402 bool isFConstant(const MachineInstr *MI) { 403 if (!MI) 404 return false; 405 return MI->getOpcode() == TargetOpcode::G_FCONSTANT; 406 } 407 408 bool isAnyConstant(const MachineInstr *MI) { 409 if (!MI) 410 return false; 411 unsigned Opc = MI->getOpcode(); 412 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; 413 } 414 415 bool getCImmAsAPInt(const MachineInstr *MI, APInt &Result) { 416 const MachineOperand &CstVal = MI->getOperand(1); 417 if (!CstVal.isCImm()) 418 return false; 419 Result = CstVal.getCImm()->getValue(); 420 return true; 421 } 422 423 bool getCImmOrFPImmAsAPInt(const MachineInstr *MI, APInt &Result) { 424 const MachineOperand &CstVal = MI->getOperand(1); 425 if (CstVal.isCImm()) 426 Result = CstVal.getCImm()->getValue(); 427 else if (CstVal.isFPImm()) 428 Result = CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 429 else 430 return false; 431 return true; 432 } 433 434 } // end anonymous namespace 435 436 std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( 437 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 438 return getConstantVRegValWithLookThrough<isIConstant, getCImmAsAPInt>( 439 VReg, MRI, LookThroughInstrs); 440 } 441 442 std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( 443 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 444 bool LookThroughAnyExt) { 445 return getConstantVRegValWithLookThrough<isAnyConstant, 446 getCImmOrFPImmAsAPInt>( 447 VReg, MRI, LookThroughInstrs, LookThroughAnyExt); 448 } 449 450 std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( 451 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 452 auto Reg = 453 getConstantVRegValWithLookThrough<isFConstant, getCImmOrFPImmAsAPInt>( 454 VReg, MRI, LookThroughInstrs); 455 if (!Reg) 456 return std::nullopt; 457 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), 458 Reg->VReg}; 459 } 460 461 const ConstantFP * 462 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 463 MachineInstr *MI = MRI.getVRegDef(VReg); 464 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 465 return nullptr; 466 return MI->getOperand(1).getFPImm(); 467 } 468 469 std::optional<DefinitionAndSourceRegister> 470 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 471 Register DefSrcReg = Reg; 472 auto *DefMI = MRI.getVRegDef(Reg); 473 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 474 if (!DstTy.isValid()) 475 return std::nullopt; 476 unsigned Opc = DefMI->getOpcode(); 477 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 478 Register SrcReg = DefMI->getOperand(1).getReg(); 479 auto SrcTy = MRI.getType(SrcReg); 480 if (!SrcTy.isValid()) 481 break; 482 DefMI = MRI.getVRegDef(SrcReg); 483 DefSrcReg = SrcReg; 484 Opc = DefMI->getOpcode(); 485 } 486 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 487 } 488 489 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 490 const MachineRegisterInfo &MRI) { 491 std::optional<DefinitionAndSourceRegister> DefSrcReg = 492 getDefSrcRegIgnoringCopies(Reg, MRI); 493 return DefSrcReg ? DefSrcReg->MI : nullptr; 494 } 495 496 Register llvm::getSrcRegIgnoringCopies(Register Reg, 497 const MachineRegisterInfo &MRI) { 498 std::optional<DefinitionAndSourceRegister> DefSrcReg = 499 getDefSrcRegIgnoringCopies(Reg, MRI); 500 return DefSrcReg ? DefSrcReg->Reg : Register(); 501 } 502 503 void llvm::extractParts(Register Reg, LLT Ty, int NumParts, 504 SmallVectorImpl<Register> &VRegs, 505 MachineIRBuilder &MIRBuilder, 506 MachineRegisterInfo &MRI) { 507 for (int i = 0; i < NumParts; ++i) 508 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 509 MIRBuilder.buildUnmerge(VRegs, Reg); 510 } 511 512 bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy, 513 SmallVectorImpl<Register> &VRegs, 514 SmallVectorImpl<Register> &LeftoverRegs, 515 MachineIRBuilder &MIRBuilder, 516 MachineRegisterInfo &MRI) { 517 assert(!LeftoverTy.isValid() && "this is an out argument"); 518 519 unsigned RegSize = RegTy.getSizeInBits(); 520 unsigned MainSize = MainTy.getSizeInBits(); 521 unsigned NumParts = RegSize / MainSize; 522 unsigned LeftoverSize = RegSize - NumParts * MainSize; 523 524 // Use an unmerge when possible. 525 if (LeftoverSize == 0) { 526 for (unsigned I = 0; I < NumParts; ++I) 527 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 528 MIRBuilder.buildUnmerge(VRegs, Reg); 529 return true; 530 } 531 532 // Try to use unmerge for irregular vector split where possible 533 // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32> 534 // leftover, it becomes: 535 // <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1 536 // <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3 537 if (RegTy.isVector() && MainTy.isVector()) { 538 unsigned RegNumElts = RegTy.getNumElements(); 539 unsigned MainNumElts = MainTy.getNumElements(); 540 unsigned LeftoverNumElts = RegNumElts % MainNumElts; 541 // If can unmerge to LeftoverTy, do it 542 if (MainNumElts % LeftoverNumElts == 0 && 543 RegNumElts % LeftoverNumElts == 0 && 544 RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() && 545 LeftoverNumElts > 1) { 546 LeftoverTy = 547 LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits()); 548 549 // Unmerge the SrcReg to LeftoverTy vectors 550 SmallVector<Register, 4> UnmergeValues; 551 extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues, 552 MIRBuilder, MRI); 553 554 // Find how many LeftoverTy makes one MainTy 555 unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts; 556 unsigned NumOfLeftoverVal = 557 ((RegNumElts % MainNumElts) / LeftoverNumElts); 558 559 // Create as many MainTy as possible using unmerged value 560 SmallVector<Register, 4> MergeValues; 561 for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) { 562 MergeValues.push_back(UnmergeValues[I]); 563 if (MergeValues.size() == LeftoverPerMain) { 564 VRegs.push_back( 565 MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0)); 566 MergeValues.clear(); 567 } 568 } 569 // Populate LeftoverRegs with the leftovers 570 for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal; 571 I < UnmergeValues.size(); I++) { 572 LeftoverRegs.push_back(UnmergeValues[I]); 573 } 574 return true; 575 } 576 } 577 // Perform irregular split. Leftover is last element of RegPieces. 578 if (MainTy.isVector()) { 579 SmallVector<Register, 8> RegPieces; 580 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder, 581 MRI); 582 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 583 VRegs.push_back(RegPieces[i]); 584 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 585 LeftoverTy = MRI.getType(LeftoverRegs[0]); 586 return true; 587 } 588 589 LeftoverTy = LLT::scalar(LeftoverSize); 590 // For irregular sizes, extract the individual parts. 591 for (unsigned I = 0; I != NumParts; ++I) { 592 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 593 VRegs.push_back(NewReg); 594 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 595 } 596 597 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 598 Offset += LeftoverSize) { 599 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 600 LeftoverRegs.push_back(NewReg); 601 MIRBuilder.buildExtract(NewReg, Reg, Offset); 602 } 603 604 return true; 605 } 606 607 void llvm::extractVectorParts(Register Reg, unsigned NumElts, 608 SmallVectorImpl<Register> &VRegs, 609 MachineIRBuilder &MIRBuilder, 610 MachineRegisterInfo &MRI) { 611 LLT RegTy = MRI.getType(Reg); 612 assert(RegTy.isVector() && "Expected a vector type"); 613 614 LLT EltTy = RegTy.getElementType(); 615 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 616 unsigned RegNumElts = RegTy.getNumElements(); 617 unsigned LeftoverNumElts = RegNumElts % NumElts; 618 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 619 620 // Perfect split without leftover 621 if (LeftoverNumElts == 0) 622 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder, 623 MRI); 624 625 // Irregular split. Provide direct access to all elements for artifact 626 // combiner using unmerge to elements. Then build vectors with NumElts 627 // elements. Remaining element(s) will be (used to build vector) Leftover. 628 SmallVector<Register, 8> Elts; 629 extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI); 630 631 unsigned Offset = 0; 632 // Requested sub-vectors of NarrowTy. 633 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 634 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 635 VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); 636 } 637 638 // Leftover element(s). 639 if (LeftoverNumElts == 1) { 640 VRegs.push_back(Elts[Offset]); 641 } else { 642 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 643 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 644 VRegs.push_back( 645 MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0)); 646 } 647 } 648 649 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 650 const MachineRegisterInfo &MRI) { 651 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 652 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 653 } 654 655 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 656 if (Size == 32) 657 return APFloat(float(Val)); 658 if (Size == 64) 659 return APFloat(Val); 660 if (Size != 16) 661 llvm_unreachable("Unsupported FPConstant size"); 662 bool Ignored; 663 APFloat APF(Val); 664 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 665 return APF; 666 } 667 668 std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, 669 const Register Op1, 670 const Register Op2, 671 const MachineRegisterInfo &MRI) { 672 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); 673 if (!MaybeOp2Cst) 674 return std::nullopt; 675 676 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); 677 if (!MaybeOp1Cst) 678 return std::nullopt; 679 680 const APInt &C1 = MaybeOp1Cst->Value; 681 const APInt &C2 = MaybeOp2Cst->Value; 682 switch (Opcode) { 683 default: 684 break; 685 case TargetOpcode::G_ADD: 686 return C1 + C2; 687 case TargetOpcode::G_PTR_ADD: 688 // Types can be of different width here. 689 // Result needs to be the same width as C1, so trunc or sext C2. 690 return C1 + C2.sextOrTrunc(C1.getBitWidth()); 691 case TargetOpcode::G_AND: 692 return C1 & C2; 693 case TargetOpcode::G_ASHR: 694 return C1.ashr(C2); 695 case TargetOpcode::G_LSHR: 696 return C1.lshr(C2); 697 case TargetOpcode::G_MUL: 698 return C1 * C2; 699 case TargetOpcode::G_OR: 700 return C1 | C2; 701 case TargetOpcode::G_SHL: 702 return C1 << C2; 703 case TargetOpcode::G_SUB: 704 return C1 - C2; 705 case TargetOpcode::G_XOR: 706 return C1 ^ C2; 707 case TargetOpcode::G_UDIV: 708 if (!C2.getBoolValue()) 709 break; 710 return C1.udiv(C2); 711 case TargetOpcode::G_SDIV: 712 if (!C2.getBoolValue()) 713 break; 714 return C1.sdiv(C2); 715 case TargetOpcode::G_UREM: 716 if (!C2.getBoolValue()) 717 break; 718 return C1.urem(C2); 719 case TargetOpcode::G_SREM: 720 if (!C2.getBoolValue()) 721 break; 722 return C1.srem(C2); 723 case TargetOpcode::G_SMIN: 724 return APIntOps::smin(C1, C2); 725 case TargetOpcode::G_SMAX: 726 return APIntOps::smax(C1, C2); 727 case TargetOpcode::G_UMIN: 728 return APIntOps::umin(C1, C2); 729 case TargetOpcode::G_UMAX: 730 return APIntOps::umax(C1, C2); 731 } 732 733 return std::nullopt; 734 } 735 736 std::optional<APFloat> 737 llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, 738 const Register Op2, const MachineRegisterInfo &MRI) { 739 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 740 if (!Op2Cst) 741 return std::nullopt; 742 743 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 744 if (!Op1Cst) 745 return std::nullopt; 746 747 APFloat C1 = Op1Cst->getValueAPF(); 748 const APFloat &C2 = Op2Cst->getValueAPF(); 749 switch (Opcode) { 750 case TargetOpcode::G_FADD: 751 C1.add(C2, APFloat::rmNearestTiesToEven); 752 return C1; 753 case TargetOpcode::G_FSUB: 754 C1.subtract(C2, APFloat::rmNearestTiesToEven); 755 return C1; 756 case TargetOpcode::G_FMUL: 757 C1.multiply(C2, APFloat::rmNearestTiesToEven); 758 return C1; 759 case TargetOpcode::G_FDIV: 760 C1.divide(C2, APFloat::rmNearestTiesToEven); 761 return C1; 762 case TargetOpcode::G_FREM: 763 C1.mod(C2); 764 return C1; 765 case TargetOpcode::G_FCOPYSIGN: 766 C1.copySign(C2); 767 return C1; 768 case TargetOpcode::G_FMINNUM: 769 return minnum(C1, C2); 770 case TargetOpcode::G_FMAXNUM: 771 return maxnum(C1, C2); 772 case TargetOpcode::G_FMINIMUM: 773 return minimum(C1, C2); 774 case TargetOpcode::G_FMAXIMUM: 775 return maximum(C1, C2); 776 case TargetOpcode::G_FMINNUM_IEEE: 777 case TargetOpcode::G_FMAXNUM_IEEE: 778 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not 779 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, 780 // and currently there isn't a nice wrapper in APFloat for the version with 781 // correct snan handling. 782 break; 783 default: 784 break; 785 } 786 787 return std::nullopt; 788 } 789 790 SmallVector<APInt> 791 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, 792 const Register Op2, 793 const MachineRegisterInfo &MRI) { 794 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI); 795 if (!SrcVec2) 796 return SmallVector<APInt>(); 797 798 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI); 799 if (!SrcVec1) 800 return SmallVector<APInt>(); 801 802 SmallVector<APInt> FoldedElements; 803 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { 804 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), 805 SrcVec2->getSourceReg(Idx), MRI); 806 if (!MaybeCst) 807 return SmallVector<APInt>(); 808 FoldedElements.push_back(*MaybeCst); 809 } 810 return FoldedElements; 811 } 812 813 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 814 bool SNaN) { 815 const MachineInstr *DefMI = MRI.getVRegDef(Val); 816 if (!DefMI) 817 return false; 818 819 const TargetMachine& TM = DefMI->getMF()->getTarget(); 820 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 821 return true; 822 823 // If the value is a constant, we can obviously see if it is a NaN or not. 824 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { 825 return !FPVal->getValueAPF().isNaN() || 826 (SNaN && !FPVal->getValueAPF().isSignaling()); 827 } 828 829 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 830 for (const auto &Op : DefMI->uses()) 831 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) 832 return false; 833 return true; 834 } 835 836 switch (DefMI->getOpcode()) { 837 default: 838 break; 839 case TargetOpcode::G_FADD: 840 case TargetOpcode::G_FSUB: 841 case TargetOpcode::G_FMUL: 842 case TargetOpcode::G_FDIV: 843 case TargetOpcode::G_FREM: 844 case TargetOpcode::G_FSIN: 845 case TargetOpcode::G_FCOS: 846 case TargetOpcode::G_FTAN: 847 case TargetOpcode::G_FACOS: 848 case TargetOpcode::G_FASIN: 849 case TargetOpcode::G_FATAN: 850 case TargetOpcode::G_FCOSH: 851 case TargetOpcode::G_FSINH: 852 case TargetOpcode::G_FTANH: 853 case TargetOpcode::G_FMA: 854 case TargetOpcode::G_FMAD: 855 if (SNaN) 856 return true; 857 858 // TODO: Need isKnownNeverInfinity 859 return false; 860 case TargetOpcode::G_FMINNUM_IEEE: 861 case TargetOpcode::G_FMAXNUM_IEEE: { 862 if (SNaN) 863 return true; 864 // This can return a NaN if either operand is an sNaN, or if both operands 865 // are NaN. 866 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && 867 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || 868 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && 869 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); 870 } 871 case TargetOpcode::G_FMINNUM: 872 case TargetOpcode::G_FMAXNUM: { 873 // Only one needs to be known not-nan, since it will be returned if the 874 // other ends up being one. 875 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || 876 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); 877 } 878 } 879 880 if (SNaN) { 881 // FP operations quiet. For now, just handle the ones inserted during 882 // legalization. 883 switch (DefMI->getOpcode()) { 884 case TargetOpcode::G_FPEXT: 885 case TargetOpcode::G_FPTRUNC: 886 case TargetOpcode::G_FCANONICALIZE: 887 return true; 888 default: 889 return false; 890 } 891 } 892 893 return false; 894 } 895 896 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 897 const MachinePointerInfo &MPO) { 898 auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V); 899 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 900 MachineFrameInfo &MFI = MF.getFrameInfo(); 901 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 902 MPO.Offset); 903 } 904 905 if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) { 906 const Module *M = MF.getFunction().getParent(); 907 return V->getPointerAlignment(M->getDataLayout()); 908 } 909 910 return Align(1); 911 } 912 913 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 914 const TargetInstrInfo &TII, 915 MCRegister PhysReg, 916 const TargetRegisterClass &RC, 917 const DebugLoc &DL, LLT RegTy) { 918 MachineBasicBlock &EntryMBB = MF.front(); 919 MachineRegisterInfo &MRI = MF.getRegInfo(); 920 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 921 if (LiveIn) { 922 MachineInstr *Def = MRI.getVRegDef(LiveIn); 923 if (Def) { 924 // FIXME: Should the verifier check this is in the entry block? 925 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 926 return LiveIn; 927 } 928 929 // It's possible the incoming argument register and copy was added during 930 // lowering, but later deleted due to being/becoming dead. If this happens, 931 // re-insert the copy. 932 } else { 933 // The live in register was not present, so add it. 934 LiveIn = MF.addLiveIn(PhysReg, &RC); 935 if (RegTy.isValid()) 936 MRI.setType(LiveIn, RegTy); 937 } 938 939 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 940 .addReg(PhysReg); 941 if (!EntryMBB.isLiveIn(PhysReg)) 942 EntryMBB.addLiveIn(PhysReg); 943 return LiveIn; 944 } 945 946 std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, 947 const Register Op1, uint64_t Imm, 948 const MachineRegisterInfo &MRI) { 949 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); 950 if (MaybeOp1Cst) { 951 switch (Opcode) { 952 default: 953 break; 954 case TargetOpcode::G_SEXT_INREG: { 955 LLT Ty = MRI.getType(Op1); 956 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 957 } 958 } 959 } 960 return std::nullopt; 961 } 962 963 std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy, 964 const Register Op0, 965 const MachineRegisterInfo &MRI) { 966 std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI); 967 if (!Val) 968 return Val; 969 970 const unsigned DstSize = DstTy.getScalarSizeInBits(); 971 972 switch (Opcode) { 973 case TargetOpcode::G_SEXT: 974 return Val->sext(DstSize); 975 case TargetOpcode::G_ZEXT: 976 case TargetOpcode::G_ANYEXT: 977 // TODO: DAG considers target preference when constant folding any_extend. 978 return Val->zext(DstSize); 979 default: 980 break; 981 } 982 983 llvm_unreachable("unexpected cast opcode to constant fold"); 984 } 985 986 std::optional<APFloat> 987 llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, 988 const MachineRegisterInfo &MRI) { 989 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); 990 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { 991 APFloat DstVal(getFltSemanticForLLT(DstTy)); 992 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, 993 APFloat::rmNearestTiesToEven); 994 return DstVal; 995 } 996 return std::nullopt; 997 } 998 999 std::optional<SmallVector<unsigned>> 1000 llvm::ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI, 1001 std::function<unsigned(APInt)> CB) { 1002 LLT Ty = MRI.getType(Src); 1003 SmallVector<unsigned> FoldedCTLZs; 1004 auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> { 1005 auto MaybeCst = getIConstantVRegVal(R, MRI); 1006 if (!MaybeCst) 1007 return std::nullopt; 1008 return CB(*MaybeCst); 1009 }; 1010 if (Ty.isVector()) { 1011 // Try to constant fold each element. 1012 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI); 1013 if (!BV) 1014 return std::nullopt; 1015 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1016 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { 1017 FoldedCTLZs.emplace_back(*MaybeFold); 1018 continue; 1019 } 1020 return std::nullopt; 1021 } 1022 return FoldedCTLZs; 1023 } 1024 if (auto MaybeCst = tryFoldScalar(Src)) { 1025 FoldedCTLZs.emplace_back(*MaybeCst); 1026 return FoldedCTLZs; 1027 } 1028 return std::nullopt; 1029 } 1030 1031 std::optional<SmallVector<APInt>> 1032 llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2, 1033 const MachineRegisterInfo &MRI) { 1034 LLT Ty = MRI.getType(Op1); 1035 if (Ty != MRI.getType(Op2)) 1036 return std::nullopt; 1037 1038 auto TryFoldScalar = [&MRI, Pred](Register LHS, 1039 Register RHS) -> std::optional<APInt> { 1040 auto LHSCst = getIConstantVRegVal(LHS, MRI); 1041 auto RHSCst = getIConstantVRegVal(RHS, MRI); 1042 if (!LHSCst || !RHSCst) 1043 return std::nullopt; 1044 1045 switch (Pred) { 1046 case CmpInst::Predicate::ICMP_EQ: 1047 return APInt(/*numBits=*/1, LHSCst->eq(*RHSCst)); 1048 case CmpInst::Predicate::ICMP_NE: 1049 return APInt(/*numBits=*/1, LHSCst->ne(*RHSCst)); 1050 case CmpInst::Predicate::ICMP_UGT: 1051 return APInt(/*numBits=*/1, LHSCst->ugt(*RHSCst)); 1052 case CmpInst::Predicate::ICMP_UGE: 1053 return APInt(/*numBits=*/1, LHSCst->uge(*RHSCst)); 1054 case CmpInst::Predicate::ICMP_ULT: 1055 return APInt(/*numBits=*/1, LHSCst->ult(*RHSCst)); 1056 case CmpInst::Predicate::ICMP_ULE: 1057 return APInt(/*numBits=*/1, LHSCst->ule(*RHSCst)); 1058 case CmpInst::Predicate::ICMP_SGT: 1059 return APInt(/*numBits=*/1, LHSCst->sgt(*RHSCst)); 1060 case CmpInst::Predicate::ICMP_SGE: 1061 return APInt(/*numBits=*/1, LHSCst->sge(*RHSCst)); 1062 case CmpInst::Predicate::ICMP_SLT: 1063 return APInt(/*numBits=*/1, LHSCst->slt(*RHSCst)); 1064 case CmpInst::Predicate::ICMP_SLE: 1065 return APInt(/*numBits=*/1, LHSCst->sle(*RHSCst)); 1066 default: 1067 return std::nullopt; 1068 } 1069 }; 1070 1071 SmallVector<APInt> FoldedICmps; 1072 1073 if (Ty.isVector()) { 1074 // Try to constant fold each element. 1075 auto *BV1 = getOpcodeDef<GBuildVector>(Op1, MRI); 1076 auto *BV2 = getOpcodeDef<GBuildVector>(Op2, MRI); 1077 if (!BV1 || !BV2) 1078 return std::nullopt; 1079 assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors"); 1080 for (unsigned I = 0; I < BV1->getNumSources(); ++I) { 1081 if (auto MaybeFold = 1082 TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) { 1083 FoldedICmps.emplace_back(*MaybeFold); 1084 continue; 1085 } 1086 return std::nullopt; 1087 } 1088 return FoldedICmps; 1089 } 1090 1091 if (auto MaybeCst = TryFoldScalar(Op1, Op2)) { 1092 FoldedICmps.emplace_back(*MaybeCst); 1093 return FoldedICmps; 1094 } 1095 1096 return std::nullopt; 1097 } 1098 1099 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 1100 GISelKnownBits *KB) { 1101 std::optional<DefinitionAndSourceRegister> DefSrcReg = 1102 getDefSrcRegIgnoringCopies(Reg, MRI); 1103 if (!DefSrcReg) 1104 return false; 1105 1106 const MachineInstr &MI = *DefSrcReg->MI; 1107 const LLT Ty = MRI.getType(Reg); 1108 1109 switch (MI.getOpcode()) { 1110 case TargetOpcode::G_CONSTANT: { 1111 unsigned BitWidth = Ty.getScalarSizeInBits(); 1112 const ConstantInt *CI = MI.getOperand(1).getCImm(); 1113 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 1114 } 1115 case TargetOpcode::G_SHL: { 1116 // A left-shift of a constant one will have exactly one bit set because 1117 // shifting the bit off the end is undefined. 1118 1119 // TODO: Constant splat 1120 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1121 if (*ConstLHS == 1) 1122 return true; 1123 } 1124 1125 break; 1126 } 1127 case TargetOpcode::G_LSHR: { 1128 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1129 if (ConstLHS->isSignMask()) 1130 return true; 1131 } 1132 1133 break; 1134 } 1135 case TargetOpcode::G_BUILD_VECTOR: { 1136 // TODO: Probably should have a recursion depth guard since you could have 1137 // bitcasted vector elements. 1138 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 1139 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB)) 1140 return false; 1141 1142 return true; 1143 } 1144 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1145 // Only handle constants since we would need to know if number of leading 1146 // zeros is greater than the truncation amount. 1147 const unsigned BitWidth = Ty.getScalarSizeInBits(); 1148 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1149 auto Const = getIConstantVRegVal(MO.getReg(), MRI); 1150 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) 1151 return false; 1152 } 1153 1154 return true; 1155 } 1156 default: 1157 break; 1158 } 1159 1160 if (!KB) 1161 return false; 1162 1163 // More could be done here, though the above checks are enough 1164 // to handle some common cases. 1165 1166 // Fall back to computeKnownBits to catch other known cases. 1167 KnownBits Known = KB->getKnownBits(Reg); 1168 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 1169 } 1170 1171 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 1172 AU.addPreserved<StackProtector>(); 1173 } 1174 1175 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 1176 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1177 return OrigTy; 1178 1179 if (OrigTy.isVector() && TargetTy.isVector()) { 1180 LLT OrigElt = OrigTy.getElementType(); 1181 LLT TargetElt = TargetTy.getElementType(); 1182 1183 // TODO: The docstring for this function says the intention is to use this 1184 // function to build MERGE/UNMERGE instructions. It won't be the case that 1185 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1186 // could implement getLCMType between the two in the future if there was a 1187 // need, but it is not worth it now as this function should not be used in 1188 // that way. 1189 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1190 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1191 "getLCMType not implemented between fixed and scalable vectors."); 1192 1193 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 1194 int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(), 1195 TargetTy.getElementCount().getKnownMinValue()); 1196 // Prefer the original element type. 1197 ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy( 1198 TargetTy.getElementCount().getKnownMinValue()); 1199 return LLT::vector(Mul.divideCoefficientBy(GCDMinElts), 1200 OrigTy.getElementType()); 1201 } 1202 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(), 1203 TargetTy.getSizeInBits().getKnownMinValue()); 1204 return LLT::vector( 1205 ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()), 1206 OrigElt); 1207 } 1208 1209 // One type is scalar, one type is vector 1210 if (OrigTy.isVector() || TargetTy.isVector()) { 1211 LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy; 1212 LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy; 1213 LLT EltTy = VecTy.getElementType(); 1214 LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy; 1215 1216 // Prefer scalar type from OrigTy. 1217 if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits()) 1218 return LLT::vector(VecTy.getElementCount(), OrigEltTy); 1219 1220 // Different size scalars. Create vector with the same total size. 1221 // LCM will take fixed/scalable from VecTy. 1222 unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() * 1223 VecTy.getElementCount().getKnownMinValue(), 1224 ScalarTy.getSizeInBits().getFixedValue()); 1225 // Prefer type from OrigTy 1226 return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(), 1227 VecTy.getElementCount().isScalable()), 1228 OrigEltTy); 1229 } 1230 1231 // At this point, both types are scalars of different size 1232 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(), 1233 TargetTy.getSizeInBits().getFixedValue()); 1234 // Preserve pointer types. 1235 if (LCM == OrigTy.getSizeInBits()) 1236 return OrigTy; 1237 if (LCM == TargetTy.getSizeInBits()) 1238 return TargetTy; 1239 return LLT::scalar(LCM); 1240 } 1241 1242 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { 1243 1244 if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) || 1245 (OrigTy.isFixedVector() && TargetTy.isScalableVector())) 1246 llvm_unreachable( 1247 "getCoverTy not implemented between fixed and scalable vectors."); 1248 1249 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || 1250 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) 1251 return getLCMType(OrigTy, TargetTy); 1252 1253 unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue(); 1254 unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue(); 1255 if (OrigTyNumElts % TargetTyNumElts == 0) 1256 return OrigTy; 1257 1258 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts); 1259 return LLT::scalarOrVector(ElementCount::getFixed(NumElts), 1260 OrigTy.getElementType()); 1261 } 1262 1263 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 1264 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1265 return OrigTy; 1266 1267 if (OrigTy.isVector() && TargetTy.isVector()) { 1268 LLT OrigElt = OrigTy.getElementType(); 1269 1270 // TODO: The docstring for this function says the intention is to use this 1271 // function to build MERGE/UNMERGE instructions. It won't be the case that 1272 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1273 // could implement getGCDType between the two in the future if there was a 1274 // need, but it is not worth it now as this function should not be used in 1275 // that way. 1276 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1277 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1278 "getGCDType not implemented between fixed and scalable vectors."); 1279 1280 unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(), 1281 TargetTy.getSizeInBits().getKnownMinValue()); 1282 if (GCD == OrigElt.getSizeInBits()) 1283 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1284 OrigElt); 1285 1286 // Cannot produce original element type, but both have vscale in common. 1287 if (GCD < OrigElt.getSizeInBits()) 1288 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1289 GCD); 1290 1291 return LLT::vector( 1292 ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(), 1293 OrigTy.isScalable()), 1294 OrigElt); 1295 } 1296 1297 // If one type is vector and the element size matches the scalar size, then 1298 // the gcd is the scalar type. 1299 if (OrigTy.isVector() && 1300 OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits()) 1301 return OrigTy.getElementType(); 1302 if (TargetTy.isVector() && 1303 TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits()) 1304 return OrigTy; 1305 1306 // At this point, both types are either scalars of different type or one is a 1307 // vector and one is a scalar. If both types are scalars, the GCD type is the 1308 // GCD between the two scalar sizes. If one is vector and one is scalar, then 1309 // the GCD type is the GCD between the scalar and the vector element size. 1310 LLT OrigScalar = OrigTy.getScalarType(); 1311 LLT TargetScalar = TargetTy.getScalarType(); 1312 unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(), 1313 TargetScalar.getSizeInBits().getFixedValue()); 1314 return LLT::scalar(GCD); 1315 } 1316 1317 std::optional<int> llvm::getSplatIndex(MachineInstr &MI) { 1318 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 1319 "Only G_SHUFFLE_VECTOR can have a splat index!"); 1320 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1321 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 1322 1323 // If all elements are undefined, this shuffle can be considered a splat. 1324 // Return 0 for better potential for callers to simplify. 1325 if (FirstDefinedIdx == Mask.end()) 1326 return 0; 1327 1328 // Make sure all remaining elements are either undef or the same 1329 // as the first non-undef value. 1330 int SplatValue = *FirstDefinedIdx; 1331 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 1332 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 1333 return std::nullopt; 1334 1335 return SplatValue; 1336 } 1337 1338 static bool isBuildVectorOp(unsigned Opcode) { 1339 return Opcode == TargetOpcode::G_BUILD_VECTOR || 1340 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 1341 } 1342 1343 namespace { 1344 1345 std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg, 1346 const MachineRegisterInfo &MRI, 1347 bool AllowUndef) { 1348 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); 1349 if (!MI) 1350 return std::nullopt; 1351 1352 bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS; 1353 if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp) 1354 return std::nullopt; 1355 1356 std::optional<ValueAndVReg> SplatValAndReg; 1357 for (MachineOperand &Op : MI->uses()) { 1358 Register Element = Op.getReg(); 1359 // If we have a G_CONCAT_VECTOR, we recursively look into the 1360 // vectors that we're concatenating to see if they're splats. 1361 auto ElementValAndReg = 1362 isConcatVectorsOp 1363 ? getAnyConstantSplat(Element, MRI, AllowUndef) 1364 : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); 1365 1366 // If AllowUndef, treat undef as value that will result in a constant splat. 1367 if (!ElementValAndReg) { 1368 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element))) 1369 continue; 1370 return std::nullopt; 1371 } 1372 1373 // Record splat value 1374 if (!SplatValAndReg) 1375 SplatValAndReg = ElementValAndReg; 1376 1377 // Different constant than the one already recorded, not a constant splat. 1378 if (SplatValAndReg->Value != ElementValAndReg->Value) 1379 return std::nullopt; 1380 } 1381 1382 return SplatValAndReg; 1383 } 1384 1385 } // end anonymous namespace 1386 1387 bool llvm::isBuildVectorConstantSplat(const Register Reg, 1388 const MachineRegisterInfo &MRI, 1389 int64_t SplatValue, bool AllowUndef) { 1390 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef)) 1391 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); 1392 return false; 1393 } 1394 1395 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, 1396 const MachineRegisterInfo &MRI, 1397 int64_t SplatValue, bool AllowUndef) { 1398 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue, 1399 AllowUndef); 1400 } 1401 1402 std::optional<APInt> 1403 llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) { 1404 if (auto SplatValAndReg = 1405 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) { 1406 if (std::optional<ValueAndVReg> ValAndVReg = 1407 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI)) 1408 return ValAndVReg->Value; 1409 } 1410 1411 return std::nullopt; 1412 } 1413 1414 std::optional<APInt> 1415 llvm::getIConstantSplatVal(const MachineInstr &MI, 1416 const MachineRegisterInfo &MRI) { 1417 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI); 1418 } 1419 1420 std::optional<int64_t> 1421 llvm::getIConstantSplatSExtVal(const Register Reg, 1422 const MachineRegisterInfo &MRI) { 1423 if (auto SplatValAndReg = 1424 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) 1425 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); 1426 return std::nullopt; 1427 } 1428 1429 std::optional<int64_t> 1430 llvm::getIConstantSplatSExtVal(const MachineInstr &MI, 1431 const MachineRegisterInfo &MRI) { 1432 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI); 1433 } 1434 1435 std::optional<FPValueAndVReg> 1436 llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, 1437 bool AllowUndef) { 1438 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) 1439 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1440 return std::nullopt; 1441 } 1442 1443 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 1444 const MachineRegisterInfo &MRI, 1445 bool AllowUndef) { 1446 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); 1447 } 1448 1449 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 1450 const MachineRegisterInfo &MRI, 1451 bool AllowUndef) { 1452 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); 1453 } 1454 1455 std::optional<RegOrConstant> 1456 llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) { 1457 unsigned Opc = MI.getOpcode(); 1458 if (!isBuildVectorOp(Opc)) 1459 return std::nullopt; 1460 if (auto Splat = getIConstantSplatSExtVal(MI, MRI)) 1461 return RegOrConstant(*Splat); 1462 auto Reg = MI.getOperand(1).getReg(); 1463 if (any_of(drop_begin(MI.operands(), 2), 1464 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) 1465 return std::nullopt; 1466 return RegOrConstant(Reg); 1467 } 1468 1469 static bool isConstantScalar(const MachineInstr &MI, 1470 const MachineRegisterInfo &MRI, 1471 bool AllowFP = true, 1472 bool AllowOpaqueConstants = true) { 1473 switch (MI.getOpcode()) { 1474 case TargetOpcode::G_CONSTANT: 1475 case TargetOpcode::G_IMPLICIT_DEF: 1476 return true; 1477 case TargetOpcode::G_FCONSTANT: 1478 return AllowFP; 1479 case TargetOpcode::G_GLOBAL_VALUE: 1480 case TargetOpcode::G_FRAME_INDEX: 1481 case TargetOpcode::G_BLOCK_ADDR: 1482 case TargetOpcode::G_JUMP_TABLE: 1483 return AllowOpaqueConstants; 1484 default: 1485 return false; 1486 } 1487 } 1488 1489 bool llvm::isConstantOrConstantVector(MachineInstr &MI, 1490 const MachineRegisterInfo &MRI) { 1491 Register Def = MI.getOperand(0).getReg(); 1492 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1493 return true; 1494 GBuildVector *BV = dyn_cast<GBuildVector>(&MI); 1495 if (!BV) 1496 return false; 1497 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1498 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || 1499 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI)) 1500 continue; 1501 return false; 1502 } 1503 return true; 1504 } 1505 1506 bool llvm::isConstantOrConstantVector(const MachineInstr &MI, 1507 const MachineRegisterInfo &MRI, 1508 bool AllowFP, bool AllowOpaqueConstants) { 1509 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) 1510 return true; 1511 1512 if (!isBuildVectorOp(MI.getOpcode())) 1513 return false; 1514 1515 const unsigned NumOps = MI.getNumOperands(); 1516 for (unsigned I = 1; I != NumOps; ++I) { 1517 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg()); 1518 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants)) 1519 return false; 1520 } 1521 1522 return true; 1523 } 1524 1525 std::optional<APInt> 1526 llvm::isConstantOrConstantSplatVector(MachineInstr &MI, 1527 const MachineRegisterInfo &MRI) { 1528 Register Def = MI.getOperand(0).getReg(); 1529 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1530 return C->Value; 1531 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI); 1532 if (!MaybeCst) 1533 return std::nullopt; 1534 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); 1535 return APInt(ScalarSize, *MaybeCst, true); 1536 } 1537 1538 bool llvm::isNullOrNullSplat(const MachineInstr &MI, 1539 const MachineRegisterInfo &MRI, bool AllowUndefs) { 1540 switch (MI.getOpcode()) { 1541 case TargetOpcode::G_IMPLICIT_DEF: 1542 return AllowUndefs; 1543 case TargetOpcode::G_CONSTANT: 1544 return MI.getOperand(1).getCImm()->isNullValue(); 1545 case TargetOpcode::G_FCONSTANT: { 1546 const ConstantFP *FPImm = MI.getOperand(1).getFPImm(); 1547 return FPImm->isZero() && !FPImm->isNegative(); 1548 } 1549 default: 1550 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already 1551 return false; 1552 return isBuildVectorAllZeros(MI, MRI); 1553 } 1554 } 1555 1556 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, 1557 const MachineRegisterInfo &MRI, 1558 bool AllowUndefs) { 1559 switch (MI.getOpcode()) { 1560 case TargetOpcode::G_IMPLICIT_DEF: 1561 return AllowUndefs; 1562 case TargetOpcode::G_CONSTANT: 1563 return MI.getOperand(1).getCImm()->isAllOnesValue(); 1564 default: 1565 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already 1566 return false; 1567 return isBuildVectorAllOnes(MI, MRI); 1568 } 1569 } 1570 1571 bool llvm::matchUnaryPredicate( 1572 const MachineRegisterInfo &MRI, Register Reg, 1573 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { 1574 1575 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); 1576 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) 1577 return Match(nullptr); 1578 1579 // TODO: Also handle fconstant 1580 if (Def->getOpcode() == TargetOpcode::G_CONSTANT) 1581 return Match(Def->getOperand(1).getCImm()); 1582 1583 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) 1584 return false; 1585 1586 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { 1587 Register SrcElt = Def->getOperand(I).getReg(); 1588 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); 1589 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { 1590 if (!Match(nullptr)) 1591 return false; 1592 continue; 1593 } 1594 1595 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || 1596 !Match(SrcDef->getOperand(1).getCImm())) 1597 return false; 1598 } 1599 1600 return true; 1601 } 1602 1603 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 1604 bool IsFP) { 1605 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1606 case TargetLowering::UndefinedBooleanContent: 1607 return Val & 0x1; 1608 case TargetLowering::ZeroOrOneBooleanContent: 1609 return Val == 1; 1610 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1611 return Val == -1; 1612 } 1613 llvm_unreachable("Invalid boolean contents"); 1614 } 1615 1616 bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val, 1617 bool IsVector, bool IsFP) { 1618 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1619 case TargetLowering::UndefinedBooleanContent: 1620 return ~Val & 0x1; 1621 case TargetLowering::ZeroOrOneBooleanContent: 1622 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1623 return Val == 0; 1624 } 1625 llvm_unreachable("Invalid boolean contents"); 1626 } 1627 1628 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 1629 bool IsFP) { 1630 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1631 case TargetLowering::UndefinedBooleanContent: 1632 case TargetLowering::ZeroOrOneBooleanContent: 1633 return 1; 1634 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1635 return -1; 1636 } 1637 llvm_unreachable("Invalid boolean contents"); 1638 } 1639 1640 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, 1641 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 1642 const auto &F = MBB.getParent()->getFunction(); 1643 return F.hasOptSize() || F.hasMinSize() || 1644 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); 1645 } 1646 1647 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, 1648 LostDebugLocObserver *LocObserver, 1649 SmallInstListTy &DeadInstChain) { 1650 for (MachineOperand &Op : MI.uses()) { 1651 if (Op.isReg() && Op.getReg().isVirtual()) 1652 DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); 1653 } 1654 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); 1655 DeadInstChain.remove(&MI); 1656 MI.eraseFromParent(); 1657 if (LocObserver) 1658 LocObserver->checkpoint(false); 1659 } 1660 1661 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, 1662 MachineRegisterInfo &MRI, 1663 LostDebugLocObserver *LocObserver) { 1664 SmallInstListTy DeadInstChain; 1665 for (MachineInstr *MI : DeadInstrs) 1666 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); 1667 1668 while (!DeadInstChain.empty()) { 1669 MachineInstr *Inst = DeadInstChain.pop_back_val(); 1670 if (!isTriviallyDead(*Inst, MRI)) 1671 continue; 1672 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); 1673 } 1674 } 1675 1676 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, 1677 LostDebugLocObserver *LocObserver) { 1678 return eraseInstrs({&MI}, MRI, LocObserver); 1679 } 1680 1681 void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) { 1682 for (auto &Def : MI.defs()) { 1683 assert(Def.isReg() && "Must be a reg"); 1684 1685 SmallVector<MachineOperand *, 16> DbgUsers; 1686 for (auto &MOUse : MRI.use_operands(Def.getReg())) { 1687 MachineInstr *DbgValue = MOUse.getParent(); 1688 // Ignore partially formed DBG_VALUEs. 1689 if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) { 1690 DbgUsers.push_back(&MOUse); 1691 } 1692 } 1693 1694 if (!DbgUsers.empty()) { 1695 salvageDebugInfoForDbgValue(MRI, MI, DbgUsers); 1696 } 1697 } 1698 } 1699 1700 bool llvm::isPreISelGenericFloatingPointOpcode(unsigned Opc) { 1701 switch (Opc) { 1702 case TargetOpcode::G_FABS: 1703 case TargetOpcode::G_FADD: 1704 case TargetOpcode::G_FCANONICALIZE: 1705 case TargetOpcode::G_FCEIL: 1706 case TargetOpcode::G_FCONSTANT: 1707 case TargetOpcode::G_FCOPYSIGN: 1708 case TargetOpcode::G_FCOS: 1709 case TargetOpcode::G_FDIV: 1710 case TargetOpcode::G_FEXP2: 1711 case TargetOpcode::G_FEXP: 1712 case TargetOpcode::G_FFLOOR: 1713 case TargetOpcode::G_FLOG10: 1714 case TargetOpcode::G_FLOG2: 1715 case TargetOpcode::G_FLOG: 1716 case TargetOpcode::G_FMA: 1717 case TargetOpcode::G_FMAD: 1718 case TargetOpcode::G_FMAXIMUM: 1719 case TargetOpcode::G_FMAXNUM: 1720 case TargetOpcode::G_FMAXNUM_IEEE: 1721 case TargetOpcode::G_FMINIMUM: 1722 case TargetOpcode::G_FMINNUM: 1723 case TargetOpcode::G_FMINNUM_IEEE: 1724 case TargetOpcode::G_FMUL: 1725 case TargetOpcode::G_FNEARBYINT: 1726 case TargetOpcode::G_FNEG: 1727 case TargetOpcode::G_FPEXT: 1728 case TargetOpcode::G_FPOW: 1729 case TargetOpcode::G_FPTRUNC: 1730 case TargetOpcode::G_FREM: 1731 case TargetOpcode::G_FRINT: 1732 case TargetOpcode::G_FSIN: 1733 case TargetOpcode::G_FTAN: 1734 case TargetOpcode::G_FACOS: 1735 case TargetOpcode::G_FASIN: 1736 case TargetOpcode::G_FATAN: 1737 case TargetOpcode::G_FCOSH: 1738 case TargetOpcode::G_FSINH: 1739 case TargetOpcode::G_FTANH: 1740 case TargetOpcode::G_FSQRT: 1741 case TargetOpcode::G_FSUB: 1742 case TargetOpcode::G_INTRINSIC_ROUND: 1743 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 1744 case TargetOpcode::G_INTRINSIC_TRUNC: 1745 return true; 1746 default: 1747 return false; 1748 } 1749 } 1750 1751 /// Shifts return poison if shiftwidth is larger than the bitwidth. 1752 static bool shiftAmountKnownInRange(Register ShiftAmount, 1753 const MachineRegisterInfo &MRI) { 1754 LLT Ty = MRI.getType(ShiftAmount); 1755 1756 if (Ty.isScalableVector()) 1757 return false; // Can't tell, just return false to be safe 1758 1759 if (Ty.isScalar()) { 1760 std::optional<ValueAndVReg> Val = 1761 getIConstantVRegValWithLookThrough(ShiftAmount, MRI); 1762 if (!Val) 1763 return false; 1764 return Val->Value.ult(Ty.getScalarSizeInBits()); 1765 } 1766 1767 GBuildVector *BV = getOpcodeDef<GBuildVector>(ShiftAmount, MRI); 1768 if (!BV) 1769 return false; 1770 1771 unsigned Sources = BV->getNumSources(); 1772 for (unsigned I = 0; I < Sources; ++I) { 1773 std::optional<ValueAndVReg> Val = 1774 getIConstantVRegValWithLookThrough(BV->getSourceReg(I), MRI); 1775 if (!Val) 1776 return false; 1777 if (!Val->Value.ult(Ty.getScalarSizeInBits())) 1778 return false; 1779 } 1780 1781 return true; 1782 } 1783 1784 namespace { 1785 enum class UndefPoisonKind { 1786 PoisonOnly = (1 << 0), 1787 UndefOnly = (1 << 1), 1788 UndefOrPoison = PoisonOnly | UndefOnly, 1789 }; 1790 } 1791 1792 static bool includesPoison(UndefPoisonKind Kind) { 1793 return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0; 1794 } 1795 1796 static bool includesUndef(UndefPoisonKind Kind) { 1797 return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0; 1798 } 1799 1800 static bool canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI, 1801 bool ConsiderFlagsAndMetadata, 1802 UndefPoisonKind Kind) { 1803 MachineInstr *RegDef = MRI.getVRegDef(Reg); 1804 1805 if (ConsiderFlagsAndMetadata && includesPoison(Kind)) 1806 if (auto *GMI = dyn_cast<GenericMachineInstr>(RegDef)) 1807 if (GMI->hasPoisonGeneratingFlags()) 1808 return true; 1809 1810 // Check whether opcode is a poison/undef-generating operation. 1811 switch (RegDef->getOpcode()) { 1812 case TargetOpcode::G_BUILD_VECTOR: 1813 case TargetOpcode::G_CONSTANT_FOLD_BARRIER: 1814 return false; 1815 case TargetOpcode::G_SHL: 1816 case TargetOpcode::G_ASHR: 1817 case TargetOpcode::G_LSHR: 1818 return includesPoison(Kind) && 1819 !shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI); 1820 case TargetOpcode::G_FPTOSI: 1821 case TargetOpcode::G_FPTOUI: 1822 // fptosi/ui yields poison if the resulting value does not fit in the 1823 // destination type. 1824 return true; 1825 case TargetOpcode::G_CTLZ: 1826 case TargetOpcode::G_CTTZ: 1827 case TargetOpcode::G_ABS: 1828 case TargetOpcode::G_CTPOP: 1829 case TargetOpcode::G_BSWAP: 1830 case TargetOpcode::G_BITREVERSE: 1831 case TargetOpcode::G_FSHL: 1832 case TargetOpcode::G_FSHR: 1833 case TargetOpcode::G_SMAX: 1834 case TargetOpcode::G_SMIN: 1835 case TargetOpcode::G_UMAX: 1836 case TargetOpcode::G_UMIN: 1837 case TargetOpcode::G_PTRMASK: 1838 case TargetOpcode::G_SADDO: 1839 case TargetOpcode::G_SSUBO: 1840 case TargetOpcode::G_UADDO: 1841 case TargetOpcode::G_USUBO: 1842 case TargetOpcode::G_SMULO: 1843 case TargetOpcode::G_UMULO: 1844 case TargetOpcode::G_SADDSAT: 1845 case TargetOpcode::G_UADDSAT: 1846 case TargetOpcode::G_SSUBSAT: 1847 case TargetOpcode::G_USUBSAT: 1848 return false; 1849 case TargetOpcode::G_SSHLSAT: 1850 case TargetOpcode::G_USHLSAT: 1851 return includesPoison(Kind) && 1852 !shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI); 1853 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1854 GInsertVectorElement *Insert = cast<GInsertVectorElement>(RegDef); 1855 if (includesPoison(Kind)) { 1856 std::optional<ValueAndVReg> Index = 1857 getIConstantVRegValWithLookThrough(Insert->getIndexReg(), MRI); 1858 if (!Index) 1859 return true; 1860 LLT VecTy = MRI.getType(Insert->getVectorReg()); 1861 return Index->Value.uge(VecTy.getElementCount().getKnownMinValue()); 1862 } 1863 return false; 1864 } 1865 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1866 GExtractVectorElement *Extract = cast<GExtractVectorElement>(RegDef); 1867 if (includesPoison(Kind)) { 1868 std::optional<ValueAndVReg> Index = 1869 getIConstantVRegValWithLookThrough(Extract->getIndexReg(), MRI); 1870 if (!Index) 1871 return true; 1872 LLT VecTy = MRI.getType(Extract->getVectorReg()); 1873 return Index->Value.uge(VecTy.getElementCount().getKnownMinValue()); 1874 } 1875 return false; 1876 } 1877 case TargetOpcode::G_SHUFFLE_VECTOR: { 1878 GShuffleVector *Shuffle = cast<GShuffleVector>(RegDef); 1879 ArrayRef<int> Mask = Shuffle->getMask(); 1880 return includesPoison(Kind) && is_contained(Mask, -1); 1881 } 1882 case TargetOpcode::G_FNEG: 1883 case TargetOpcode::G_PHI: 1884 case TargetOpcode::G_SELECT: 1885 case TargetOpcode::G_UREM: 1886 case TargetOpcode::G_SREM: 1887 case TargetOpcode::G_FREEZE: 1888 case TargetOpcode::G_ICMP: 1889 case TargetOpcode::G_FCMP: 1890 case TargetOpcode::G_FADD: 1891 case TargetOpcode::G_FSUB: 1892 case TargetOpcode::G_FMUL: 1893 case TargetOpcode::G_FDIV: 1894 case TargetOpcode::G_FREM: 1895 case TargetOpcode::G_PTR_ADD: 1896 return false; 1897 default: 1898 return !isa<GCastOp>(RegDef) && !isa<GBinOp>(RegDef); 1899 } 1900 } 1901 1902 static bool isGuaranteedNotToBeUndefOrPoison(Register Reg, 1903 const MachineRegisterInfo &MRI, 1904 unsigned Depth, 1905 UndefPoisonKind Kind) { 1906 if (Depth >= MaxAnalysisRecursionDepth) 1907 return false; 1908 1909 MachineInstr *RegDef = MRI.getVRegDef(Reg); 1910 1911 switch (RegDef->getOpcode()) { 1912 case TargetOpcode::G_FREEZE: 1913 return true; 1914 case TargetOpcode::G_IMPLICIT_DEF: 1915 return !includesUndef(Kind); 1916 case TargetOpcode::G_CONSTANT: 1917 case TargetOpcode::G_FCONSTANT: 1918 return true; 1919 case TargetOpcode::G_BUILD_VECTOR: { 1920 GBuildVector *BV = cast<GBuildVector>(RegDef); 1921 unsigned NumSources = BV->getNumSources(); 1922 for (unsigned I = 0; I < NumSources; ++I) 1923 if (!::isGuaranteedNotToBeUndefOrPoison(BV->getSourceReg(I), MRI, 1924 Depth + 1, Kind)) 1925 return false; 1926 return true; 1927 } 1928 case TargetOpcode::G_PHI: { 1929 GPhi *Phi = cast<GPhi>(RegDef); 1930 unsigned NumIncoming = Phi->getNumIncomingValues(); 1931 for (unsigned I = 0; I < NumIncoming; ++I) 1932 if (!::isGuaranteedNotToBeUndefOrPoison(Phi->getIncomingValue(I), MRI, 1933 Depth + 1, Kind)) 1934 return false; 1935 return true; 1936 } 1937 default: { 1938 auto MOCheck = [&](const MachineOperand &MO) { 1939 if (!MO.isReg()) 1940 return true; 1941 return ::isGuaranteedNotToBeUndefOrPoison(MO.getReg(), MRI, Depth + 1, 1942 Kind); 1943 }; 1944 return !::canCreateUndefOrPoison(Reg, MRI, 1945 /*ConsiderFlagsAndMetadata=*/true, Kind) && 1946 all_of(RegDef->uses(), MOCheck); 1947 } 1948 } 1949 } 1950 1951 bool llvm::canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI, 1952 bool ConsiderFlagsAndMetadata) { 1953 return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata, 1954 UndefPoisonKind::UndefOrPoison); 1955 } 1956 1957 bool canCreatePoison(Register Reg, const MachineRegisterInfo &MRI, 1958 bool ConsiderFlagsAndMetadata = true) { 1959 return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata, 1960 UndefPoisonKind::PoisonOnly); 1961 } 1962 1963 bool llvm::isGuaranteedNotToBeUndefOrPoison(Register Reg, 1964 const MachineRegisterInfo &MRI, 1965 unsigned Depth) { 1966 return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth, 1967 UndefPoisonKind::UndefOrPoison); 1968 } 1969 1970 bool llvm::isGuaranteedNotToBePoison(Register Reg, 1971 const MachineRegisterInfo &MRI, 1972 unsigned Depth) { 1973 return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth, 1974 UndefPoisonKind::PoisonOnly); 1975 } 1976 1977 bool llvm::isGuaranteedNotToBeUndef(Register Reg, 1978 const MachineRegisterInfo &MRI, 1979 unsigned Depth) { 1980 return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth, 1981 UndefPoisonKind::UndefOnly); 1982 } 1983 1984 Type *llvm::getTypeForLLT(LLT Ty, LLVMContext &C) { 1985 if (Ty.isVector()) 1986 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1987 Ty.getElementCount()); 1988 return IntegerType::get(C, Ty.getSizeInBits()); 1989 } 1990