1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file This file implements the utility functions used by the GlobalISel 9 /// pipeline. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/CodeGen/CodeGenCommonISel.h" 16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/MachineSizeOpts.h" 27 #include "llvm/CodeGen/RegisterBankInfo.h" 28 #include "llvm/CodeGen/StackProtector.h" 29 #include "llvm/CodeGen/TargetInstrInfo.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Transforms/Utils/SizeOpts.h" 36 #include <numeric> 37 #include <optional> 38 39 #define DEBUG_TYPE "globalisel-utils" 40 41 using namespace llvm; 42 using namespace MIPatternMatch; 43 44 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, 45 const TargetInstrInfo &TII, 46 const RegisterBankInfo &RBI, Register Reg, 47 const TargetRegisterClass &RegClass) { 48 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) 49 return MRI.createVirtualRegister(&RegClass); 50 51 return Reg; 52 } 53 54 Register llvm::constrainOperandRegClass( 55 const MachineFunction &MF, const TargetRegisterInfo &TRI, 56 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 57 const RegisterBankInfo &RBI, MachineInstr &InsertPt, 58 const TargetRegisterClass &RegClass, MachineOperand &RegMO) { 59 Register Reg = RegMO.getReg(); 60 // Assume physical registers are properly constrained. 61 assert(Reg.isVirtual() && "PhysReg not implemented"); 62 63 // Save the old register class to check whether 64 // the change notifications will be required. 65 // TODO: A better approach would be to pass 66 // the observers to constrainRegToClass(). 67 auto *OldRegClass = MRI.getRegClassOrNull(Reg); 68 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); 69 // If we created a new virtual register because the class is not compatible 70 // then create a copy between the new and the old register. 71 if (ConstrainedReg != Reg) { 72 MachineBasicBlock::iterator InsertIt(&InsertPt); 73 MachineBasicBlock &MBB = *InsertPt.getParent(); 74 // FIXME: The copy needs to have the classes constrained for its operands. 75 // Use operand's regbank to get the class for old register (Reg). 76 if (RegMO.isUse()) { 77 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), 78 TII.get(TargetOpcode::COPY), ConstrainedReg) 79 .addReg(Reg); 80 } else { 81 assert(RegMO.isDef() && "Must be a definition"); 82 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), 83 TII.get(TargetOpcode::COPY), Reg) 84 .addReg(ConstrainedReg); 85 } 86 if (GISelChangeObserver *Observer = MF.getObserver()) { 87 Observer->changingInstr(*RegMO.getParent()); 88 } 89 RegMO.setReg(ConstrainedReg); 90 if (GISelChangeObserver *Observer = MF.getObserver()) { 91 Observer->changedInstr(*RegMO.getParent()); 92 } 93 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) { 94 if (GISelChangeObserver *Observer = MF.getObserver()) { 95 if (!RegMO.isDef()) { 96 MachineInstr *RegDef = MRI.getVRegDef(Reg); 97 Observer->changedInstr(*RegDef); 98 } 99 Observer->changingAllUsesOfReg(MRI, Reg); 100 Observer->finishedChangingAllUsesOfReg(); 101 } 102 } 103 return ConstrainedReg; 104 } 105 106 Register llvm::constrainOperandRegClass( 107 const MachineFunction &MF, const TargetRegisterInfo &TRI, 108 MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 109 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, 110 MachineOperand &RegMO, unsigned OpIdx) { 111 Register Reg = RegMO.getReg(); 112 // Assume physical registers are properly constrained. 113 assert(Reg.isVirtual() && "PhysReg not implemented"); 114 115 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF); 116 // Some of the target independent instructions, like COPY, may not impose any 117 // register class constraints on some of their operands: If it's a use, we can 118 // skip constraining as the instruction defining the register would constrain 119 // it. 120 121 if (OpRC) { 122 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands 123 // can have multiple regbanks for a superclass that combine different 124 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity 125 // resolved by targets during regbankselect should not be overridden. 126 if (const auto *SubRC = TRI.getCommonSubClass( 127 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI))) 128 OpRC = SubRC; 129 130 OpRC = TRI.getAllocatableClass(OpRC); 131 } 132 133 if (!OpRC) { 134 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && 135 "Register class constraint is required unless either the " 136 "instruction is target independent or the operand is a use"); 137 // FIXME: Just bailing out like this here could be not enough, unless we 138 // expect the users of this function to do the right thing for PHIs and 139 // COPY: 140 // v1 = COPY v0 141 // v2 = COPY v1 142 // v1 here may end up not being constrained at all. Please notice that to 143 // reproduce the issue we likely need a destination pattern of a selection 144 // rule producing such extra copies, not just an input GMIR with them as 145 // every existing target using selectImpl handles copies before calling it 146 // and they never reach this function. 147 return Reg; 148 } 149 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC, 150 RegMO); 151 } 152 153 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, 154 const TargetInstrInfo &TII, 155 const TargetRegisterInfo &TRI, 156 const RegisterBankInfo &RBI) { 157 assert(!isPreISelGenericOpcode(I.getOpcode()) && 158 "A selected instruction is expected"); 159 MachineBasicBlock &MBB = *I.getParent(); 160 MachineFunction &MF = *MBB.getParent(); 161 MachineRegisterInfo &MRI = MF.getRegInfo(); 162 163 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { 164 MachineOperand &MO = I.getOperand(OpI); 165 166 // There's nothing to be done on non-register operands. 167 if (!MO.isReg()) 168 continue; 169 170 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); 171 assert(MO.isReg() && "Unsupported non-reg operand"); 172 173 Register Reg = MO.getReg(); 174 // Physical registers don't need to be constrained. 175 if (Reg.isPhysical()) 176 continue; 177 178 // Register operands with a value of 0 (e.g. predicate operands) don't need 179 // to be constrained. 180 if (Reg == 0) 181 continue; 182 183 // If the operand is a vreg, we should constrain its regclass, and only 184 // insert COPYs if that's impossible. 185 // constrainOperandRegClass does that for us. 186 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); 187 188 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been 189 // done. 190 if (MO.isUse()) { 191 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); 192 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) 193 I.tieOperands(DefIdx, OpI); 194 } 195 } 196 return true; 197 } 198 199 bool llvm::canReplaceReg(Register DstReg, Register SrcReg, 200 MachineRegisterInfo &MRI) { 201 // Give up if either DstReg or SrcReg is a physical register. 202 if (DstReg.isPhysical() || SrcReg.isPhysical()) 203 return false; 204 // Give up if the types don't match. 205 if (MRI.getType(DstReg) != MRI.getType(SrcReg)) 206 return false; 207 // Replace if either DstReg has no constraints or the register 208 // constraints match. 209 const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg); 210 if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg)) 211 return true; 212 213 // Otherwise match if the Src is already a regclass that is covered by the Dst 214 // RegBank. 215 return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) && 216 DstRBC.get<const RegisterBank *>()->covers( 217 *MRI.getRegClassOrNull(SrcReg)); 218 } 219 220 bool llvm::isTriviallyDead(const MachineInstr &MI, 221 const MachineRegisterInfo &MRI) { 222 // FIXME: This logical is mostly duplicated with 223 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in 224 // MachineInstr::isLabel? 225 226 // Don't delete frame allocation labels. 227 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) 228 return false; 229 // LIFETIME markers should be preserved even if they seem dead. 230 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 231 MI.getOpcode() == TargetOpcode::LIFETIME_END) 232 return false; 233 234 // If we can move an instruction, we can remove it. Otherwise, it has 235 // a side-effect of some sort. 236 bool SawStore = false; 237 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) 238 return false; 239 240 // Instructions without side-effects are dead iff they only define dead vregs. 241 for (const auto &MO : MI.all_defs()) { 242 Register Reg = MO.getReg(); 243 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg)) 244 return false; 245 } 246 return true; 247 } 248 249 static void reportGISelDiagnostic(DiagnosticSeverity Severity, 250 MachineFunction &MF, 251 const TargetPassConfig &TPC, 252 MachineOptimizationRemarkEmitter &MORE, 253 MachineOptimizationRemarkMissed &R) { 254 bool IsFatal = Severity == DS_Error && 255 TPC.isGlobalISelAbortEnabled(); 256 // Print the function name explicitly if we don't have a debug location (which 257 // makes the diagnostic less useful) or if we're going to emit a raw error. 258 if (!R.getLocation().isValid() || IsFatal) 259 R << (" (in function: " + MF.getName() + ")").str(); 260 261 if (IsFatal) 262 report_fatal_error(Twine(R.getMsg())); 263 else 264 MORE.emit(R); 265 } 266 267 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, 268 MachineOptimizationRemarkEmitter &MORE, 269 MachineOptimizationRemarkMissed &R) { 270 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); 271 } 272 273 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 274 MachineOptimizationRemarkEmitter &MORE, 275 MachineOptimizationRemarkMissed &R) { 276 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 277 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); 278 } 279 280 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, 281 MachineOptimizationRemarkEmitter &MORE, 282 const char *PassName, StringRef Msg, 283 const MachineInstr &MI) { 284 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", 285 MI.getDebugLoc(), MI.getParent()); 286 R << Msg; 287 // Printing MI is expensive; only do it if expensive remarks are enabled. 288 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) 289 R << ": " << ore::MNV("Inst", MI); 290 reportGISelFailure(MF, TPC, MORE, R); 291 } 292 293 std::optional<APInt> llvm::getIConstantVRegVal(Register VReg, 294 const MachineRegisterInfo &MRI) { 295 std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough( 296 VReg, MRI, /*LookThroughInstrs*/ false); 297 assert((!ValAndVReg || ValAndVReg->VReg == VReg) && 298 "Value found while looking through instrs"); 299 if (!ValAndVReg) 300 return std::nullopt; 301 return ValAndVReg->Value; 302 } 303 304 std::optional<int64_t> 305 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { 306 std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI); 307 if (Val && Val->getBitWidth() <= 64) 308 return Val->getSExtValue(); 309 return std::nullopt; 310 } 311 312 namespace { 313 314 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn; 315 typedef std::function<std::optional<APInt>(const MachineInstr *MI)> GetAPCstFn; 316 317 std::optional<ValueAndVReg> getConstantVRegValWithLookThrough( 318 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode, 319 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true, 320 bool LookThroughAnyExt = false) { 321 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes; 322 MachineInstr *MI; 323 324 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && 325 LookThroughInstrs) { 326 switch (MI->getOpcode()) { 327 case TargetOpcode::G_ANYEXT: 328 if (!LookThroughAnyExt) 329 return std::nullopt; 330 [[fallthrough]]; 331 case TargetOpcode::G_TRUNC: 332 case TargetOpcode::G_SEXT: 333 case TargetOpcode::G_ZEXT: 334 SeenOpcodes.push_back(std::make_pair( 335 MI->getOpcode(), 336 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); 337 VReg = MI->getOperand(1).getReg(); 338 break; 339 case TargetOpcode::COPY: 340 VReg = MI->getOperand(1).getReg(); 341 if (VReg.isPhysical()) 342 return std::nullopt; 343 break; 344 case TargetOpcode::G_INTTOPTR: 345 VReg = MI->getOperand(1).getReg(); 346 break; 347 default: 348 return std::nullopt; 349 } 350 } 351 if (!MI || !IsConstantOpcode(MI)) 352 return std::nullopt; 353 354 std::optional<APInt> MaybeVal = getAPCstValue(MI); 355 if (!MaybeVal) 356 return std::nullopt; 357 APInt &Val = *MaybeVal; 358 for (auto [Opcode, Size] : reverse(SeenOpcodes)) { 359 switch (Opcode) { 360 case TargetOpcode::G_TRUNC: 361 Val = Val.trunc(Size); 362 break; 363 case TargetOpcode::G_ANYEXT: 364 case TargetOpcode::G_SEXT: 365 Val = Val.sext(Size); 366 break; 367 case TargetOpcode::G_ZEXT: 368 Val = Val.zext(Size); 369 break; 370 } 371 } 372 373 return ValueAndVReg{Val, VReg}; 374 } 375 376 bool isIConstant(const MachineInstr *MI) { 377 if (!MI) 378 return false; 379 return MI->getOpcode() == TargetOpcode::G_CONSTANT; 380 } 381 382 bool isFConstant(const MachineInstr *MI) { 383 if (!MI) 384 return false; 385 return MI->getOpcode() == TargetOpcode::G_FCONSTANT; 386 } 387 388 bool isAnyConstant(const MachineInstr *MI) { 389 if (!MI) 390 return false; 391 unsigned Opc = MI->getOpcode(); 392 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; 393 } 394 395 std::optional<APInt> getCImmAsAPInt(const MachineInstr *MI) { 396 const MachineOperand &CstVal = MI->getOperand(1); 397 if (CstVal.isCImm()) 398 return CstVal.getCImm()->getValue(); 399 return std::nullopt; 400 } 401 402 std::optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) { 403 const MachineOperand &CstVal = MI->getOperand(1); 404 if (CstVal.isCImm()) 405 return CstVal.getCImm()->getValue(); 406 if (CstVal.isFPImm()) 407 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 408 return std::nullopt; 409 } 410 411 } // end anonymous namespace 412 413 std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough( 414 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 415 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant, 416 getCImmAsAPInt, LookThroughInstrs); 417 } 418 419 std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough( 420 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, 421 bool LookThroughAnyExt) { 422 return getConstantVRegValWithLookThrough( 423 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs, 424 LookThroughAnyExt); 425 } 426 427 std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough( 428 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { 429 auto Reg = getConstantVRegValWithLookThrough( 430 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs); 431 if (!Reg) 432 return std::nullopt; 433 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), 434 Reg->VReg}; 435 } 436 437 const ConstantFP * 438 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { 439 MachineInstr *MI = MRI.getVRegDef(VReg); 440 if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) 441 return nullptr; 442 return MI->getOperand(1).getFPImm(); 443 } 444 445 std::optional<DefinitionAndSourceRegister> 446 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { 447 Register DefSrcReg = Reg; 448 auto *DefMI = MRI.getVRegDef(Reg); 449 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); 450 if (!DstTy.isValid()) 451 return std::nullopt; 452 unsigned Opc = DefMI->getOpcode(); 453 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { 454 Register SrcReg = DefMI->getOperand(1).getReg(); 455 auto SrcTy = MRI.getType(SrcReg); 456 if (!SrcTy.isValid()) 457 break; 458 DefMI = MRI.getVRegDef(SrcReg); 459 DefSrcReg = SrcReg; 460 Opc = DefMI->getOpcode(); 461 } 462 return DefinitionAndSourceRegister{DefMI, DefSrcReg}; 463 } 464 465 MachineInstr *llvm::getDefIgnoringCopies(Register Reg, 466 const MachineRegisterInfo &MRI) { 467 std::optional<DefinitionAndSourceRegister> DefSrcReg = 468 getDefSrcRegIgnoringCopies(Reg, MRI); 469 return DefSrcReg ? DefSrcReg->MI : nullptr; 470 } 471 472 Register llvm::getSrcRegIgnoringCopies(Register Reg, 473 const MachineRegisterInfo &MRI) { 474 std::optional<DefinitionAndSourceRegister> DefSrcReg = 475 getDefSrcRegIgnoringCopies(Reg, MRI); 476 return DefSrcReg ? DefSrcReg->Reg : Register(); 477 } 478 479 void llvm::extractParts(Register Reg, LLT Ty, int NumParts, 480 SmallVectorImpl<Register> &VRegs, 481 MachineIRBuilder &MIRBuilder, 482 MachineRegisterInfo &MRI) { 483 for (int i = 0; i < NumParts; ++i) 484 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 485 MIRBuilder.buildUnmerge(VRegs, Reg); 486 } 487 488 bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy, 489 SmallVectorImpl<Register> &VRegs, 490 SmallVectorImpl<Register> &LeftoverRegs, 491 MachineIRBuilder &MIRBuilder, 492 MachineRegisterInfo &MRI) { 493 assert(!LeftoverTy.isValid() && "this is an out argument"); 494 495 unsigned RegSize = RegTy.getSizeInBits(); 496 unsigned MainSize = MainTy.getSizeInBits(); 497 unsigned NumParts = RegSize / MainSize; 498 unsigned LeftoverSize = RegSize - NumParts * MainSize; 499 500 // Use an unmerge when possible. 501 if (LeftoverSize == 0) { 502 for (unsigned I = 0; I < NumParts; ++I) 503 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 504 MIRBuilder.buildUnmerge(VRegs, Reg); 505 return true; 506 } 507 508 // Try to use unmerge for irregular vector split where possible 509 // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32> 510 // leftover, it becomes: 511 // <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1 512 // <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3 513 if (RegTy.isVector() && MainTy.isVector()) { 514 unsigned RegNumElts = RegTy.getNumElements(); 515 unsigned MainNumElts = MainTy.getNumElements(); 516 unsigned LeftoverNumElts = RegNumElts % MainNumElts; 517 // If can unmerge to LeftoverTy, do it 518 if (MainNumElts % LeftoverNumElts == 0 && 519 RegNumElts % LeftoverNumElts == 0 && 520 RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() && 521 LeftoverNumElts > 1) { 522 LeftoverTy = 523 LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits()); 524 525 // Unmerge the SrcReg to LeftoverTy vectors 526 SmallVector<Register, 4> UnmergeValues; 527 extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues, 528 MIRBuilder, MRI); 529 530 // Find how many LeftoverTy makes one MainTy 531 unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts; 532 unsigned NumOfLeftoverVal = 533 ((RegNumElts % MainNumElts) / LeftoverNumElts); 534 535 // Create as many MainTy as possible using unmerged value 536 SmallVector<Register, 4> MergeValues; 537 for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) { 538 MergeValues.push_back(UnmergeValues[I]); 539 if (MergeValues.size() == LeftoverPerMain) { 540 VRegs.push_back( 541 MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0)); 542 MergeValues.clear(); 543 } 544 } 545 // Populate LeftoverRegs with the leftovers 546 for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal; 547 I < UnmergeValues.size(); I++) { 548 LeftoverRegs.push_back(UnmergeValues[I]); 549 } 550 return true; 551 } 552 } 553 // Perform irregular split. Leftover is last element of RegPieces. 554 if (MainTy.isVector()) { 555 SmallVector<Register, 8> RegPieces; 556 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder, 557 MRI); 558 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 559 VRegs.push_back(RegPieces[i]); 560 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 561 LeftoverTy = MRI.getType(LeftoverRegs[0]); 562 return true; 563 } 564 565 LeftoverTy = LLT::scalar(LeftoverSize); 566 // For irregular sizes, extract the individual parts. 567 for (unsigned I = 0; I != NumParts; ++I) { 568 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 569 VRegs.push_back(NewReg); 570 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 571 } 572 573 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 574 Offset += LeftoverSize) { 575 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 576 LeftoverRegs.push_back(NewReg); 577 MIRBuilder.buildExtract(NewReg, Reg, Offset); 578 } 579 580 return true; 581 } 582 583 void llvm::extractVectorParts(Register Reg, unsigned NumElts, 584 SmallVectorImpl<Register> &VRegs, 585 MachineIRBuilder &MIRBuilder, 586 MachineRegisterInfo &MRI) { 587 LLT RegTy = MRI.getType(Reg); 588 assert(RegTy.isVector() && "Expected a vector type"); 589 590 LLT EltTy = RegTy.getElementType(); 591 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 592 unsigned RegNumElts = RegTy.getNumElements(); 593 unsigned LeftoverNumElts = RegNumElts % NumElts; 594 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 595 596 // Perfect split without leftover 597 if (LeftoverNumElts == 0) 598 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder, 599 MRI); 600 601 // Irregular split. Provide direct access to all elements for artifact 602 // combiner using unmerge to elements. Then build vectors with NumElts 603 // elements. Remaining element(s) will be (used to build vector) Leftover. 604 SmallVector<Register, 8> Elts; 605 extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI); 606 607 unsigned Offset = 0; 608 // Requested sub-vectors of NarrowTy. 609 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 610 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 611 VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); 612 } 613 614 // Leftover element(s). 615 if (LeftoverNumElts == 1) { 616 VRegs.push_back(Elts[Offset]); 617 } else { 618 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 619 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 620 VRegs.push_back( 621 MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0)); 622 } 623 } 624 625 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, 626 const MachineRegisterInfo &MRI) { 627 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); 628 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; 629 } 630 631 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { 632 if (Size == 32) 633 return APFloat(float(Val)); 634 if (Size == 64) 635 return APFloat(Val); 636 if (Size != 16) 637 llvm_unreachable("Unsupported FPConstant size"); 638 bool Ignored; 639 APFloat APF(Val); 640 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 641 return APF; 642 } 643 644 std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, 645 const Register Op1, 646 const Register Op2, 647 const MachineRegisterInfo &MRI) { 648 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); 649 if (!MaybeOp2Cst) 650 return std::nullopt; 651 652 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); 653 if (!MaybeOp1Cst) 654 return std::nullopt; 655 656 const APInt &C1 = MaybeOp1Cst->Value; 657 const APInt &C2 = MaybeOp2Cst->Value; 658 switch (Opcode) { 659 default: 660 break; 661 case TargetOpcode::G_ADD: 662 return C1 + C2; 663 case TargetOpcode::G_PTR_ADD: 664 // Types can be of different width here. 665 // Result needs to be the same width as C1, so trunc or sext C2. 666 return C1 + C2.sextOrTrunc(C1.getBitWidth()); 667 case TargetOpcode::G_AND: 668 return C1 & C2; 669 case TargetOpcode::G_ASHR: 670 return C1.ashr(C2); 671 case TargetOpcode::G_LSHR: 672 return C1.lshr(C2); 673 case TargetOpcode::G_MUL: 674 return C1 * C2; 675 case TargetOpcode::G_OR: 676 return C1 | C2; 677 case TargetOpcode::G_SHL: 678 return C1 << C2; 679 case TargetOpcode::G_SUB: 680 return C1 - C2; 681 case TargetOpcode::G_XOR: 682 return C1 ^ C2; 683 case TargetOpcode::G_UDIV: 684 if (!C2.getBoolValue()) 685 break; 686 return C1.udiv(C2); 687 case TargetOpcode::G_SDIV: 688 if (!C2.getBoolValue()) 689 break; 690 return C1.sdiv(C2); 691 case TargetOpcode::G_UREM: 692 if (!C2.getBoolValue()) 693 break; 694 return C1.urem(C2); 695 case TargetOpcode::G_SREM: 696 if (!C2.getBoolValue()) 697 break; 698 return C1.srem(C2); 699 case TargetOpcode::G_SMIN: 700 return APIntOps::smin(C1, C2); 701 case TargetOpcode::G_SMAX: 702 return APIntOps::smax(C1, C2); 703 case TargetOpcode::G_UMIN: 704 return APIntOps::umin(C1, C2); 705 case TargetOpcode::G_UMAX: 706 return APIntOps::umax(C1, C2); 707 } 708 709 return std::nullopt; 710 } 711 712 std::optional<APFloat> 713 llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, 714 const Register Op2, const MachineRegisterInfo &MRI) { 715 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 716 if (!Op2Cst) 717 return std::nullopt; 718 719 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 720 if (!Op1Cst) 721 return std::nullopt; 722 723 APFloat C1 = Op1Cst->getValueAPF(); 724 const APFloat &C2 = Op2Cst->getValueAPF(); 725 switch (Opcode) { 726 case TargetOpcode::G_FADD: 727 C1.add(C2, APFloat::rmNearestTiesToEven); 728 return C1; 729 case TargetOpcode::G_FSUB: 730 C1.subtract(C2, APFloat::rmNearestTiesToEven); 731 return C1; 732 case TargetOpcode::G_FMUL: 733 C1.multiply(C2, APFloat::rmNearestTiesToEven); 734 return C1; 735 case TargetOpcode::G_FDIV: 736 C1.divide(C2, APFloat::rmNearestTiesToEven); 737 return C1; 738 case TargetOpcode::G_FREM: 739 C1.mod(C2); 740 return C1; 741 case TargetOpcode::G_FCOPYSIGN: 742 C1.copySign(C2); 743 return C1; 744 case TargetOpcode::G_FMINNUM: 745 return minnum(C1, C2); 746 case TargetOpcode::G_FMAXNUM: 747 return maxnum(C1, C2); 748 case TargetOpcode::G_FMINIMUM: 749 return minimum(C1, C2); 750 case TargetOpcode::G_FMAXIMUM: 751 return maximum(C1, C2); 752 case TargetOpcode::G_FMINNUM_IEEE: 753 case TargetOpcode::G_FMAXNUM_IEEE: 754 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not 755 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, 756 // and currently there isn't a nice wrapper in APFloat for the version with 757 // correct snan handling. 758 break; 759 default: 760 break; 761 } 762 763 return std::nullopt; 764 } 765 766 SmallVector<APInt> 767 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, 768 const Register Op2, 769 const MachineRegisterInfo &MRI) { 770 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI); 771 if (!SrcVec2) 772 return SmallVector<APInt>(); 773 774 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI); 775 if (!SrcVec1) 776 return SmallVector<APInt>(); 777 778 SmallVector<APInt> FoldedElements; 779 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { 780 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), 781 SrcVec2->getSourceReg(Idx), MRI); 782 if (!MaybeCst) 783 return SmallVector<APInt>(); 784 FoldedElements.push_back(*MaybeCst); 785 } 786 return FoldedElements; 787 } 788 789 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, 790 bool SNaN) { 791 const MachineInstr *DefMI = MRI.getVRegDef(Val); 792 if (!DefMI) 793 return false; 794 795 const TargetMachine& TM = DefMI->getMF()->getTarget(); 796 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) 797 return true; 798 799 // If the value is a constant, we can obviously see if it is a NaN or not. 800 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { 801 return !FPVal->getValueAPF().isNaN() || 802 (SNaN && !FPVal->getValueAPF().isSignaling()); 803 } 804 805 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 806 for (const auto &Op : DefMI->uses()) 807 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) 808 return false; 809 return true; 810 } 811 812 switch (DefMI->getOpcode()) { 813 default: 814 break; 815 case TargetOpcode::G_FADD: 816 case TargetOpcode::G_FSUB: 817 case TargetOpcode::G_FMUL: 818 case TargetOpcode::G_FDIV: 819 case TargetOpcode::G_FREM: 820 case TargetOpcode::G_FSIN: 821 case TargetOpcode::G_FCOS: 822 case TargetOpcode::G_FMA: 823 case TargetOpcode::G_FMAD: 824 if (SNaN) 825 return true; 826 827 // TODO: Need isKnownNeverInfinity 828 return false; 829 case TargetOpcode::G_FMINNUM_IEEE: 830 case TargetOpcode::G_FMAXNUM_IEEE: { 831 if (SNaN) 832 return true; 833 // This can return a NaN if either operand is an sNaN, or if both operands 834 // are NaN. 835 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && 836 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || 837 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && 838 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); 839 } 840 case TargetOpcode::G_FMINNUM: 841 case TargetOpcode::G_FMAXNUM: { 842 // Only one needs to be known not-nan, since it will be returned if the 843 // other ends up being one. 844 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || 845 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); 846 } 847 } 848 849 if (SNaN) { 850 // FP operations quiet. For now, just handle the ones inserted during 851 // legalization. 852 switch (DefMI->getOpcode()) { 853 case TargetOpcode::G_FPEXT: 854 case TargetOpcode::G_FPTRUNC: 855 case TargetOpcode::G_FCANONICALIZE: 856 return true; 857 default: 858 return false; 859 } 860 } 861 862 return false; 863 } 864 865 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, 866 const MachinePointerInfo &MPO) { 867 auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V); 868 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) { 869 MachineFrameInfo &MFI = MF.getFrameInfo(); 870 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), 871 MPO.Offset); 872 } 873 874 if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) { 875 const Module *M = MF.getFunction().getParent(); 876 return V->getPointerAlignment(M->getDataLayout()); 877 } 878 879 return Align(1); 880 } 881 882 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, 883 const TargetInstrInfo &TII, 884 MCRegister PhysReg, 885 const TargetRegisterClass &RC, 886 const DebugLoc &DL, LLT RegTy) { 887 MachineBasicBlock &EntryMBB = MF.front(); 888 MachineRegisterInfo &MRI = MF.getRegInfo(); 889 Register LiveIn = MRI.getLiveInVirtReg(PhysReg); 890 if (LiveIn) { 891 MachineInstr *Def = MRI.getVRegDef(LiveIn); 892 if (Def) { 893 // FIXME: Should the verifier check this is in the entry block? 894 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); 895 return LiveIn; 896 } 897 898 // It's possible the incoming argument register and copy was added during 899 // lowering, but later deleted due to being/becoming dead. If this happens, 900 // re-insert the copy. 901 } else { 902 // The live in register was not present, so add it. 903 LiveIn = MF.addLiveIn(PhysReg, &RC); 904 if (RegTy.isValid()) 905 MRI.setType(LiveIn, RegTy); 906 } 907 908 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) 909 .addReg(PhysReg); 910 if (!EntryMBB.isLiveIn(PhysReg)) 911 EntryMBB.addLiveIn(PhysReg); 912 return LiveIn; 913 } 914 915 std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, 916 const Register Op1, uint64_t Imm, 917 const MachineRegisterInfo &MRI) { 918 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); 919 if (MaybeOp1Cst) { 920 switch (Opcode) { 921 default: 922 break; 923 case TargetOpcode::G_SEXT_INREG: { 924 LLT Ty = MRI.getType(Op1); 925 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); 926 } 927 } 928 } 929 return std::nullopt; 930 } 931 932 std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy, 933 const Register Op0, 934 const MachineRegisterInfo &MRI) { 935 std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI); 936 if (!Val) 937 return Val; 938 939 const unsigned DstSize = DstTy.getScalarSizeInBits(); 940 941 switch (Opcode) { 942 case TargetOpcode::G_SEXT: 943 return Val->sext(DstSize); 944 case TargetOpcode::G_ZEXT: 945 case TargetOpcode::G_ANYEXT: 946 // TODO: DAG considers target preference when constant folding any_extend. 947 return Val->zext(DstSize); 948 default: 949 break; 950 } 951 952 llvm_unreachable("unexpected cast opcode to constant fold"); 953 } 954 955 std::optional<APFloat> 956 llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, 957 const MachineRegisterInfo &MRI) { 958 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); 959 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { 960 APFloat DstVal(getFltSemanticForLLT(DstTy)); 961 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, 962 APFloat::rmNearestTiesToEven); 963 return DstVal; 964 } 965 return std::nullopt; 966 } 967 968 std::optional<SmallVector<unsigned>> 969 llvm::ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI, 970 std::function<unsigned(APInt)> CB) { 971 LLT Ty = MRI.getType(Src); 972 SmallVector<unsigned> FoldedCTLZs; 973 auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> { 974 auto MaybeCst = getIConstantVRegVal(R, MRI); 975 if (!MaybeCst) 976 return std::nullopt; 977 return CB(*MaybeCst); 978 }; 979 if (Ty.isVector()) { 980 // Try to constant fold each element. 981 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI); 982 if (!BV) 983 return std::nullopt; 984 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 985 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { 986 FoldedCTLZs.emplace_back(*MaybeFold); 987 continue; 988 } 989 return std::nullopt; 990 } 991 return FoldedCTLZs; 992 } 993 if (auto MaybeCst = tryFoldScalar(Src)) { 994 FoldedCTLZs.emplace_back(*MaybeCst); 995 return FoldedCTLZs; 996 } 997 return std::nullopt; 998 } 999 1000 std::optional<SmallVector<APInt>> 1001 llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2, 1002 const MachineRegisterInfo &MRI) { 1003 LLT Ty = MRI.getType(Op1); 1004 if (Ty != MRI.getType(Op2)) 1005 return std::nullopt; 1006 1007 auto TryFoldScalar = [&MRI, Pred](Register LHS, 1008 Register RHS) -> std::optional<APInt> { 1009 auto LHSCst = getIConstantVRegVal(LHS, MRI); 1010 auto RHSCst = getIConstantVRegVal(RHS, MRI); 1011 if (!LHSCst || !RHSCst) 1012 return std::nullopt; 1013 1014 switch (Pred) { 1015 case CmpInst::Predicate::ICMP_EQ: 1016 return APInt(/*numBits=*/1, LHSCst->eq(*RHSCst)); 1017 case CmpInst::Predicate::ICMP_NE: 1018 return APInt(/*numBits=*/1, LHSCst->ne(*RHSCst)); 1019 case CmpInst::Predicate::ICMP_UGT: 1020 return APInt(/*numBits=*/1, LHSCst->ugt(*RHSCst)); 1021 case CmpInst::Predicate::ICMP_UGE: 1022 return APInt(/*numBits=*/1, LHSCst->uge(*RHSCst)); 1023 case CmpInst::Predicate::ICMP_ULT: 1024 return APInt(/*numBits=*/1, LHSCst->ult(*RHSCst)); 1025 case CmpInst::Predicate::ICMP_ULE: 1026 return APInt(/*numBits=*/1, LHSCst->ule(*RHSCst)); 1027 case CmpInst::Predicate::ICMP_SGT: 1028 return APInt(/*numBits=*/1, LHSCst->sgt(*RHSCst)); 1029 case CmpInst::Predicate::ICMP_SGE: 1030 return APInt(/*numBits=*/1, LHSCst->sge(*RHSCst)); 1031 case CmpInst::Predicate::ICMP_SLT: 1032 return APInt(/*numBits=*/1, LHSCst->slt(*RHSCst)); 1033 case CmpInst::Predicate::ICMP_SLE: 1034 return APInt(/*numBits=*/1, LHSCst->sle(*RHSCst)); 1035 default: 1036 return std::nullopt; 1037 } 1038 }; 1039 1040 SmallVector<APInt> FoldedICmps; 1041 1042 if (Ty.isVector()) { 1043 // Try to constant fold each element. 1044 auto *BV1 = getOpcodeDef<GBuildVector>(Op1, MRI); 1045 auto *BV2 = getOpcodeDef<GBuildVector>(Op2, MRI); 1046 if (!BV1 || !BV2) 1047 return std::nullopt; 1048 assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors"); 1049 for (unsigned I = 0; I < BV1->getNumSources(); ++I) { 1050 if (auto MaybeFold = 1051 TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) { 1052 FoldedICmps.emplace_back(*MaybeFold); 1053 continue; 1054 } 1055 return std::nullopt; 1056 } 1057 return FoldedICmps; 1058 } 1059 1060 if (auto MaybeCst = TryFoldScalar(Op1, Op2)) { 1061 FoldedICmps.emplace_back(*MaybeCst); 1062 return FoldedICmps; 1063 } 1064 1065 return std::nullopt; 1066 } 1067 1068 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, 1069 GISelKnownBits *KB) { 1070 std::optional<DefinitionAndSourceRegister> DefSrcReg = 1071 getDefSrcRegIgnoringCopies(Reg, MRI); 1072 if (!DefSrcReg) 1073 return false; 1074 1075 const MachineInstr &MI = *DefSrcReg->MI; 1076 const LLT Ty = MRI.getType(Reg); 1077 1078 switch (MI.getOpcode()) { 1079 case TargetOpcode::G_CONSTANT: { 1080 unsigned BitWidth = Ty.getScalarSizeInBits(); 1081 const ConstantInt *CI = MI.getOperand(1).getCImm(); 1082 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); 1083 } 1084 case TargetOpcode::G_SHL: { 1085 // A left-shift of a constant one will have exactly one bit set because 1086 // shifting the bit off the end is undefined. 1087 1088 // TODO: Constant splat 1089 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1090 if (*ConstLHS == 1) 1091 return true; 1092 } 1093 1094 break; 1095 } 1096 case TargetOpcode::G_LSHR: { 1097 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { 1098 if (ConstLHS->isSignMask()) 1099 return true; 1100 } 1101 1102 break; 1103 } 1104 case TargetOpcode::G_BUILD_VECTOR: { 1105 // TODO: Probably should have a recursion depth guard since you could have 1106 // bitcasted vector elements. 1107 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 1108 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB)) 1109 return false; 1110 1111 return true; 1112 } 1113 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1114 // Only handle constants since we would need to know if number of leading 1115 // zeros is greater than the truncation amount. 1116 const unsigned BitWidth = Ty.getScalarSizeInBits(); 1117 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1118 auto Const = getIConstantVRegVal(MO.getReg(), MRI); 1119 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) 1120 return false; 1121 } 1122 1123 return true; 1124 } 1125 default: 1126 break; 1127 } 1128 1129 if (!KB) 1130 return false; 1131 1132 // More could be done here, though the above checks are enough 1133 // to handle some common cases. 1134 1135 // Fall back to computeKnownBits to catch other known cases. 1136 KnownBits Known = KB->getKnownBits(Reg); 1137 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 1138 } 1139 1140 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { 1141 AU.addPreserved<StackProtector>(); 1142 } 1143 1144 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { 1145 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1146 return OrigTy; 1147 1148 if (OrigTy.isVector() && TargetTy.isVector()) { 1149 LLT OrigElt = OrigTy.getElementType(); 1150 LLT TargetElt = TargetTy.getElementType(); 1151 1152 // TODO: The docstring for this function says the intention is to use this 1153 // function to build MERGE/UNMERGE instructions. It won't be the case that 1154 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1155 // could implement getLCMType between the two in the future if there was a 1156 // need, but it is not worth it now as this function should not be used in 1157 // that way. 1158 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1159 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1160 "getLCMType not implemented between fixed and scalable vectors."); 1161 1162 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { 1163 int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(), 1164 TargetTy.getElementCount().getKnownMinValue()); 1165 // Prefer the original element type. 1166 ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy( 1167 TargetTy.getElementCount().getKnownMinValue()); 1168 return LLT::vector(Mul.divideCoefficientBy(GCDMinElts), 1169 OrigTy.getElementType()); 1170 } 1171 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(), 1172 TargetTy.getSizeInBits().getKnownMinValue()); 1173 return LLT::vector( 1174 ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()), 1175 OrigElt); 1176 } 1177 1178 // One type is scalar, one type is vector 1179 if (OrigTy.isVector() || TargetTy.isVector()) { 1180 LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy; 1181 LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy; 1182 LLT EltTy = VecTy.getElementType(); 1183 LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy; 1184 1185 // Prefer scalar type from OrigTy. 1186 if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits()) 1187 return LLT::vector(VecTy.getElementCount(), OrigEltTy); 1188 1189 // Different size scalars. Create vector with the same total size. 1190 // LCM will take fixed/scalable from VecTy. 1191 unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() * 1192 VecTy.getElementCount().getKnownMinValue(), 1193 ScalarTy.getSizeInBits().getFixedValue()); 1194 // Prefer type from OrigTy 1195 return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(), 1196 VecTy.getElementCount().isScalable()), 1197 OrigEltTy); 1198 } 1199 1200 // At this point, both types are scalars of different size 1201 unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(), 1202 TargetTy.getSizeInBits().getFixedValue()); 1203 // Preserve pointer types. 1204 if (LCM == OrigTy.getSizeInBits()) 1205 return OrigTy; 1206 if (LCM == TargetTy.getSizeInBits()) 1207 return TargetTy; 1208 return LLT::scalar(LCM); 1209 } 1210 1211 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { 1212 1213 if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) || 1214 (OrigTy.isFixedVector() && TargetTy.isScalableVector())) 1215 llvm_unreachable( 1216 "getCoverTy not implemented between fixed and scalable vectors."); 1217 1218 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || 1219 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) 1220 return getLCMType(OrigTy, TargetTy); 1221 1222 unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue(); 1223 unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue(); 1224 if (OrigTyNumElts % TargetTyNumElts == 0) 1225 return OrigTy; 1226 1227 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts); 1228 return LLT::scalarOrVector(ElementCount::getFixed(NumElts), 1229 OrigTy.getElementType()); 1230 } 1231 1232 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { 1233 if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) 1234 return OrigTy; 1235 1236 if (OrigTy.isVector() && TargetTy.isVector()) { 1237 LLT OrigElt = OrigTy.getElementType(); 1238 1239 // TODO: The docstring for this function says the intention is to use this 1240 // function to build MERGE/UNMERGE instructions. It won't be the case that 1241 // we generate a MERGE/UNMERGE between fixed and scalable vector types. We 1242 // could implement getGCDType between the two in the future if there was a 1243 // need, but it is not worth it now as this function should not be used in 1244 // that way. 1245 assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || 1246 (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && 1247 "getGCDType not implemented between fixed and scalable vectors."); 1248 1249 unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(), 1250 TargetTy.getSizeInBits().getKnownMinValue()); 1251 if (GCD == OrigElt.getSizeInBits()) 1252 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1253 OrigElt); 1254 1255 // Cannot produce original element type, but both have vscale in common. 1256 if (GCD < OrigElt.getSizeInBits()) 1257 return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), 1258 GCD); 1259 1260 return LLT::vector( 1261 ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(), 1262 OrigTy.isScalable()), 1263 OrigElt); 1264 } 1265 1266 // If one type is vector and the element size matches the scalar size, then 1267 // the gcd is the scalar type. 1268 if (OrigTy.isVector() && 1269 OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits()) 1270 return OrigTy.getElementType(); 1271 if (TargetTy.isVector() && 1272 TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits()) 1273 return OrigTy; 1274 1275 // At this point, both types are either scalars of different type or one is a 1276 // vector and one is a scalar. If both types are scalars, the GCD type is the 1277 // GCD between the two scalar sizes. If one is vector and one is scalar, then 1278 // the GCD type is the GCD between the scalar and the vector element size. 1279 LLT OrigScalar = OrigTy.getScalarType(); 1280 LLT TargetScalar = TargetTy.getScalarType(); 1281 unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(), 1282 TargetScalar.getSizeInBits().getFixedValue()); 1283 return LLT::scalar(GCD); 1284 } 1285 1286 std::optional<int> llvm::getSplatIndex(MachineInstr &MI) { 1287 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 1288 "Only G_SHUFFLE_VECTOR can have a splat index!"); 1289 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 1290 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); 1291 1292 // If all elements are undefined, this shuffle can be considered a splat. 1293 // Return 0 for better potential for callers to simplify. 1294 if (FirstDefinedIdx == Mask.end()) 1295 return 0; 1296 1297 // Make sure all remaining elements are either undef or the same 1298 // as the first non-undef value. 1299 int SplatValue = *FirstDefinedIdx; 1300 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), 1301 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) 1302 return std::nullopt; 1303 1304 return SplatValue; 1305 } 1306 1307 static bool isBuildVectorOp(unsigned Opcode) { 1308 return Opcode == TargetOpcode::G_BUILD_VECTOR || 1309 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; 1310 } 1311 1312 namespace { 1313 1314 std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg, 1315 const MachineRegisterInfo &MRI, 1316 bool AllowUndef) { 1317 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); 1318 if (!MI) 1319 return std::nullopt; 1320 1321 bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS; 1322 if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp) 1323 return std::nullopt; 1324 1325 std::optional<ValueAndVReg> SplatValAndReg; 1326 for (MachineOperand &Op : MI->uses()) { 1327 Register Element = Op.getReg(); 1328 // If we have a G_CONCAT_VECTOR, we recursively look into the 1329 // vectors that we're concatenating to see if they're splats. 1330 auto ElementValAndReg = 1331 isConcatVectorsOp 1332 ? getAnyConstantSplat(Element, MRI, AllowUndef) 1333 : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); 1334 1335 // If AllowUndef, treat undef as value that will result in a constant splat. 1336 if (!ElementValAndReg) { 1337 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element))) 1338 continue; 1339 return std::nullopt; 1340 } 1341 1342 // Record splat value 1343 if (!SplatValAndReg) 1344 SplatValAndReg = ElementValAndReg; 1345 1346 // Different constant than the one already recorded, not a constant splat. 1347 if (SplatValAndReg->Value != ElementValAndReg->Value) 1348 return std::nullopt; 1349 } 1350 1351 return SplatValAndReg; 1352 } 1353 1354 } // end anonymous namespace 1355 1356 bool llvm::isBuildVectorConstantSplat(const Register Reg, 1357 const MachineRegisterInfo &MRI, 1358 int64_t SplatValue, bool AllowUndef) { 1359 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef)) 1360 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); 1361 return false; 1362 } 1363 1364 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, 1365 const MachineRegisterInfo &MRI, 1366 int64_t SplatValue, bool AllowUndef) { 1367 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue, 1368 AllowUndef); 1369 } 1370 1371 std::optional<APInt> 1372 llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) { 1373 if (auto SplatValAndReg = 1374 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) { 1375 if (std::optional<ValueAndVReg> ValAndVReg = 1376 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI)) 1377 return ValAndVReg->Value; 1378 } 1379 1380 return std::nullopt; 1381 } 1382 1383 std::optional<APInt> 1384 llvm::getIConstantSplatVal(const MachineInstr &MI, 1385 const MachineRegisterInfo &MRI) { 1386 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI); 1387 } 1388 1389 std::optional<int64_t> 1390 llvm::getIConstantSplatSExtVal(const Register Reg, 1391 const MachineRegisterInfo &MRI) { 1392 if (auto SplatValAndReg = 1393 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) 1394 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); 1395 return std::nullopt; 1396 } 1397 1398 std::optional<int64_t> 1399 llvm::getIConstantSplatSExtVal(const MachineInstr &MI, 1400 const MachineRegisterInfo &MRI) { 1401 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI); 1402 } 1403 1404 std::optional<FPValueAndVReg> 1405 llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, 1406 bool AllowUndef) { 1407 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) 1408 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); 1409 return std::nullopt; 1410 } 1411 1412 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, 1413 const MachineRegisterInfo &MRI, 1414 bool AllowUndef) { 1415 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); 1416 } 1417 1418 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, 1419 const MachineRegisterInfo &MRI, 1420 bool AllowUndef) { 1421 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); 1422 } 1423 1424 std::optional<RegOrConstant> 1425 llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) { 1426 unsigned Opc = MI.getOpcode(); 1427 if (!isBuildVectorOp(Opc)) 1428 return std::nullopt; 1429 if (auto Splat = getIConstantSplatSExtVal(MI, MRI)) 1430 return RegOrConstant(*Splat); 1431 auto Reg = MI.getOperand(1).getReg(); 1432 if (any_of(drop_begin(MI.operands(), 2), 1433 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) 1434 return std::nullopt; 1435 return RegOrConstant(Reg); 1436 } 1437 1438 static bool isConstantScalar(const MachineInstr &MI, 1439 const MachineRegisterInfo &MRI, 1440 bool AllowFP = true, 1441 bool AllowOpaqueConstants = true) { 1442 switch (MI.getOpcode()) { 1443 case TargetOpcode::G_CONSTANT: 1444 case TargetOpcode::G_IMPLICIT_DEF: 1445 return true; 1446 case TargetOpcode::G_FCONSTANT: 1447 return AllowFP; 1448 case TargetOpcode::G_GLOBAL_VALUE: 1449 case TargetOpcode::G_FRAME_INDEX: 1450 case TargetOpcode::G_BLOCK_ADDR: 1451 case TargetOpcode::G_JUMP_TABLE: 1452 return AllowOpaqueConstants; 1453 default: 1454 return false; 1455 } 1456 } 1457 1458 bool llvm::isConstantOrConstantVector(MachineInstr &MI, 1459 const MachineRegisterInfo &MRI) { 1460 Register Def = MI.getOperand(0).getReg(); 1461 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1462 return true; 1463 GBuildVector *BV = dyn_cast<GBuildVector>(&MI); 1464 if (!BV) 1465 return false; 1466 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { 1467 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || 1468 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI)) 1469 continue; 1470 return false; 1471 } 1472 return true; 1473 } 1474 1475 bool llvm::isConstantOrConstantVector(const MachineInstr &MI, 1476 const MachineRegisterInfo &MRI, 1477 bool AllowFP, bool AllowOpaqueConstants) { 1478 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) 1479 return true; 1480 1481 if (!isBuildVectorOp(MI.getOpcode())) 1482 return false; 1483 1484 const unsigned NumOps = MI.getNumOperands(); 1485 for (unsigned I = 1; I != NumOps; ++I) { 1486 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg()); 1487 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants)) 1488 return false; 1489 } 1490 1491 return true; 1492 } 1493 1494 std::optional<APInt> 1495 llvm::isConstantOrConstantSplatVector(MachineInstr &MI, 1496 const MachineRegisterInfo &MRI) { 1497 Register Def = MI.getOperand(0).getReg(); 1498 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) 1499 return C->Value; 1500 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI); 1501 if (!MaybeCst) 1502 return std::nullopt; 1503 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); 1504 return APInt(ScalarSize, *MaybeCst, true); 1505 } 1506 1507 bool llvm::isNullOrNullSplat(const MachineInstr &MI, 1508 const MachineRegisterInfo &MRI, bool AllowUndefs) { 1509 switch (MI.getOpcode()) { 1510 case TargetOpcode::G_IMPLICIT_DEF: 1511 return AllowUndefs; 1512 case TargetOpcode::G_CONSTANT: 1513 return MI.getOperand(1).getCImm()->isNullValue(); 1514 case TargetOpcode::G_FCONSTANT: { 1515 const ConstantFP *FPImm = MI.getOperand(1).getFPImm(); 1516 return FPImm->isZero() && !FPImm->isNegative(); 1517 } 1518 default: 1519 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already 1520 return false; 1521 return isBuildVectorAllZeros(MI, MRI); 1522 } 1523 } 1524 1525 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, 1526 const MachineRegisterInfo &MRI, 1527 bool AllowUndefs) { 1528 switch (MI.getOpcode()) { 1529 case TargetOpcode::G_IMPLICIT_DEF: 1530 return AllowUndefs; 1531 case TargetOpcode::G_CONSTANT: 1532 return MI.getOperand(1).getCImm()->isAllOnesValue(); 1533 default: 1534 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already 1535 return false; 1536 return isBuildVectorAllOnes(MI, MRI); 1537 } 1538 } 1539 1540 bool llvm::matchUnaryPredicate( 1541 const MachineRegisterInfo &MRI, Register Reg, 1542 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) { 1543 1544 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); 1545 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) 1546 return Match(nullptr); 1547 1548 // TODO: Also handle fconstant 1549 if (Def->getOpcode() == TargetOpcode::G_CONSTANT) 1550 return Match(Def->getOperand(1).getCImm()); 1551 1552 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) 1553 return false; 1554 1555 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { 1556 Register SrcElt = Def->getOperand(I).getReg(); 1557 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); 1558 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { 1559 if (!Match(nullptr)) 1560 return false; 1561 continue; 1562 } 1563 1564 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || 1565 !Match(SrcDef->getOperand(1).getCImm())) 1566 return false; 1567 } 1568 1569 return true; 1570 } 1571 1572 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, 1573 bool IsFP) { 1574 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1575 case TargetLowering::UndefinedBooleanContent: 1576 return Val & 0x1; 1577 case TargetLowering::ZeroOrOneBooleanContent: 1578 return Val == 1; 1579 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1580 return Val == -1; 1581 } 1582 llvm_unreachable("Invalid boolean contents"); 1583 } 1584 1585 bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val, 1586 bool IsVector, bool IsFP) { 1587 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1588 case TargetLowering::UndefinedBooleanContent: 1589 return ~Val & 0x1; 1590 case TargetLowering::ZeroOrOneBooleanContent: 1591 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1592 return Val == 0; 1593 } 1594 llvm_unreachable("Invalid boolean contents"); 1595 } 1596 1597 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, 1598 bool IsFP) { 1599 switch (TLI.getBooleanContents(IsVector, IsFP)) { 1600 case TargetLowering::UndefinedBooleanContent: 1601 case TargetLowering::ZeroOrOneBooleanContent: 1602 return 1; 1603 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1604 return -1; 1605 } 1606 llvm_unreachable("Invalid boolean contents"); 1607 } 1608 1609 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, 1610 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 1611 const auto &F = MBB.getParent()->getFunction(); 1612 return F.hasOptSize() || F.hasMinSize() || 1613 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); 1614 } 1615 1616 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, 1617 LostDebugLocObserver *LocObserver, 1618 SmallInstListTy &DeadInstChain) { 1619 for (MachineOperand &Op : MI.uses()) { 1620 if (Op.isReg() && Op.getReg().isVirtual()) 1621 DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); 1622 } 1623 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); 1624 DeadInstChain.remove(&MI); 1625 MI.eraseFromParent(); 1626 if (LocObserver) 1627 LocObserver->checkpoint(false); 1628 } 1629 1630 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, 1631 MachineRegisterInfo &MRI, 1632 LostDebugLocObserver *LocObserver) { 1633 SmallInstListTy DeadInstChain; 1634 for (MachineInstr *MI : DeadInstrs) 1635 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); 1636 1637 while (!DeadInstChain.empty()) { 1638 MachineInstr *Inst = DeadInstChain.pop_back_val(); 1639 if (!isTriviallyDead(*Inst, MRI)) 1640 continue; 1641 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); 1642 } 1643 } 1644 1645 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, 1646 LostDebugLocObserver *LocObserver) { 1647 return eraseInstrs({&MI}, MRI, LocObserver); 1648 } 1649 1650 void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) { 1651 for (auto &Def : MI.defs()) { 1652 assert(Def.isReg() && "Must be a reg"); 1653 1654 SmallVector<MachineOperand *, 16> DbgUsers; 1655 for (auto &MOUse : MRI.use_operands(Def.getReg())) { 1656 MachineInstr *DbgValue = MOUse.getParent(); 1657 // Ignore partially formed DBG_VALUEs. 1658 if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) { 1659 DbgUsers.push_back(&MOUse); 1660 } 1661 } 1662 1663 if (!DbgUsers.empty()) { 1664 salvageDebugInfoForDbgValue(MRI, MI, DbgUsers); 1665 } 1666 } 1667 } 1668