xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/Utils.cpp (revision 2bea69bf6503ffc9f3cde9a52b5dac1a25e94e1c)
1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file This file implements the utility functions used by the GlobalISel
9 /// pipeline.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/Utils.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineInstrBuilder.h"
18 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/StackProtector.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/Constants.h"
25 
26 #define DEBUG_TYPE "globalisel-utils"
27 
28 using namespace llvm;
29 
30 unsigned llvm::constrainRegToClass(MachineRegisterInfo &MRI,
31                                    const TargetInstrInfo &TII,
32                                    const RegisterBankInfo &RBI, unsigned Reg,
33                                    const TargetRegisterClass &RegClass) {
34   if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
35     return MRI.createVirtualRegister(&RegClass);
36 
37   return Reg;
38 }
39 
40 unsigned llvm::constrainOperandRegClass(
41     const MachineFunction &MF, const TargetRegisterInfo &TRI,
42     MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
43     const RegisterBankInfo &RBI, MachineInstr &InsertPt,
44     const TargetRegisterClass &RegClass, const MachineOperand &RegMO,
45     unsigned OpIdx) {
46   unsigned Reg = RegMO.getReg();
47   // Assume physical registers are properly constrained.
48   assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
49 
50   unsigned ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
51   // If we created a new virtual register because the class is not compatible
52   // then create a copy between the new and the old register.
53   if (ConstrainedReg != Reg) {
54     MachineBasicBlock::iterator InsertIt(&InsertPt);
55     MachineBasicBlock &MBB = *InsertPt.getParent();
56     if (RegMO.isUse()) {
57       BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
58               TII.get(TargetOpcode::COPY), ConstrainedReg)
59           .addReg(Reg);
60     } else {
61       assert(RegMO.isDef() && "Must be a definition");
62       BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
63               TII.get(TargetOpcode::COPY), Reg)
64           .addReg(ConstrainedReg);
65     }
66   }
67   return ConstrainedReg;
68 }
69 
70 unsigned llvm::constrainOperandRegClass(
71     const MachineFunction &MF, const TargetRegisterInfo &TRI,
72     MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
73     const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
74     const MachineOperand &RegMO, unsigned OpIdx) {
75   unsigned Reg = RegMO.getReg();
76   // Assume physical registers are properly constrained.
77   assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
78 
79   const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
80   // Some of the target independent instructions, like COPY, may not impose any
81   // register class constraints on some of their operands: If it's a use, we can
82   // skip constraining as the instruction defining the register would constrain
83   // it.
84 
85   // We can't constrain unallocatable register classes, because we can't create
86   // virtual registers for these classes, so we need to let targets handled this
87   // case.
88   if (RegClass && !RegClass->isAllocatable())
89     RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);
90 
91   if (!RegClass) {
92     assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
93            "Register class constraint is required unless either the "
94            "instruction is target independent or the operand is a use");
95     // FIXME: Just bailing out like this here could be not enough, unless we
96     // expect the users of this function to do the right thing for PHIs and
97     // COPY:
98     //   v1 = COPY v0
99     //   v2 = COPY v1
100     // v1 here may end up not being constrained at all. Please notice that to
101     // reproduce the issue we likely need a destination pattern of a selection
102     // rule producing such extra copies, not just an input GMIR with them as
103     // every existing target using selectImpl handles copies before calling it
104     // and they never reach this function.
105     return Reg;
106   }
107   return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
108                                   RegMO, OpIdx);
109 }
110 
111 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
112                                             const TargetInstrInfo &TII,
113                                             const TargetRegisterInfo &TRI,
114                                             const RegisterBankInfo &RBI) {
115   assert(!isPreISelGenericOpcode(I.getOpcode()) &&
116          "A selected instruction is expected");
117   MachineBasicBlock &MBB = *I.getParent();
118   MachineFunction &MF = *MBB.getParent();
119   MachineRegisterInfo &MRI = MF.getRegInfo();
120 
121   for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
122     MachineOperand &MO = I.getOperand(OpI);
123 
124     // There's nothing to be done on non-register operands.
125     if (!MO.isReg())
126       continue;
127 
128     LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
129     assert(MO.isReg() && "Unsupported non-reg operand");
130 
131     unsigned Reg = MO.getReg();
132     // Physical registers don't need to be constrained.
133     if (Register::isPhysicalRegister(Reg))
134       continue;
135 
136     // Register operands with a value of 0 (e.g. predicate operands) don't need
137     // to be constrained.
138     if (Reg == 0)
139       continue;
140 
141     // If the operand is a vreg, we should constrain its regclass, and only
142     // insert COPYs if that's impossible.
143     // constrainOperandRegClass does that for us.
144     MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
145                                        MO, OpI));
146 
147     // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
148     // done.
149     if (MO.isUse()) {
150       int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
151       if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
152         I.tieOperands(DefIdx, OpI);
153     }
154   }
155   return true;
156 }
157 
158 bool llvm::isTriviallyDead(const MachineInstr &MI,
159                            const MachineRegisterInfo &MRI) {
160   // If we can move an instruction, we can remove it.  Otherwise, it has
161   // a side-effect of some sort.
162   bool SawStore = false;
163   if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
164     return false;
165 
166   // Instructions without side-effects are dead iff they only define dead vregs.
167   for (auto &MO : MI.operands()) {
168     if (!MO.isReg() || !MO.isDef())
169       continue;
170 
171     unsigned Reg = MO.getReg();
172     if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
173       return false;
174   }
175   return true;
176 }
177 
178 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
179                               MachineOptimizationRemarkEmitter &MORE,
180                               MachineOptimizationRemarkMissed &R) {
181   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
182 
183   // Print the function name explicitly if we don't have a debug location (which
184   // makes the diagnostic less useful) or if we're going to emit a raw error.
185   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
186     R << (" (in function: " + MF.getName() + ")").str();
187 
188   if (TPC.isGlobalISelAbortEnabled())
189     report_fatal_error(R.getMsg());
190   else
191     MORE.emit(R);
192 }
193 
194 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
195                               MachineOptimizationRemarkEmitter &MORE,
196                               const char *PassName, StringRef Msg,
197                               const MachineInstr &MI) {
198   MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
199                                     MI.getDebugLoc(), MI.getParent());
200   R << Msg;
201   // Printing MI is expensive;  only do it if expensive remarks are enabled.
202   if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
203     R << ": " << ore::MNV("Inst", MI);
204   reportGISelFailure(MF, TPC, MORE, R);
205 }
206 
207 Optional<int64_t> llvm::getConstantVRegVal(unsigned VReg,
208                                            const MachineRegisterInfo &MRI) {
209   Optional<ValueAndVReg> ValAndVReg =
210       getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
211   assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
212          "Value found while looking through instrs");
213   if (!ValAndVReg)
214     return None;
215   return ValAndVReg->Value;
216 }
217 
218 Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
219     unsigned VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
220   SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
221   MachineInstr *MI;
222   while ((MI = MRI.getVRegDef(VReg)) &&
223          MI->getOpcode() != TargetOpcode::G_CONSTANT && LookThroughInstrs) {
224     switch (MI->getOpcode()) {
225     case TargetOpcode::G_TRUNC:
226     case TargetOpcode::G_SEXT:
227     case TargetOpcode::G_ZEXT:
228       SeenOpcodes.push_back(std::make_pair(
229           MI->getOpcode(),
230           MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
231       VReg = MI->getOperand(1).getReg();
232       break;
233     case TargetOpcode::COPY:
234       VReg = MI->getOperand(1).getReg();
235       if (Register::isPhysicalRegister(VReg))
236         return None;
237       break;
238     case TargetOpcode::G_INTTOPTR:
239       VReg = MI->getOperand(1).getReg();
240       break;
241     default:
242       return None;
243     }
244   }
245   if (!MI || MI->getOpcode() != TargetOpcode::G_CONSTANT ||
246       (!MI->getOperand(1).isImm() && !MI->getOperand(1).isCImm()))
247     return None;
248 
249   const MachineOperand &CstVal = MI->getOperand(1);
250   unsigned BitWidth = MRI.getType(MI->getOperand(0).getReg()).getSizeInBits();
251   APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
252                              : CstVal.getCImm()->getValue();
253   assert(Val.getBitWidth() == BitWidth &&
254          "Value bitwidth doesn't match definition type");
255   while (!SeenOpcodes.empty()) {
256     std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
257     switch (OpcodeAndSize.first) {
258     case TargetOpcode::G_TRUNC:
259       Val = Val.trunc(OpcodeAndSize.second);
260       break;
261     case TargetOpcode::G_SEXT:
262       Val = Val.sext(OpcodeAndSize.second);
263       break;
264     case TargetOpcode::G_ZEXT:
265       Val = Val.zext(OpcodeAndSize.second);
266       break;
267     }
268   }
269 
270   if (Val.getBitWidth() > 64)
271     return None;
272 
273   return ValueAndVReg{Val.getSExtValue(), VReg};
274 }
275 
276 const llvm::ConstantFP* llvm::getConstantFPVRegVal(unsigned VReg,
277                                        const MachineRegisterInfo &MRI) {
278   MachineInstr *MI = MRI.getVRegDef(VReg);
279   if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
280     return nullptr;
281   return MI->getOperand(1).getFPImm();
282 }
283 
284 llvm::MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
285                                                const MachineRegisterInfo &MRI) {
286   auto *DefMI = MRI.getVRegDef(Reg);
287   auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
288   if (!DstTy.isValid())
289     return nullptr;
290   while (DefMI->getOpcode() == TargetOpcode::COPY) {
291     unsigned SrcReg = DefMI->getOperand(1).getReg();
292     auto SrcTy = MRI.getType(SrcReg);
293     if (!SrcTy.isValid() || SrcTy != DstTy)
294       break;
295     DefMI = MRI.getVRegDef(SrcReg);
296   }
297   return DefMI;
298 }
299 
300 llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
301                                        const MachineRegisterInfo &MRI) {
302   MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
303   return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
304 }
305 
306 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
307   if (Size == 32)
308     return APFloat(float(Val));
309   if (Size == 64)
310     return APFloat(Val);
311   if (Size != 16)
312     llvm_unreachable("Unsupported FPConstant size");
313   bool Ignored;
314   APFloat APF(Val);
315   APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
316   return APF;
317 }
318 
319 Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const unsigned Op1,
320                                         const unsigned Op2,
321                                         const MachineRegisterInfo &MRI) {
322   auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
323   auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
324   if (MaybeOp1Cst && MaybeOp2Cst) {
325     LLT Ty = MRI.getType(Op1);
326     APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
327     APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true);
328     switch (Opcode) {
329     default:
330       break;
331     case TargetOpcode::G_ADD:
332       return C1 + C2;
333     case TargetOpcode::G_AND:
334       return C1 & C2;
335     case TargetOpcode::G_ASHR:
336       return C1.ashr(C2);
337     case TargetOpcode::G_LSHR:
338       return C1.lshr(C2);
339     case TargetOpcode::G_MUL:
340       return C1 * C2;
341     case TargetOpcode::G_OR:
342       return C1 | C2;
343     case TargetOpcode::G_SHL:
344       return C1 << C2;
345     case TargetOpcode::G_SUB:
346       return C1 - C2;
347     case TargetOpcode::G_XOR:
348       return C1 ^ C2;
349     case TargetOpcode::G_UDIV:
350       if (!C2.getBoolValue())
351         break;
352       return C1.udiv(C2);
353     case TargetOpcode::G_SDIV:
354       if (!C2.getBoolValue())
355         break;
356       return C1.sdiv(C2);
357     case TargetOpcode::G_UREM:
358       if (!C2.getBoolValue())
359         break;
360       return C1.urem(C2);
361     case TargetOpcode::G_SREM:
362       if (!C2.getBoolValue())
363         break;
364       return C1.srem(C2);
365     }
366   }
367   return None;
368 }
369 
370 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
371                            bool SNaN) {
372   const MachineInstr *DefMI = MRI.getVRegDef(Val);
373   if (!DefMI)
374     return false;
375 
376   if (DefMI->getFlag(MachineInstr::FmNoNans))
377     return true;
378 
379   if (SNaN) {
380     // FP operations quiet. For now, just handle the ones inserted during
381     // legalization.
382     switch (DefMI->getOpcode()) {
383     case TargetOpcode::G_FPEXT:
384     case TargetOpcode::G_FPTRUNC:
385     case TargetOpcode::G_FCANONICALIZE:
386       return true;
387     default:
388       return false;
389     }
390   }
391 
392   return false;
393 }
394 
395 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
396   AU.addPreserved<StackProtector>();
397 }
398