1 //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the LoadStoreOpt optimization pass. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/MemoryLocation.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/Utils.h" 23 #include "llvm/CodeGen/LowLevelTypeUtils.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Register.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/IR/DebugInfoMetadata.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Support/AtomicOrdering.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "loadstore-opt" 42 43 using namespace llvm; 44 using namespace ore; 45 using namespace MIPatternMatch; 46 47 STATISTIC(NumStoresMerged, "Number of stores merged"); 48 49 const unsigned MaxStoreSizeToForm = 128; 50 51 char LoadStoreOpt::ID = 0; 52 INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 53 false, false) 54 INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 55 false, false) 56 57 LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F) 58 : MachineFunctionPass(ID), DoNotRunPass(F) {} 59 60 LoadStoreOpt::LoadStoreOpt() 61 : LoadStoreOpt([](const MachineFunction &) { return false; }) {} 62 63 void LoadStoreOpt::init(MachineFunction &MF) { 64 this->MF = &MF; 65 MRI = &MF.getRegInfo(); 66 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 67 TLI = MF.getSubtarget().getTargetLowering(); 68 LI = MF.getSubtarget().getLegalizerInfo(); 69 Builder.setMF(MF); 70 IsPreLegalizer = !MF.getProperties().hasProperty( 71 MachineFunctionProperties::Property::Legalized); 72 InstsToErase.clear(); 73 } 74 75 void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const { 76 AU.addRequired<AAResultsWrapperPass>(); 77 AU.setPreservesAll(); 78 getSelectionDAGFallbackAnalysisUsage(AU); 79 MachineFunctionPass::getAnalysisUsage(AU); 80 } 81 82 BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr, 83 MachineRegisterInfo &MRI) { 84 BaseIndexOffset Info; 85 Register PtrAddRHS; 86 Register BaseReg; 87 if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(BaseReg), m_Reg(PtrAddRHS)))) { 88 Info.setBase(Ptr); 89 Info.setOffset(0); 90 return Info; 91 } 92 Info.setBase(BaseReg); 93 auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI); 94 if (RHSCst) 95 Info.setOffset(RHSCst->Value.getSExtValue()); 96 97 // Just recognize a simple case for now. In future we'll need to match 98 // indexing patterns for base + index + constant. 99 Info.setIndex(PtrAddRHS); 100 return Info; 101 } 102 103 bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1, 104 const MachineInstr &MI2, 105 bool &IsAlias, 106 MachineRegisterInfo &MRI) { 107 auto *LdSt1 = dyn_cast<GLoadStore>(&MI1); 108 auto *LdSt2 = dyn_cast<GLoadStore>(&MI2); 109 if (!LdSt1 || !LdSt2) 110 return false; 111 112 BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI); 113 BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI); 114 115 if (!BasePtr0.getBase().isValid() || !BasePtr1.getBase().isValid()) 116 return false; 117 118 LocationSize Size1 = LdSt1->getMemSize(); 119 LocationSize Size2 = LdSt2->getMemSize(); 120 121 int64_t PtrDiff; 122 if (BasePtr0.getBase() == BasePtr1.getBase() && BasePtr0.hasValidOffset() && 123 BasePtr1.hasValidOffset()) { 124 PtrDiff = BasePtr1.getOffset() - BasePtr0.getOffset(); 125 // If the size of memory access is unknown, do not use it to do analysis. 126 // One example of unknown size memory access is to load/store scalable 127 // vector objects on the stack. 128 // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the 129 // following situations arise: 130 if (PtrDiff >= 0 && Size1.hasValue() && !Size1.isScalable()) { 131 // [----BasePtr0----] 132 // [---BasePtr1--] 133 // ========PtrDiff========> 134 IsAlias = !((int64_t)Size1.getValue() <= PtrDiff); 135 return true; 136 } 137 if (PtrDiff < 0 && Size2.hasValue() && !Size2.isScalable()) { 138 // [----BasePtr0----] 139 // [---BasePtr1--] 140 // =====(-PtrDiff)====> 141 IsAlias = !((PtrDiff + (int64_t)Size2.getValue()) <= 0); 142 return true; 143 } 144 return false; 145 } 146 147 // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be 148 // able to calculate their relative offset if at least one arises 149 // from an alloca. However, these allocas cannot overlap and we 150 // can infer there is no alias. 151 auto *Base0Def = getDefIgnoringCopies(BasePtr0.getBase(), MRI); 152 auto *Base1Def = getDefIgnoringCopies(BasePtr1.getBase(), MRI); 153 if (!Base0Def || !Base1Def) 154 return false; // Couldn't tell anything. 155 156 157 if (Base0Def->getOpcode() != Base1Def->getOpcode()) 158 return false; 159 160 if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 161 MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo(); 162 // If the bases have the same frame index but we couldn't find a 163 // constant offset, (indices are different) be conservative. 164 if (Base0Def != Base1Def && 165 (!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) || 166 !MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) { 167 IsAlias = false; 168 return true; 169 } 170 } 171 172 // This implementation is a lot more primitive than the SDAG one for now. 173 // FIXME: what about constant pools? 174 if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { 175 auto GV0 = Base0Def->getOperand(1).getGlobal(); 176 auto GV1 = Base1Def->getOperand(1).getGlobal(); 177 if (GV0 != GV1) { 178 IsAlias = false; 179 return true; 180 } 181 } 182 183 // Can't tell anything about aliasing. 184 return false; 185 } 186 187 bool GISelAddressing::instMayAlias(const MachineInstr &MI, 188 const MachineInstr &Other, 189 MachineRegisterInfo &MRI, 190 AliasAnalysis *AA) { 191 struct MemUseCharacteristics { 192 bool IsVolatile; 193 bool IsAtomic; 194 Register BasePtr; 195 int64_t Offset; 196 LocationSize NumBytes; 197 MachineMemOperand *MMO; 198 }; 199 200 auto getCharacteristics = 201 [&](const MachineInstr *MI) -> MemUseCharacteristics { 202 if (const auto *LS = dyn_cast<GLoadStore>(MI)) { 203 Register BaseReg; 204 int64_t Offset = 0; 205 // No pre/post-inc addressing modes are considered here, unlike in SDAG. 206 if (!mi_match(LS->getPointerReg(), MRI, 207 m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) { 208 BaseReg = LS->getPointerReg(); 209 Offset = 0; 210 } 211 212 LocationSize Size = LS->getMMO().getSize(); 213 return {LS->isVolatile(), LS->isAtomic(), BaseReg, 214 Offset /*base offset*/, Size, &LS->getMMO()}; 215 } 216 // FIXME: support recognizing lifetime instructions. 217 // Default. 218 return {false /*isvolatile*/, 219 /*isAtomic*/ false, 220 Register(), 221 (int64_t)0 /*offset*/, 222 LocationSize::beforeOrAfterPointer() /*size*/, 223 (MachineMemOperand *)nullptr}; 224 }; 225 MemUseCharacteristics MUC0 = getCharacteristics(&MI), 226 MUC1 = getCharacteristics(&Other); 227 228 // If they are to the same address, then they must be aliases. 229 if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr && 230 MUC0.Offset == MUC1.Offset) 231 return true; 232 233 // If they are both volatile then they cannot be reordered. 234 if (MUC0.IsVolatile && MUC1.IsVolatile) 235 return true; 236 237 // Be conservative about atomics for the moment 238 // TODO: This is way overconservative for unordered atomics (see D66309) 239 if (MUC0.IsAtomic && MUC1.IsAtomic) 240 return true; 241 242 // If one operation reads from invariant memory, and the other may store, they 243 // cannot alias. 244 if (MUC0.MMO && MUC1.MMO) { 245 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 246 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 247 return false; 248 } 249 250 // If NumBytes is scalable and offset is not 0, conservatively return may 251 // alias 252 if ((MUC0.NumBytes.isScalable() && MUC0.Offset != 0) || 253 (MUC1.NumBytes.isScalable() && MUC1.Offset != 0)) 254 return true; 255 256 const bool BothNotScalable = 257 !MUC0.NumBytes.isScalable() && !MUC1.NumBytes.isScalable(); 258 259 // Try to prove that there is aliasing, or that there is no aliasing. Either 260 // way, we can return now. If nothing can be proved, proceed with more tests. 261 bool IsAlias; 262 if (BothNotScalable && 263 GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI)) 264 return IsAlias; 265 266 // The following all rely on MMO0 and MMO1 being valid. 267 if (!MUC0.MMO || !MUC1.MMO) 268 return true; 269 270 // FIXME: port the alignment based alias analysis from SDAG's isAlias(). 271 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 272 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 273 LocationSize Size0 = MUC0.NumBytes; 274 LocationSize Size1 = MUC1.NumBytes; 275 if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0.hasValue() && 276 Size1.hasValue()) { 277 // Use alias analysis information. 278 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 279 int64_t Overlap0 = 280 Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset; 281 int64_t Overlap1 = 282 Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset; 283 LocationSize Loc0 = 284 Size0.isScalable() ? Size0 : LocationSize::precise(Overlap0); 285 LocationSize Loc1 = 286 Size1.isScalable() ? Size1 : LocationSize::precise(Overlap1); 287 288 if (AA->isNoAlias( 289 MemoryLocation(MUC0.MMO->getValue(), Loc0, MUC0.MMO->getAAInfo()), 290 MemoryLocation(MUC1.MMO->getValue(), Loc1, MUC1.MMO->getAAInfo()))) 291 return false; 292 } 293 294 // Otherwise we have to assume they alias. 295 return true; 296 } 297 298 /// Returns true if the instruction creates an unavoidable hazard that 299 /// forces a boundary between store merge candidates. 300 static bool isInstHardMergeHazard(MachineInstr &MI) { 301 return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef(); 302 } 303 304 bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) { 305 // Try to merge all the stores in the vector, splitting into separate segments 306 // as necessary. 307 assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge"); 308 LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg()); 309 LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg()); 310 unsigned AS = PtrTy.getAddressSpace(); 311 // Ensure the legal store info is computed for this address space. 312 initializeStoreMergeTargetInfo(AS); 313 const auto &LegalSizes = LegalStoreSizes[AS]; 314 315 #ifndef NDEBUG 316 for (auto *StoreMI : StoresToMerge) 317 assert(MRI->getType(StoreMI->getValueReg()) == OrigTy); 318 #endif 319 320 const auto &DL = MF->getFunction().getDataLayout(); 321 bool AnyMerged = false; 322 do { 323 unsigned NumPow2 = llvm::bit_floor(StoresToMerge.size()); 324 unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedValue(); 325 // Compute the biggest store we can generate to handle the number of stores. 326 unsigned MergeSizeBits; 327 for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) { 328 LLT StoreTy = LLT::scalar(MergeSizeBits); 329 EVT StoreEVT = 330 getApproximateEVTForLLT(StoreTy, DL, MF->getFunction().getContext()); 331 if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] && 332 TLI->canMergeStoresTo(AS, StoreEVT, *MF) && 333 (TLI->isTypeLegal(StoreEVT))) 334 break; // We can generate a MergeSize bits store. 335 } 336 if (MergeSizeBits <= OrigTy.getSizeInBits()) 337 return AnyMerged; // No greater merge. 338 339 unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits(); 340 // Perform the actual merging. 341 SmallVector<GStore *, 8> SingleMergeStores( 342 StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge); 343 AnyMerged |= doSingleStoreMerge(SingleMergeStores); 344 StoresToMerge.erase(StoresToMerge.begin(), 345 StoresToMerge.begin() + NumStoresToMerge); 346 } while (StoresToMerge.size() > 1); 347 return AnyMerged; 348 } 349 350 bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query, 351 MachineFunction &MF) const { 352 auto Action = LI->getAction(Query).Action; 353 // If the instruction is unsupported, it can't be legalized at all. 354 if (Action == LegalizeActions::Unsupported) 355 return false; 356 return IsPreLegalizer || Action == LegalizeAction::Legal; 357 } 358 359 bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) { 360 assert(Stores.size() > 1); 361 // We know that all the stores are consecutive and there are no aliasing 362 // operations in the range. However, the values that are being stored may be 363 // generated anywhere before each store. To ensure we have the values 364 // available, we materialize the wide value and new store at the place of the 365 // final store in the merge sequence. 366 GStore *FirstStore = Stores[0]; 367 const unsigned NumStores = Stores.size(); 368 LLT SmallTy = MRI->getType(FirstStore->getValueReg()); 369 LLT WideValueTy = 370 LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedValue()); 371 372 // For each store, compute pairwise merged debug locs. 373 DebugLoc MergedLoc = Stores.front()->getDebugLoc(); 374 for (auto *Store : drop_begin(Stores)) 375 MergedLoc = DILocation::getMergedLocation(MergedLoc, Store->getDebugLoc()); 376 377 Builder.setInstr(*Stores.back()); 378 Builder.setDebugLoc(MergedLoc); 379 380 // If all of the store values are constants, then create a wide constant 381 // directly. Otherwise, we need to generate some instructions to merge the 382 // existing values together into a wider type. 383 SmallVector<APInt, 8> ConstantVals; 384 for (auto *Store : Stores) { 385 auto MaybeCst = 386 getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI); 387 if (!MaybeCst) { 388 ConstantVals.clear(); 389 break; 390 } 391 ConstantVals.emplace_back(MaybeCst->Value); 392 } 393 394 Register WideReg; 395 auto *WideMMO = 396 MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy); 397 if (ConstantVals.empty()) { 398 // Mimic the SDAG behaviour here and don't try to do anything for unknown 399 // values. In future, we should also support the cases of loads and 400 // extracted vector elements. 401 return false; 402 } 403 404 assert(ConstantVals.size() == NumStores); 405 // Check if our wide constant is legal. 406 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF)) 407 return false; 408 APInt WideConst(WideValueTy.getSizeInBits(), 0); 409 for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) { 410 // Insert the smaller constant into the corresponding position in the 411 // wider one. 412 WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits()); 413 } 414 WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0); 415 auto NewStore = 416 Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO); 417 (void) NewStore; 418 LLVM_DEBUG(dbgs() << "Merged " << Stores.size() 419 << " stores into merged store: " << *NewStore); 420 LLVM_DEBUG(for (auto *MI : Stores) dbgs() << " " << *MI;); 421 NumStoresMerged += Stores.size(); 422 423 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 424 MORE.emit([&]() { 425 MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore", 426 FirstStore->getDebugLoc(), 427 FirstStore->getParent()); 428 R << "Merged " << NV("NumMerged", Stores.size()) << " stores of " 429 << NV("OrigWidth", SmallTy.getSizeInBytes()) 430 << " bytes into a single store of " 431 << NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes"; 432 return R; 433 }); 434 435 for (auto *MI : Stores) 436 InstsToErase.insert(MI); 437 return true; 438 } 439 440 bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) { 441 if (C.Stores.size() < 2) { 442 C.reset(); 443 return false; 444 } 445 446 LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size() 447 << " stores, starting with " << *C.Stores[0]); 448 // We know that the stores in the candidate are adjacent. 449 // Now we need to check if any potential aliasing instructions recorded 450 // during the search alias with load/stores added to the candidate after. 451 // For example, if we have the candidate: 452 // C.Stores = [ST1, ST2, ST3, ST4] 453 // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or 454 // ST2, then we would have recorded it into the PotentialAliases structure 455 // with the associated index value of "1". Then we see ST3 and ST4 and add 456 // them to the candidate group. We know that LD1 does not alias with ST1 or 457 // ST2, since we already did that check. However we don't yet know if it 458 // may alias ST3 and ST4, so we perform those checks now. 459 SmallVector<GStore *> StoresToMerge; 460 461 auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) { 462 for (auto AliasInfo : reverse(C.PotentialAliases)) { 463 MachineInstr *PotentialAliasOp = AliasInfo.first; 464 unsigned PreCheckedIdx = AliasInfo.second; 465 if (static_cast<unsigned>(Idx) < PreCheckedIdx) { 466 // Once our store index is lower than the index associated with the 467 // potential alias, we know that we've already checked for this alias 468 // and all of the earlier potential aliases too. 469 return false; 470 } 471 // Need to check this alias. 472 if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI, 473 AA)) { 474 LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp 475 << " detected\n"); 476 return true; 477 } 478 } 479 return false; 480 }; 481 // Start from the last store in the group, and check if it aliases with any 482 // of the potential aliasing operations in the list. 483 for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) { 484 auto *CheckStore = C.Stores[StoreIdx]; 485 if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore)) 486 continue; 487 StoresToMerge.emplace_back(CheckStore); 488 } 489 490 LLVM_DEBUG(dbgs() << StoresToMerge.size() 491 << " stores remaining after alias checks. Merging...\n"); 492 493 // Now we've checked for aliasing hazards, merge any stores left. 494 C.reset(); 495 if (StoresToMerge.size() < 2) 496 return false; 497 return mergeStores(StoresToMerge); 498 } 499 500 bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI, 501 StoreMergeCandidate &C) { 502 if (C.Stores.empty()) 503 return false; 504 return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) { 505 return instMayAlias(MI, *OtherMI, *MRI, AA); 506 }); 507 } 508 509 void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) { 510 PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1)); 511 } 512 513 bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI, 514 StoreMergeCandidate &C) { 515 // Check if the given store writes to an adjacent address, and other 516 // requirements. 517 LLT ValueTy = MRI->getType(StoreMI.getValueReg()); 518 LLT PtrTy = MRI->getType(StoreMI.getPointerReg()); 519 520 // Only handle scalars. 521 if (!ValueTy.isScalar()) 522 return false; 523 524 // Don't allow truncating stores for now. 525 if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits()) 526 return false; 527 528 // Avoid adding volatile or ordered stores to the candidate. We already have a 529 // check for this in instMayAlias() but that only get's called later between 530 // potential aliasing hazards. 531 if (!StoreMI.isSimple()) 532 return false; 533 534 Register StoreAddr = StoreMI.getPointerReg(); 535 auto BIO = getPointerInfo(StoreAddr, *MRI); 536 Register StoreBase = BIO.getBase(); 537 if (C.Stores.empty()) { 538 C.BasePtr = StoreBase; 539 if (!BIO.hasValidOffset()) { 540 C.CurrentLowestOffset = 0; 541 } else { 542 C.CurrentLowestOffset = BIO.getOffset(); 543 } 544 // This is the first store of the candidate. 545 // If the offset can't possibly allow for a lower addressed store with the 546 // same base, don't bother adding it. 547 if (BIO.hasValidOffset() && 548 BIO.getOffset() < static_cast<int64_t>(ValueTy.getSizeInBytes())) 549 return false; 550 C.Stores.emplace_back(&StoreMI); 551 LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: " 552 << StoreMI); 553 return true; 554 } 555 556 // Check the store is the same size as the existing ones in the candidate. 557 if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() != 558 ValueTy.getSizeInBits()) 559 return false; 560 561 if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() != 562 PtrTy.getAddressSpace()) 563 return false; 564 565 // There are other stores in the candidate. Check that the store address 566 // writes to the next lowest adjacent address. 567 if (C.BasePtr != StoreBase) 568 return false; 569 // If we don't have a valid offset, we can't guarantee to be an adjacent 570 // offset. 571 if (!BIO.hasValidOffset()) 572 return false; 573 if ((C.CurrentLowestOffset - 574 static_cast<int64_t>(ValueTy.getSizeInBytes())) != BIO.getOffset()) 575 return false; 576 577 // This writes to an adjacent address. Allow it. 578 C.Stores.emplace_back(&StoreMI); 579 C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes(); 580 LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI); 581 return true; 582 } 583 584 bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) { 585 bool Changed = false; 586 // Walk through the block bottom-up, looking for merging candidates. 587 StoreMergeCandidate Candidate; 588 for (MachineInstr &MI : llvm::reverse(MBB)) { 589 if (InstsToErase.contains(&MI)) 590 continue; 591 592 if (auto *StoreMI = dyn_cast<GStore>(&MI)) { 593 // We have a G_STORE. Add it to the candidate if it writes to an adjacent 594 // address. 595 if (!addStoreToCandidate(*StoreMI, Candidate)) { 596 // Store wasn't eligible to be added. May need to record it as a 597 // potential alias. 598 if (operationAliasesWithCandidate(*StoreMI, Candidate)) { 599 Changed |= processMergeCandidate(Candidate); 600 continue; 601 } 602 Candidate.addPotentialAlias(*StoreMI); 603 } 604 continue; 605 } 606 607 // If we don't have any stores yet, this instruction can't pose a problem. 608 if (Candidate.Stores.empty()) 609 continue; 610 611 // We're dealing with some other kind of instruction. 612 if (isInstHardMergeHazard(MI)) { 613 Changed |= processMergeCandidate(Candidate); 614 Candidate.Stores.clear(); 615 continue; 616 } 617 618 if (!MI.mayLoadOrStore()) 619 continue; 620 621 if (operationAliasesWithCandidate(MI, Candidate)) { 622 // We have a potential alias, so process the current candidate if we can 623 // and then continue looking for a new candidate. 624 Changed |= processMergeCandidate(Candidate); 625 continue; 626 } 627 628 // Record this instruction as a potential alias for future stores that are 629 // added to the candidate. 630 Candidate.addPotentialAlias(MI); 631 } 632 633 // Process any candidate left after finishing searching the entire block. 634 Changed |= processMergeCandidate(Candidate); 635 636 // Erase instructions now that we're no longer iterating over the block. 637 for (auto *MI : InstsToErase) 638 MI->eraseFromParent(); 639 InstsToErase.clear(); 640 return Changed; 641 } 642 643 /// Check if the store \p Store is a truncstore that can be merged. That is, 644 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 645 /// Register then it does not need to match and SrcVal is set to the source 646 /// value found. 647 /// On match, returns the start byte offset of the \p SrcVal that is being 648 /// stored. 649 static std::optional<int64_t> 650 getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 651 MachineRegisterInfo &MRI) { 652 Register TruncVal; 653 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 654 return std::nullopt; 655 656 // The shift amount must be a constant multiple of the narrow type. 657 // It is translated to the offset address in the wide source value "y". 658 // 659 // x = G_LSHR y, ShiftAmtC 660 // s8 z = G_TRUNC x 661 // store z, ... 662 Register FoundSrcVal; 663 int64_t ShiftAmt; 664 if (!mi_match(TruncVal, MRI, 665 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 666 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 667 if (!SrcVal.isValid() || TruncVal == SrcVal) { 668 if (!SrcVal.isValid()) 669 SrcVal = TruncVal; 670 return 0; // If it's the lowest index store. 671 } 672 return std::nullopt; 673 } 674 675 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 676 if (ShiftAmt % NarrowBits != 0) 677 return std::nullopt; 678 const unsigned Offset = ShiftAmt / NarrowBits; 679 680 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 681 return std::nullopt; 682 683 if (!SrcVal.isValid()) 684 SrcVal = FoundSrcVal; 685 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 686 return std::nullopt; 687 return Offset; 688 } 689 690 /// Match a pattern where a wide type scalar value is stored by several narrow 691 /// stores. Fold it into a single store or a BSWAP and a store if the targets 692 /// supports it. 693 /// 694 /// Assuming little endian target: 695 /// i8 *p = ... 696 /// i32 val = ... 697 /// p[0] = (val >> 0) & 0xFF; 698 /// p[1] = (val >> 8) & 0xFF; 699 /// p[2] = (val >> 16) & 0xFF; 700 /// p[3] = (val >> 24) & 0xFF; 701 /// => 702 /// *((i32)p) = val; 703 /// 704 /// i8 *p = ... 705 /// i32 val = ... 706 /// p[0] = (val >> 24) & 0xFF; 707 /// p[1] = (val >> 16) & 0xFF; 708 /// p[2] = (val >> 8) & 0xFF; 709 /// p[3] = (val >> 0) & 0xFF; 710 /// => 711 /// *((i32)p) = BSWAP(val); 712 bool LoadStoreOpt::mergeTruncStore(GStore &StoreMI, 713 SmallPtrSetImpl<GStore *> &DeletedStores) { 714 LLT MemTy = StoreMI.getMMO().getMemoryType(); 715 716 // We only handle merging simple stores of 1-4 bytes. 717 if (!MemTy.isScalar()) 718 return false; 719 switch (MemTy.getSizeInBits()) { 720 case 8: 721 case 16: 722 case 32: 723 break; 724 default: 725 return false; 726 } 727 if (!StoreMI.isSimple()) 728 return false; 729 730 // We do a simple search for mergeable stores prior to this one. 731 // Any potential alias hazard along the way terminates the search. 732 SmallVector<GStore *> FoundStores; 733 734 // We're looking for: 735 // 1) a (store(trunc(...))) 736 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 737 // the partial value stored. 738 // 3) where the offsets form either a little or big-endian sequence. 739 740 auto &LastStore = StoreMI; 741 742 // The single base pointer that all stores must use. 743 Register BaseReg; 744 int64_t LastOffset; 745 if (!mi_match(LastStore.getPointerReg(), *MRI, 746 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 747 BaseReg = LastStore.getPointerReg(); 748 LastOffset = 0; 749 } 750 751 GStore *LowestIdxStore = &LastStore; 752 int64_t LowestIdxOffset = LastOffset; 753 754 Register WideSrcVal; 755 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, *MRI); 756 if (!LowestShiftAmt) 757 return false; // Didn't match a trunc. 758 assert(WideSrcVal.isValid()); 759 760 LLT WideStoreTy = MRI->getType(WideSrcVal); 761 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 762 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 763 return false; 764 const unsigned NumStoresRequired = 765 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 766 767 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 768 OffsetMap[*LowestShiftAmt] = LastOffset; 769 FoundStores.emplace_back(&LastStore); 770 771 const int MaxInstsToCheck = 10; 772 int NumInstsChecked = 0; 773 for (auto II = ++LastStore.getReverseIterator(); 774 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 775 ++II) { 776 NumInstsChecked++; 777 GStore *NewStore; 778 if ((NewStore = dyn_cast<GStore>(&*II))) { 779 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 780 break; 781 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 782 break; 783 } else { 784 continue; // This is a safe instruction we can look past. 785 } 786 787 Register NewBaseReg; 788 int64_t MemOffset; 789 // Check we're storing to the same base + some offset. 790 if (!mi_match(NewStore->getPointerReg(), *MRI, 791 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 792 NewBaseReg = NewStore->getPointerReg(); 793 MemOffset = 0; 794 } 795 if (BaseReg != NewBaseReg) 796 break; 797 798 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, *MRI); 799 if (!ShiftByteOffset) 800 break; 801 if (MemOffset < LowestIdxOffset) { 802 LowestIdxOffset = MemOffset; 803 LowestIdxStore = NewStore; 804 } 805 806 // Map the offset in the store and the offset in the combined value, and 807 // early return if it has been set before. 808 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 809 OffsetMap[*ShiftByteOffset] != INT64_MAX) 810 break; 811 OffsetMap[*ShiftByteOffset] = MemOffset; 812 813 FoundStores.emplace_back(NewStore); 814 // Reset counter since we've found a matching inst. 815 NumInstsChecked = 0; 816 if (FoundStores.size() == NumStoresRequired) 817 break; 818 } 819 820 if (FoundStores.size() != NumStoresRequired) { 821 if (FoundStores.size() == 1) 822 return false; 823 // We didn't find enough stores to merge into the size of the original 824 // source value, but we may be able to generate a smaller store if we 825 // truncate the source value. 826 WideStoreTy = LLT::scalar(FoundStores.size() * MemTy.getScalarSizeInBits()); 827 } 828 829 unsigned NumStoresFound = FoundStores.size(); 830 831 const auto &DL = LastStore.getMF()->getDataLayout(); 832 auto &C = LastStore.getMF()->getFunction().getContext(); 833 // Check that a store of the wide type is both allowed and fast on the target 834 unsigned Fast = 0; 835 bool Allowed = TLI->allowsMemoryAccess( 836 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 837 if (!Allowed || !Fast) 838 return false; 839 840 // Check if the pieces of the value are going to the expected places in memory 841 // to merge the stores. 842 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 843 auto checkOffsets = [&](bool MatchLittleEndian) { 844 if (MatchLittleEndian) { 845 for (unsigned i = 0; i != NumStoresFound; ++i) 846 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 847 return false; 848 } else { // MatchBigEndian by reversing loop counter. 849 for (unsigned i = 0, j = NumStoresFound - 1; i != NumStoresFound; 850 ++i, --j) 851 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 852 return false; 853 } 854 return true; 855 }; 856 857 // Check if the offsets line up for the native data layout of this target. 858 bool NeedBswap = false; 859 bool NeedRotate = false; 860 if (!checkOffsets(DL.isLittleEndian())) { 861 // Special-case: check if byte offsets line up for the opposite endian. 862 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 863 NeedBswap = true; 864 else if (NumStoresFound == 2 && checkOffsets(DL.isBigEndian())) 865 NeedRotate = true; 866 else 867 return false; 868 } 869 870 if (NeedBswap && 871 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}, *MF)) 872 return false; 873 if (NeedRotate && 874 !isLegalOrBeforeLegalizer( 875 {TargetOpcode::G_ROTR, {WideStoreTy, WideStoreTy}}, *MF)) 876 return false; 877 878 Builder.setInstrAndDebugLoc(StoreMI); 879 880 if (WideStoreTy != MRI->getType(WideSrcVal)) 881 WideSrcVal = Builder.buildTrunc(WideStoreTy, WideSrcVal).getReg(0); 882 883 if (NeedBswap) { 884 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 885 } else if (NeedRotate) { 886 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 887 "Unexpected type for rotate"); 888 auto RotAmt = 889 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 890 WideSrcVal = 891 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 892 } 893 894 Builder.buildStore(WideSrcVal, LowestIdxStore->getPointerReg(), 895 LowestIdxStore->getMMO().getPointerInfo(), 896 LowestIdxStore->getMMO().getAlign()); 897 898 // Erase the old stores. 899 for (auto *ST : FoundStores) { 900 ST->eraseFromParent(); 901 DeletedStores.insert(ST); 902 } 903 return true; 904 } 905 906 bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock &BB) { 907 bool Changed = false; 908 SmallVector<GStore *, 16> Stores; 909 SmallPtrSet<GStore *, 8> DeletedStores; 910 // Walk up the block so we can see the most eligible stores. 911 for (MachineInstr &MI : llvm::reverse(BB)) 912 if (auto *StoreMI = dyn_cast<GStore>(&MI)) 913 Stores.emplace_back(StoreMI); 914 915 for (auto *StoreMI : Stores) { 916 if (DeletedStores.count(StoreMI)) 917 continue; 918 if (mergeTruncStore(*StoreMI, DeletedStores)) 919 Changed = true; 920 } 921 return Changed; 922 } 923 924 bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) { 925 bool Changed = false; 926 for (auto &BB : MF){ 927 Changed |= mergeBlockStores(BB); 928 Changed |= mergeTruncStoresBlock(BB); 929 } 930 931 // Erase all dead instructions left over by the merging. 932 if (Changed) { 933 for (auto &BB : MF) { 934 for (auto &I : make_early_inc_range(make_range(BB.rbegin(), BB.rend()))) { 935 if (isTriviallyDead(I, *MRI)) 936 I.eraseFromParent(); 937 } 938 } 939 } 940 941 return Changed; 942 } 943 944 void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) { 945 // Query the legalizer info to record what store types are legal. 946 // We record this because we don't want to bother trying to merge stores into 947 // illegal ones, which would just result in being split again. 948 949 if (LegalStoreSizes.count(AddrSpace)) { 950 assert(LegalStoreSizes[AddrSpace].any()); 951 return; // Already cached sizes for this address space. 952 } 953 954 // Need to reserve at least MaxStoreSizeToForm + 1 bits. 955 BitVector LegalSizes(MaxStoreSizeToForm * 2); 956 const auto &LI = *MF->getSubtarget().getLegalizerInfo(); 957 const auto &DL = MF->getFunction().getDataLayout(); 958 Type *IRPtrTy = PointerType::get(MF->getFunction().getContext(), AddrSpace); 959 LLT PtrTy = getLLTForType(*IRPtrTy, DL); 960 // We assume that we're not going to be generating any stores wider than 961 // MaxStoreSizeToForm bits for now. 962 for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) { 963 LLT Ty = LLT::scalar(Size); 964 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( 965 {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}}); 966 SmallVector<LLT> StoreTys({Ty, PtrTy}); 967 LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs); 968 LegalizeActionStep ActionStep = LI.getAction(Q); 969 if (ActionStep.Action == LegalizeActions::Legal) 970 LegalSizes.set(Size); 971 } 972 assert(LegalSizes.any() && "Expected some store sizes to be legal!"); 973 LegalStoreSizes[AddrSpace] = LegalSizes; 974 } 975 976 bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) { 977 // If the ISel pipeline failed, do not bother running that pass. 978 if (MF.getProperties().hasProperty( 979 MachineFunctionProperties::Property::FailedISel)) 980 return false; 981 982 LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName() 983 << '\n'); 984 985 init(MF); 986 bool Changed = false; 987 Changed |= mergeFunctionStores(MF); 988 989 LegalStoreSizes.clear(); 990 return Changed; 991 } 992