xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/LegacyLegalizerInfo.cpp (revision aaac268285ff596b4cbffbb1ce8dbe516811eda8)
1 //===- lib/CodeGen/GlobalISel/LegacyLegalizerInfo.cpp - Legalizer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implement an interface to specify and query how an illegal operation on a
10 // given type should be expanded.
11 //
12 // Issues to be resolved:
13 //   + Make it fast.
14 //   + Support weird types like i3, <7 x i3>, ...
15 //   + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/CodeGen/GlobalISel/LegacyLegalizerInfo.h"
20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
21 #include <map>
22 
23 using namespace llvm;
24 using namespace LegacyLegalizeActions;
25 
26 #define DEBUG_TYPE "legalizer-info"
27 
28 LegacyLegalizerInfo::LegacyLegalizerInfo() : TablesInitialized(false) {
29   // Set defaults.
30   // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
31   // fundamental load/store Jakob proposed. Once loads & stores are supported.
32   setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
33   setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
34   setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
35   setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
36   setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
37 
38   setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
39   setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
40 
41   setLegalizeScalarToDifferentSizeStrategy(
42       TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
43   setLegalizeScalarToDifferentSizeStrategy(
44       TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
45   setLegalizeScalarToDifferentSizeStrategy(
46       TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
47   setLegalizeScalarToDifferentSizeStrategy(
48       TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
49   setLegalizeScalarToDifferentSizeStrategy(
50       TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
51 
52   setLegalizeScalarToDifferentSizeStrategy(
53       TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
54   setLegalizeScalarToDifferentSizeStrategy(
55       TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
56   setLegalizeScalarToDifferentSizeStrategy(
57       TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
58   setLegalizeScalarToDifferentSizeStrategy(
59       TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
60   setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
61 }
62 
63 void LegacyLegalizerInfo::computeTables() {
64   assert(TablesInitialized == false);
65 
66   for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
67     const unsigned Opcode = FirstOp + OpcodeIdx;
68     for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
69          ++TypeIdx) {
70       // 0. Collect information specified through the setAction API, i.e.
71       // for specific bit sizes.
72       // For scalar types:
73       SizeAndActionsVec ScalarSpecifiedActions;
74       // For pointer types:
75       std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
76       // For vector types:
77       std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
78       for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
79         const LLT Type = LLT2Action.first;
80         const LegacyLegalizeAction Action = LLT2Action.second;
81 
82         auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
83         if (Type.isPointer())
84           AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
85               SizeAction);
86         else if (Type.isVector())
87           ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
88               .push_back(SizeAction);
89         else
90           ScalarSpecifiedActions.push_back(SizeAction);
91       }
92 
93       // 1. Handle scalar types
94       {
95         // Decide how to handle bit sizes for which no explicit specification
96         // was given.
97         SizeChangeStrategy S = &unsupportedForDifferentSizes;
98         if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
99             ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
100           S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
101         llvm::sort(ScalarSpecifiedActions);
102         checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
103         setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
104       }
105 
106       // 2. Handle pointer types
107       for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
108         llvm::sort(PointerSpecifiedActions.second);
109         checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
110         // For pointer types, we assume that there isn't a meaningfull way
111         // to change the number of bits used in the pointer.
112         setPointerAction(
113             Opcode, TypeIdx, PointerSpecifiedActions.first,
114             unsupportedForDifferentSizes(PointerSpecifiedActions.second));
115       }
116 
117       // 3. Handle vector types
118       SizeAndActionsVec ElementSizesSeen;
119       for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
120         llvm::sort(VectorSpecifiedActions.second);
121         const uint16_t ElementSize = VectorSpecifiedActions.first;
122         ElementSizesSeen.push_back({ElementSize, Legal});
123         checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
124         // For vector types, we assume that the best way to adapt the number
125         // of elements is to the next larger number of elements type for which
126         // the vector type is legal, unless there is no such type. In that case,
127         // legalize towards a vector type with a smaller number of elements.
128         SizeAndActionsVec NumElementsActions;
129         for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
130           assert(BitsizeAndAction.first % ElementSize == 0);
131           const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
132           NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
133         }
134         setVectorNumElementAction(
135             Opcode, TypeIdx, ElementSize,
136             moreToWiderTypesAndLessToWidest(NumElementsActions));
137       }
138       llvm::sort(ElementSizesSeen);
139       SizeChangeStrategy VectorElementSizeChangeStrategy =
140           &unsupportedForDifferentSizes;
141       if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
142           VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
143         VectorElementSizeChangeStrategy =
144             VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
145       setScalarInVectorAction(
146           Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
147     }
148   }
149 
150   TablesInitialized = true;
151 }
152 
153 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
154 // probably going to need specialized lookup structures for various types before
155 // we have any hope of doing well with something like <13 x i3>. Even the common
156 // cases should do better than what we have now.
157 std::pair<LegacyLegalizeAction, LLT>
158 LegacyLegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
159   assert(TablesInitialized && "backend forgot to call computeTables");
160   // These *have* to be implemented for now, they're the fundamental basis of
161   // how everything else is transformed.
162   if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
163     return findScalarLegalAction(Aspect);
164   assert(Aspect.Type.isVector());
165   return findVectorLegalAction(Aspect);
166 }
167 
168 LegacyLegalizerInfo::SizeAndActionsVec
169 LegacyLegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
170     const SizeAndActionsVec &v, LegacyLegalizeAction IncreaseAction,
171     LegacyLegalizeAction DecreaseAction) {
172   SizeAndActionsVec result;
173   unsigned LargestSizeSoFar = 0;
174   if (v.size() >= 1 && v[0].first != 1)
175     result.push_back({1, IncreaseAction});
176   for (size_t i = 0; i < v.size(); ++i) {
177     result.push_back(v[i]);
178     LargestSizeSoFar = v[i].first;
179     if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
180       result.push_back({LargestSizeSoFar + 1, IncreaseAction});
181       LargestSizeSoFar = v[i].first + 1;
182     }
183   }
184   result.push_back({LargestSizeSoFar + 1, DecreaseAction});
185   return result;
186 }
187 
188 LegacyLegalizerInfo::SizeAndActionsVec
189 LegacyLegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
190     const SizeAndActionsVec &v, LegacyLegalizeAction DecreaseAction,
191     LegacyLegalizeAction IncreaseAction) {
192   SizeAndActionsVec result;
193   if (v.size() == 0 || v[0].first != 1)
194     result.push_back({1, IncreaseAction});
195   for (size_t i = 0; i < v.size(); ++i) {
196     result.push_back(v[i]);
197     if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
198       result.push_back({v[i].first + 1, DecreaseAction});
199     }
200   }
201   return result;
202 }
203 
204 LegacyLegalizerInfo::SizeAndAction
205 LegacyLegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
206   assert(Size >= 1);
207   // Find the last element in Vec that has a bitsize equal to or smaller than
208   // the requested bit size.
209   // That is the element just before the first element that is bigger than Size.
210   auto It = partition_point(
211       Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
212   assert(It != Vec.begin() && "Does Vec not start with size 1?");
213   int VecIdx = It - Vec.begin() - 1;
214 
215   LegacyLegalizeAction Action = Vec[VecIdx].second;
216   switch (Action) {
217   case Legal:
218   case Bitcast:
219   case Lower:
220   case Libcall:
221   case Custom:
222     return {Size, Action};
223   case FewerElements:
224     // FIXME: is this special case still needed and correct?
225     // Special case for scalarization:
226     if (Vec == SizeAndActionsVec({{1, FewerElements}}))
227       return {1, FewerElements};
228     LLVM_FALLTHROUGH;
229   case NarrowScalar: {
230     // The following needs to be a loop, as for now, we do allow needing to
231     // go over "Unsupported" bit sizes before finding a legalizable bit size.
232     // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
233     // we need to iterate over s9, and then to s32 to return (s32, Legal).
234     // If we want to get rid of the below loop, we should have stronger asserts
235     // when building the SizeAndActionsVecs, probably not allowing
236     // "Unsupported" unless at the ends of the vector.
237     for (int i = VecIdx - 1; i >= 0; --i)
238       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
239           Vec[i].second != Unsupported)
240         return {Vec[i].first, Action};
241     llvm_unreachable("");
242   }
243   case WidenScalar:
244   case MoreElements: {
245     // See above, the following needs to be a loop, at least for now.
246     for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
247       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
248           Vec[i].second != Unsupported)
249         return {Vec[i].first, Action};
250     llvm_unreachable("");
251   }
252   case Unsupported:
253     return {Size, Unsupported};
254   case NotFound:
255     llvm_unreachable("NotFound");
256   }
257   llvm_unreachable("Action has an unknown enum value");
258 }
259 
260 std::pair<LegacyLegalizeAction, LLT>
261 LegacyLegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
262   assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
263   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
264     return {NotFound, LLT()};
265   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
266   if (Aspect.Type.isPointer() &&
267       AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
268           AddrSpace2PointerActions[OpcodeIdx].end()) {
269     return {NotFound, LLT()};
270   }
271   const SmallVector<SizeAndActionsVec, 1> &Actions =
272       Aspect.Type.isPointer()
273           ? AddrSpace2PointerActions[OpcodeIdx]
274                 .find(Aspect.Type.getAddressSpace())
275                 ->second
276           : ScalarActions[OpcodeIdx];
277   if (Aspect.Idx >= Actions.size())
278     return {NotFound, LLT()};
279   const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
280   // FIXME: speed up this search, e.g. by using a results cache for repeated
281   // queries?
282   auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
283   return {SizeAndAction.second,
284           Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
285                                  : LLT::pointer(Aspect.Type.getAddressSpace(),
286                                                 SizeAndAction.first)};
287 }
288 
289 std::pair<LegacyLegalizeAction, LLT>
290 LegacyLegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
291   assert(Aspect.Type.isVector());
292   // First legalize the vector element size, then legalize the number of
293   // lanes in the vector.
294   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
295     return {NotFound, Aspect.Type};
296   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
297   const unsigned TypeIdx = Aspect.Idx;
298   if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
299     return {NotFound, Aspect.Type};
300   const SizeAndActionsVec &ElemSizeVec =
301       ScalarInVectorActions[OpcodeIdx][TypeIdx];
302 
303   LLT IntermediateType;
304   auto ElementSizeAndAction =
305       findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
306   IntermediateType =
307       LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
308   if (ElementSizeAndAction.second != Legal)
309     return {ElementSizeAndAction.second, IntermediateType};
310 
311   auto i = NumElements2Actions[OpcodeIdx].find(
312       IntermediateType.getScalarSizeInBits());
313   if (i == NumElements2Actions[OpcodeIdx].end()) {
314     return {NotFound, IntermediateType};
315   }
316   const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
317   auto NumElementsAndAction =
318       findAction(NumElementsVec, IntermediateType.getNumElements());
319   return {NumElementsAndAction.second,
320           LLT::vector(NumElementsAndAction.first,
321                       IntermediateType.getScalarSizeInBits())};
322 }
323 
324 unsigned LegacyLegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
325   assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
326   return Opcode - FirstOp;
327 }
328 
329 
330 LegacyLegalizeActionStep
331 LegacyLegalizerInfo::getAction(const LegalityQuery &Query) const {
332   for (unsigned i = 0; i < Query.Types.size(); ++i) {
333     auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
334     if (Action.first != Legal) {
335       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
336                         << Action.first << ", " << Action.second << "\n");
337       return {Action.first, i, Action.second};
338     } else
339       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
340   }
341   LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
342   return {Legal, 0, LLT{}};
343 }
344 
345