xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp (revision e4d1779990672f8c1c7a2b6b8c6efd73c95ce5ac)
1 //===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 
26 #define DEBUG_TYPE "inline-asm-lowering"
27 
28 using namespace llvm;
29 
30 void InlineAsmLowering::anchor() {}
31 
32 namespace {
33 
34 /// GISelAsmOperandInfo - This contains information for each constraint that we
35 /// are lowering.
36 class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
37 public:
38   /// Regs - If this is a register or register class operand, this
39   /// contains the set of assigned registers corresponding to the operand.
40   SmallVector<Register, 1> Regs;
41 
42   explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
43       : TargetLowering::AsmOperandInfo(Info) {}
44 };
45 
46 using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;
47 
48 class ExtraFlags {
49   unsigned Flags = 0;
50 
51 public:
52   explicit ExtraFlags(const CallBase &CB) {
53     const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
54     if (IA->hasSideEffects())
55       Flags |= InlineAsm::Extra_HasSideEffects;
56     if (IA->isAlignStack())
57       Flags |= InlineAsm::Extra_IsAlignStack;
58     if (CB.isConvergent())
59       Flags |= InlineAsm::Extra_IsConvergent;
60     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
61   }
62 
63   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
64     // Ideally, we would only check against memory constraints.  However, the
65     // meaning of an Other constraint can be target-specific and we can't easily
66     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
67     // for Other constraints as well.
68     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
69         OpInfo.ConstraintType == TargetLowering::C_Other) {
70       if (OpInfo.Type == InlineAsm::isInput)
71         Flags |= InlineAsm::Extra_MayLoad;
72       else if (OpInfo.Type == InlineAsm::isOutput)
73         Flags |= InlineAsm::Extra_MayStore;
74       else if (OpInfo.Type == InlineAsm::isClobber)
75         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
76     }
77   }
78 
79   unsigned get() const { return Flags; }
80 };
81 
82 } // namespace
83 
84 /// Assign virtual/physical registers for the specified register operand.
85 static void getRegistersForValue(MachineFunction &MF,
86                                  MachineIRBuilder &MIRBuilder,
87                                  GISelAsmOperandInfo &OpInfo,
88                                  GISelAsmOperandInfo &RefOpInfo) {
89 
90   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
91   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
92 
93   // No work to do for memory operations.
94   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
95     return;
96 
97   // If this is a constraint for a single physreg, or a constraint for a
98   // register class, find it.
99   Register AssignedReg;
100   const TargetRegisterClass *RC;
101   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
102       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
103   // RC is unset only on failure. Return immediately.
104   if (!RC)
105     return;
106 
107   // No need to allocate a matching input constraint since the constraint it's
108   // matching to has already been allocated.
109   if (OpInfo.isMatchingInputConstraint())
110     return;
111 
112   // Initialize NumRegs.
113   unsigned NumRegs = 1;
114   if (OpInfo.ConstraintVT != MVT::Other)
115     NumRegs =
116         TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);
117 
118   // If this is a constraint for a specific physical register, but the type of
119   // the operand requires more than one register to be passed, we allocate the
120   // required amount of physical registers, starting from the selected physical
121   // register.
122   // For this, first retrieve a register iterator for the given register class
123   TargetRegisterClass::iterator I = RC->begin();
124   MachineRegisterInfo &RegInfo = MF.getRegInfo();
125 
126   // Advance the iterator to the assigned register (if set)
127   if (AssignedReg) {
128     for (; *I != AssignedReg; ++I)
129       assert(I != RC->end() && "AssignedReg should be a member of provided RC");
130   }
131 
132   // Finally, assign the registers. If the AssignedReg isn't set, create virtual
133   // registers with the provided register class
134   for (; NumRegs; --NumRegs, ++I) {
135     assert(I != RC->end() && "Ran out of registers to allocate!");
136     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
137     OpInfo.Regs.push_back(R);
138   }
139 }
140 
141 /// Return an integer indicating how general CT is.
142 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
143   switch (CT) {
144   case TargetLowering::C_Immediate:
145   case TargetLowering::C_Other:
146   case TargetLowering::C_Unknown:
147     return 0;
148   case TargetLowering::C_Register:
149     return 1;
150   case TargetLowering::C_RegisterClass:
151     return 2;
152   case TargetLowering::C_Memory:
153     return 3;
154   }
155   llvm_unreachable("Invalid constraint type");
156 }
157 
158 static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
159                              const TargetLowering *TLI) {
160   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
161   unsigned BestIdx = 0;
162   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
163   int BestGenerality = -1;
164 
165   // Loop over the options, keeping track of the most general one.
166   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
167     TargetLowering::ConstraintType CType =
168         TLI->getConstraintType(OpInfo.Codes[i]);
169 
170     // Indirect 'other' or 'immediate' constraints are not allowed.
171     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
172                                CType == TargetLowering::C_Register ||
173                                CType == TargetLowering::C_RegisterClass))
174       continue;
175 
176     // If this is an 'other' or 'immediate' constraint, see if the operand is
177     // valid for it. For example, on X86 we might have an 'rI' constraint. If
178     // the operand is an integer in the range [0..31] we want to use I (saving a
179     // load of a register), otherwise we must use 'r'.
180     if (CType == TargetLowering::C_Other ||
181         CType == TargetLowering::C_Immediate) {
182       assert(OpInfo.Codes[i].size() == 1 &&
183              "Unhandled multi-letter 'other' constraint");
184       // FIXME: prefer immediate constraints if the target allows it
185     }
186 
187     // Things with matching constraints can only be registers, per gcc
188     // documentation.  This mainly affects "g" constraints.
189     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
190       continue;
191 
192     // This constraint letter is more general than the previous one, use it.
193     int Generality = getConstraintGenerality(CType);
194     if (Generality > BestGenerality) {
195       BestType = CType;
196       BestIdx = i;
197       BestGenerality = Generality;
198     }
199   }
200 
201   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
202   OpInfo.ConstraintType = BestType;
203 }
204 
205 static void computeConstraintToUse(const TargetLowering *TLI,
206                                    TargetLowering::AsmOperandInfo &OpInfo) {
207   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
208 
209   // Single-letter constraints ('r') are very common.
210   if (OpInfo.Codes.size() == 1) {
211     OpInfo.ConstraintCode = OpInfo.Codes[0];
212     OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
213   } else {
214     chooseConstraint(OpInfo, TLI);
215   }
216 
217   // 'X' matches anything.
218   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
219     // Labels and constants are handled elsewhere ('X' is the only thing
220     // that matches labels).  For Functions, the type here is the type of
221     // the result, which is not what we want to look at; leave them alone.
222     Value *Val = OpInfo.CallOperandVal;
223     if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
224       return;
225 
226     // Otherwise, try to resolve it to something we know about by looking at
227     // the actual operand type.
228     if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
229       OpInfo.ConstraintCode = Repl;
230       OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
231     }
232   }
233 }
234 
235 static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) {
236   unsigned Flag = I.getOperand(OpIdx).getImm();
237   return InlineAsm::getNumOperandRegisters(Flag);
238 }
239 
240 static bool buildAnyextOrCopy(Register Dst, Register Src,
241                               MachineIRBuilder &MIRBuilder) {
242   const TargetRegisterInfo *TRI =
243       MIRBuilder.getMF().getSubtarget().getRegisterInfo();
244   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
245 
246   auto SrcTy = MRI->getType(Src);
247   if (!SrcTy.isValid()) {
248     LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n");
249     return false;
250   }
251   unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI);
252   unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI);
253 
254   if (DstSize < SrcSize) {
255     LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n");
256     return false;
257   }
258 
259   // Attempt to anyext small scalar sources.
260   if (DstSize > SrcSize) {
261     if (!SrcTy.isScalar()) {
262       LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of"
263                            "destination register class\n");
264       return false;
265     }
266     Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0);
267   }
268 
269   MIRBuilder.buildCopy(Dst, Src);
270   return true;
271 }
272 
273 bool InlineAsmLowering::lowerInlineAsm(
274     MachineIRBuilder &MIRBuilder, const CallBase &Call,
275     std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
276     const {
277   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
278 
279   /// ConstraintOperands - Information about all of the constraints.
280   GISelAsmOperandInfoVector ConstraintOperands;
281 
282   MachineFunction &MF = MIRBuilder.getMF();
283   const Function &F = MF.getFunction();
284   const DataLayout &DL = F.getParent()->getDataLayout();
285   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
286 
287   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
288 
289   TargetLowering::AsmOperandInfoVector TargetConstraints =
290       TLI->ParseConstraints(DL, TRI, Call);
291 
292   ExtraFlags ExtraInfo(Call);
293   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
294   unsigned ResNo = 0; // ResNo - The result number of the next output.
295   for (auto &T : TargetConstraints) {
296     ConstraintOperands.push_back(GISelAsmOperandInfo(T));
297     GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
298 
299     // Compute the value type for each operand.
300     if (OpInfo.hasArg()) {
301       OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo++));
302 
303       if (isa<BasicBlock>(OpInfo.CallOperandVal)) {
304         LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n");
305         return false;
306       }
307 
308       Type *OpTy = OpInfo.CallOperandVal->getType();
309 
310       // If this is an indirect operand, the operand is a pointer to the
311       // accessed type.
312       if (OpInfo.isIndirect) {
313         PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
314         if (!PtrTy)
315           report_fatal_error("Indirect operand for inline asm not a pointer!");
316         OpTy = PtrTy->getElementType();
317       }
318 
319       // FIXME: Support aggregate input operands
320       if (!OpTy->isSingleValueType()) {
321         LLVM_DEBUG(
322             dbgs() << "Aggregate input operands are not supported yet\n");
323         return false;
324       }
325 
326       OpInfo.ConstraintVT =
327           TLI->getAsmOperandValueType(DL, OpTy, true).getSimpleVT();
328 
329     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
330       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
331       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
332         OpInfo.ConstraintVT =
333             TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
334       } else {
335         assert(ResNo == 0 && "Asm only has one result!");
336         OpInfo.ConstraintVT =
337             TLI->getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
338       }
339       ++ResNo;
340     } else {
341       OpInfo.ConstraintVT = MVT::Other;
342     }
343 
344     if (OpInfo.ConstraintVT == MVT::i64x8)
345       return false;
346 
347     // Compute the constraint code and ConstraintType to use.
348     computeConstraintToUse(TLI, OpInfo);
349 
350     // The selected constraint type might expose new sideeffects
351     ExtraInfo.update(OpInfo);
352   }
353 
354   // At this point, all operand types are decided.
355   // Create the MachineInstr, but don't insert it yet since input
356   // operands still need to insert instructions before this one
357   auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
358                   .addExternalSymbol(IA->getAsmString().c_str())
359                   .addImm(ExtraInfo.get());
360 
361   // Starting from this operand: flag followed by register(s) will be added as
362   // operands to Inst for each constraint. Used for matching input constraints.
363   unsigned StartIdx = Inst->getNumOperands();
364 
365   // Collects the output operands for later processing
366   GISelAsmOperandInfoVector OutputOperands;
367 
368   for (auto &OpInfo : ConstraintOperands) {
369     GISelAsmOperandInfo &RefOpInfo =
370         OpInfo.isMatchingInputConstraint()
371             ? ConstraintOperands[OpInfo.getMatchedOperand()]
372             : OpInfo;
373 
374     // Assign registers for register operands
375     getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);
376 
377     switch (OpInfo.Type) {
378     case InlineAsm::isOutput:
379       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
380         unsigned ConstraintID =
381             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
382         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
383                "Failed to convert memory constraint code to constraint id.");
384 
385         // Add information to the INLINEASM instruction to know about this
386         // output.
387         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
388         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
389         Inst.addImm(OpFlags);
390         ArrayRef<Register> SourceRegs =
391             GetOrCreateVRegs(*OpInfo.CallOperandVal);
392         assert(
393             SourceRegs.size() == 1 &&
394             "Expected the memory output to fit into a single virtual register");
395         Inst.addReg(SourceRegs[0]);
396       } else {
397         // Otherwise, this outputs to a register (directly for C_Register /
398         // C_RegisterClass. Find a register that we can use.
399         assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
400                OpInfo.ConstraintType == TargetLowering::C_RegisterClass);
401 
402         if (OpInfo.Regs.empty()) {
403           LLVM_DEBUG(dbgs()
404                      << "Couldn't allocate output register for constraint\n");
405           return false;
406         }
407 
408         // Add information to the INLINEASM instruction to know that this
409         // register is set.
410         unsigned Flag = InlineAsm::getFlagWord(
411             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
412                                   : InlineAsm::Kind_RegDef,
413             OpInfo.Regs.size());
414         if (OpInfo.Regs.front().isVirtual()) {
415           // Put the register class of the virtual registers in the flag word.
416           // That way, later passes can recompute register class constraints for
417           // inline assembly as well as normal instructions. Don't do this for
418           // tied operands that can use the regclass information from the def.
419           const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
420           Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
421         }
422 
423         Inst.addImm(Flag);
424 
425         for (Register Reg : OpInfo.Regs) {
426           Inst.addReg(Reg,
427                       RegState::Define | getImplRegState(Reg.isPhysical()) |
428                           (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0));
429         }
430 
431         // Remember this output operand for later processing
432         OutputOperands.push_back(OpInfo);
433       }
434 
435       break;
436     case InlineAsm::isInput: {
437       if (OpInfo.isMatchingInputConstraint()) {
438         unsigned DefIdx = OpInfo.getMatchedOperand();
439         // Find operand with register def that corresponds to DefIdx.
440         unsigned InstFlagIdx = StartIdx;
441         for (unsigned i = 0; i < DefIdx; ++i)
442           InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1;
443         assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag");
444 
445         unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm();
446         if (InlineAsm::isMemKind(MatchedOperandFlag)) {
447           LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not "
448                                "supported. This should be target specific.\n");
449           return false;
450         }
451         if (!InlineAsm::isRegDefKind(MatchedOperandFlag) &&
452             !InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) {
453           LLVM_DEBUG(dbgs() << "Unknown matching constraint\n");
454           return false;
455         }
456 
457         // We want to tie input to register in next operand.
458         unsigned DefRegIdx = InstFlagIdx + 1;
459         Register Def = Inst->getOperand(DefRegIdx).getReg();
460 
461         ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
462         assert(SrcRegs.size() == 1 && "Single register is expected here");
463 
464         // When Def is physreg: use given input.
465         Register In = SrcRegs[0];
466         // When Def is vreg: copy input to new vreg with same reg class as Def.
467         if (Def.isVirtual()) {
468           In = MRI->createVirtualRegister(MRI->getRegClass(Def));
469           if (!buildAnyextOrCopy(In, SrcRegs[0], MIRBuilder))
470             return false;
471         }
472 
473         // Add Flag and input register operand (In) to Inst. Tie In to Def.
474         unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1);
475         unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx);
476         Inst.addImm(Flag);
477         Inst.addReg(In);
478         Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1);
479         break;
480       }
481 
482       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
483           OpInfo.isIndirect) {
484         LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint "
485                              "not supported yet\n");
486         return false;
487       }
488 
489       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
490           OpInfo.ConstraintType == TargetLowering::C_Other) {
491 
492         std::vector<MachineOperand> Ops;
493         if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal,
494                                           OpInfo.ConstraintCode, Ops,
495                                           MIRBuilder)) {
496           LLVM_DEBUG(dbgs() << "Don't support constraint: "
497                             << OpInfo.ConstraintCode << " yet\n");
498           return false;
499         }
500 
501         assert(Ops.size() > 0 &&
502                "Expected constraint to be lowered to at least one operand");
503 
504         // Add information to the INLINEASM node to know about this input.
505         unsigned OpFlags =
506             InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
507         Inst.addImm(OpFlags);
508         Inst.add(Ops);
509         break;
510       }
511 
512       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
513 
514         if (!OpInfo.isIndirect) {
515           LLVM_DEBUG(dbgs()
516                      << "Cannot indirectify memory input operands yet\n");
517           return false;
518         }
519 
520         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
521 
522         unsigned ConstraintID =
523             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
524         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
525         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
526         Inst.addImm(OpFlags);
527         ArrayRef<Register> SourceRegs =
528             GetOrCreateVRegs(*OpInfo.CallOperandVal);
529         assert(
530             SourceRegs.size() == 1 &&
531             "Expected the memory input to fit into a single virtual register");
532         Inst.addReg(SourceRegs[0]);
533         break;
534       }
535 
536       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
537               OpInfo.ConstraintType == TargetLowering::C_Register) &&
538              "Unknown constraint type!");
539 
540       if (OpInfo.isIndirect) {
541         LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet "
542                              "for constraint '"
543                           << OpInfo.ConstraintCode << "'\n");
544         return false;
545       }
546 
547       // Copy the input into the appropriate registers.
548       if (OpInfo.Regs.empty()) {
549         LLVM_DEBUG(
550             dbgs()
551             << "Couldn't allocate input register for register constraint\n");
552         return false;
553       }
554 
555       unsigned NumRegs = OpInfo.Regs.size();
556       ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
557       assert(NumRegs == SourceRegs.size() &&
558              "Expected the number of input registers to match the number of "
559              "source registers");
560 
561       if (NumRegs > 1) {
562         LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are "
563                              "not supported yet\n");
564         return false;
565       }
566 
567       unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs);
568       if (OpInfo.Regs.front().isVirtual()) {
569         // Put the register class of the virtual registers in the flag word.
570         const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
571         Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
572       }
573       Inst.addImm(Flag);
574       if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder))
575         return false;
576       Inst.addReg(OpInfo.Regs[0]);
577       break;
578     }
579 
580     case InlineAsm::isClobber: {
581 
582       unsigned NumRegs = OpInfo.Regs.size();
583       if (NumRegs > 0) {
584         unsigned Flag =
585             InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs);
586         Inst.addImm(Flag);
587 
588         for (Register Reg : OpInfo.Regs) {
589           Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
590                                getImplRegState(Reg.isPhysical()));
591         }
592       }
593       break;
594     }
595     }
596   }
597 
598   if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
599     Inst.addMetadata(SrcLoc);
600 
601   // All inputs are handled, insert the instruction now
602   MIRBuilder.insertInstr(Inst);
603 
604   // Finally, copy the output operands into the output registers
605   ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
606   if (ResRegs.size() != OutputOperands.size()) {
607     LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
608                          "number of destination registers\n");
609     return false;
610   }
611   for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
612     GISelAsmOperandInfo &OpInfo = OutputOperands[i];
613 
614     if (OpInfo.Regs.empty())
615       continue;
616 
617     switch (OpInfo.ConstraintType) {
618     case TargetLowering::C_Register:
619     case TargetLowering::C_RegisterClass: {
620       if (OpInfo.Regs.size() > 1) {
621         LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
622                              "registers are not supported yet\n");
623         return false;
624       }
625 
626       Register SrcReg = OpInfo.Regs[0];
627       unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
628       if (MRI->getType(ResRegs[i]).getSizeInBits() < SrcSize) {
629         // First copy the non-typed virtual register into a generic virtual
630         // register
631         Register Tmp1Reg =
632             MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
633         MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
634         // Need to truncate the result of the register
635         MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
636       } else {
637         MIRBuilder.buildCopy(ResRegs[i], SrcReg);
638       }
639       break;
640     }
641     case TargetLowering::C_Immediate:
642     case TargetLowering::C_Other:
643       LLVM_DEBUG(
644           dbgs() << "Cannot lower target specific output constraints yet\n");
645       return false;
646     case TargetLowering::C_Memory:
647       break; // Already handled.
648     case TargetLowering::C_Unknown:
649       LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
650       return false;
651     }
652   }
653 
654   return true;
655 }
656 
657 bool InlineAsmLowering::lowerAsmOperandForConstraint(
658     Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops,
659     MachineIRBuilder &MIRBuilder) const {
660   if (Constraint.size() > 1)
661     return false;
662 
663   char ConstraintLetter = Constraint[0];
664   switch (ConstraintLetter) {
665   default:
666     return false;
667   case 'i': // Simple Integer or Relocatable Constant
668   case 'n': // immediate integer with a known value.
669     if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
670       assert(CI->getBitWidth() <= 64 &&
671              "expected immediate to fit into 64-bits");
672       // Boolean constants should be zero-extended, others are sign-extended
673       bool IsBool = CI->getBitWidth() == 1;
674       int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue();
675       Ops.push_back(MachineOperand::CreateImm(ExtVal));
676       return true;
677     }
678     return false;
679   }
680 }
681