1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 #define DEBUG_TYPE "call-lowering" 30 31 using namespace llvm; 32 33 void CallLowering::anchor() {} 34 35 /// Helper function which updates \p Flags when \p AttrFn returns true. 36 static void 37 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 38 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 39 // TODO: There are missing flags. Add them here. 40 if (AttrFn(Attribute::SExt)) 41 Flags.setSExt(); 42 if (AttrFn(Attribute::ZExt)) 43 Flags.setZExt(); 44 if (AttrFn(Attribute::InReg)) 45 Flags.setInReg(); 46 if (AttrFn(Attribute::StructRet)) 47 Flags.setSRet(); 48 if (AttrFn(Attribute::Nest)) 49 Flags.setNest(); 50 if (AttrFn(Attribute::ByVal)) 51 Flags.setByVal(); 52 if (AttrFn(Attribute::Preallocated)) 53 Flags.setPreallocated(); 54 if (AttrFn(Attribute::InAlloca)) 55 Flags.setInAlloca(); 56 if (AttrFn(Attribute::Returned)) 57 Flags.setReturned(); 58 if (AttrFn(Attribute::SwiftSelf)) 59 Flags.setSwiftSelf(); 60 if (AttrFn(Attribute::SwiftAsync)) 61 Flags.setSwiftAsync(); 62 if (AttrFn(Attribute::SwiftError)) 63 Flags.setSwiftError(); 64 } 65 66 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 67 unsigned ArgIdx) const { 68 ISD::ArgFlagsTy Flags; 69 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 70 return Call.paramHasAttr(ArgIdx, Attr); 71 }); 72 return Flags; 73 } 74 75 ISD::ArgFlagsTy 76 CallLowering::getAttributesForReturn(const CallBase &Call) const { 77 ISD::ArgFlagsTy Flags; 78 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { 79 return Call.hasRetAttr(Attr); 80 }); 81 return Flags; 82 } 83 84 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 85 const AttributeList &Attrs, 86 unsigned OpIdx) const { 87 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 88 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 89 }); 90 } 91 92 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 93 ArrayRef<Register> ResRegs, 94 ArrayRef<ArrayRef<Register>> ArgRegs, 95 Register SwiftErrorVReg, 96 std::optional<PtrAuthInfo> PAI, 97 Register ConvergenceCtrlToken, 98 std::function<unsigned()> GetCalleeReg) const { 99 CallLoweringInfo Info; 100 const DataLayout &DL = MIRBuilder.getDataLayout(); 101 MachineFunction &MF = MIRBuilder.getMF(); 102 MachineRegisterInfo &MRI = MF.getRegInfo(); 103 bool CanBeTailCalled = CB.isTailCall() && 104 isInTailCallPosition(CB, MF.getTarget()) && 105 (MF.getFunction() 106 .getFnAttribute("disable-tail-calls") 107 .getValueAsString() != "true"); 108 109 CallingConv::ID CallConv = CB.getCallingConv(); 110 Type *RetTy = CB.getType(); 111 bool IsVarArg = CB.getFunctionType()->isVarArg(); 112 113 SmallVector<BaseArgInfo, 4> SplitArgs; 114 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 115 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 116 117 Info.IsConvergent = CB.isConvergent(); 118 119 if (!Info.CanLowerReturn) { 120 // Callee requires sret demotion. 121 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 122 123 // The sret demotion isn't compatible with tail-calls, since the sret 124 // argument points into the caller's stack frame. 125 CanBeTailCalled = false; 126 } 127 128 // First step is to marshall all the function's parameters into the correct 129 // physregs and memory locations. Gather the sequence of argument types that 130 // we'll pass to the assigner function. 131 unsigned i = 0; 132 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 133 for (const auto &Arg : CB.args()) { 134 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 135 i < NumFixedArgs}; 136 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 137 138 // If we have an explicit sret argument that is an Instruction, (i.e., it 139 // might point to function-local memory), we can't meaningfully tail-call. 140 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 141 CanBeTailCalled = false; 142 143 Info.OrigArgs.push_back(OrigArg); 144 ++i; 145 } 146 147 // Try looking through a bitcast from one function type to another. 148 // Commonly happens with calls to objc_msgSend(). 149 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 150 if (const Function *F = dyn_cast<Function>(CalleeV)) { 151 if (F->hasFnAttribute(Attribute::NonLazyBind)) { 152 LLT Ty = getLLTForType(*F->getType(), DL); 153 Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0); 154 Info.Callee = MachineOperand::CreateReg(Reg, false); 155 } else { 156 Info.Callee = MachineOperand::CreateGA(F, 0); 157 } 158 } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) { 159 // IR IFuncs and Aliases can't be forward declared (only defined), so the 160 // callee must be in the same TU and therefore we can direct-call it without 161 // worrying about it being out of range. 162 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0); 163 } else 164 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 165 166 Register ReturnHintAlignReg; 167 Align ReturnHintAlign; 168 169 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; 170 171 if (!Info.OrigRet.Ty->isVoidTy()) { 172 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 173 174 if (MaybeAlign Alignment = CB.getRetAlign()) { 175 if (*Alignment > Align(1)) { 176 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 177 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 178 ReturnHintAlign = *Alignment; 179 } 180 } 181 } 182 183 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 184 if (Bundle && CB.isIndirectCall()) { 185 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 186 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 187 } 188 189 Info.CB = &CB; 190 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 191 Info.CallConv = CallConv; 192 Info.SwiftErrorVReg = SwiftErrorVReg; 193 Info.PAI = PAI; 194 Info.ConvergenceCtrlToken = ConvergenceCtrlToken; 195 Info.IsMustTailCall = CB.isMustTailCall(); 196 Info.IsTailCall = CanBeTailCalled; 197 Info.IsVarArg = IsVarArg; 198 if (!lowerCall(MIRBuilder, Info)) 199 return false; 200 201 if (ReturnHintAlignReg && !Info.LoweredTailCall) { 202 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 203 ReturnHintAlign); 204 } 205 206 return true; 207 } 208 209 template <typename FuncInfoTy> 210 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 211 const DataLayout &DL, 212 const FuncInfoTy &FuncInfo) const { 213 auto &Flags = Arg.Flags[0]; 214 const AttributeList &Attrs = FuncInfo.getAttributes(); 215 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 216 217 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 218 if (PtrTy) { 219 Flags.setPointer(); 220 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 221 } 222 223 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 224 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 225 assert(OpIdx >= AttributeList::FirstArgIndex); 226 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 227 228 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 229 if (!ElementTy) 230 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 231 if (!ElementTy) 232 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 233 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 234 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 235 236 // For ByVal, alignment should be passed from FE. BE will guess if 237 // this info is not there but there are cases it cannot get right. 238 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 239 MemAlign = *ParamAlign; 240 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 241 MemAlign = *ParamAlign; 242 else 243 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 244 } else if (OpIdx >= AttributeList::FirstArgIndex) { 245 if (auto ParamAlign = 246 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 247 MemAlign = *ParamAlign; 248 } 249 Flags.setMemAlign(MemAlign); 250 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 251 252 // Don't try to use the returned attribute if the argument is marked as 253 // swiftself, since it won't be passed in x0. 254 if (Flags.isSwiftSelf()) 255 Flags.setReturned(false); 256 } 257 258 template void 259 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 260 const DataLayout &DL, 261 const Function &FuncInfo) const; 262 263 template void 264 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 265 const DataLayout &DL, 266 const CallBase &FuncInfo) const; 267 268 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 269 SmallVectorImpl<ArgInfo> &SplitArgs, 270 const DataLayout &DL, 271 CallingConv::ID CallConv, 272 SmallVectorImpl<uint64_t> *Offsets) const { 273 LLVMContext &Ctx = OrigArg.Ty->getContext(); 274 275 SmallVector<EVT, 4> SplitVTs; 276 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 277 278 if (SplitVTs.size() == 0) 279 return; 280 281 if (SplitVTs.size() == 1) { 282 // No splitting to do, but we want to replace the original type (e.g. [1 x 283 // double] -> double). 284 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 285 OrigArg.OrigArgIndex, OrigArg.Flags[0], 286 OrigArg.IsFixed, OrigArg.OrigValue); 287 return; 288 } 289 290 // Create one ArgInfo for each virtual register in the original ArgInfo. 291 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 292 293 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 294 OrigArg.Ty, CallConv, false, DL); 295 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 296 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 297 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 298 OrigArg.Flags[0], OrigArg.IsFixed); 299 if (NeedsRegBlock) 300 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 301 } 302 303 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 304 } 305 306 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 307 static MachineInstrBuilder 308 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 309 ArrayRef<Register> SrcRegs) { 310 MachineRegisterInfo &MRI = *B.getMRI(); 311 LLT LLTy = MRI.getType(DstRegs[0]); 312 LLT PartLLT = MRI.getType(SrcRegs[0]); 313 314 // Deal with v3s16 split into v2s16 315 LLT LCMTy = getCoverTy(LLTy, PartLLT); 316 if (LCMTy == LLTy) { 317 // Common case where no padding is needed. 318 assert(DstRegs.size() == 1); 319 return B.buildConcatVectors(DstRegs[0], SrcRegs); 320 } 321 322 // We need to create an unmerge to the result registers, which may require 323 // widening the original value. 324 Register UnmergeSrcReg; 325 if (LCMTy != PartLLT) { 326 assert(DstRegs.size() == 1); 327 return B.buildDeleteTrailingVectorElements( 328 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); 329 } else { 330 // We don't need to widen anything if we're extracting a scalar which was 331 // promoted to a vector e.g. s8 -> v4s8 -> s8 332 assert(SrcRegs.size() == 1); 333 UnmergeSrcReg = SrcRegs[0]; 334 } 335 336 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 337 338 SmallVector<Register, 8> PadDstRegs(NumDst); 339 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 340 341 // Create the excess dead defs for the unmerge. 342 for (int I = DstRegs.size(); I != NumDst; ++I) 343 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 344 345 if (PadDstRegs.size() == 1) 346 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 347 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 348 } 349 350 /// Create a sequence of instructions to combine pieces split into register 351 /// typed values to the original IR value. \p OrigRegs contains the destination 352 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 353 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 354 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 355 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 356 const ISD::ArgFlagsTy Flags) { 357 MachineRegisterInfo &MRI = *B.getMRI(); 358 359 if (PartLLT == LLTy) { 360 // We should have avoided introducing a new virtual register, and just 361 // directly assigned here. 362 assert(OrigRegs[0] == Regs[0]); 363 return; 364 } 365 366 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 367 Regs.size() == 1) { 368 B.buildBitcast(OrigRegs[0], Regs[0]); 369 return; 370 } 371 372 // A vector PartLLT needs extending to LLTy's element size. 373 // E.g. <2 x s64> = G_SEXT <2 x s32>. 374 if (PartLLT.isVector() == LLTy.isVector() && 375 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 376 (!PartLLT.isVector() || 377 PartLLT.getElementCount() == LLTy.getElementCount()) && 378 OrigRegs.size() == 1 && Regs.size() == 1) { 379 Register SrcReg = Regs[0]; 380 381 LLT LocTy = MRI.getType(SrcReg); 382 383 if (Flags.isSExt()) { 384 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 385 .getReg(0); 386 } else if (Flags.isZExt()) { 387 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 388 .getReg(0); 389 } 390 391 // Sometimes pointers are passed zero extended. 392 LLT OrigTy = MRI.getType(OrigRegs[0]); 393 if (OrigTy.isPointer()) { 394 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 395 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 396 return; 397 } 398 399 B.buildTrunc(OrigRegs[0], SrcReg); 400 return; 401 } 402 403 if (!LLTy.isVector() && !PartLLT.isVector()) { 404 assert(OrigRegs.size() == 1); 405 LLT OrigTy = MRI.getType(OrigRegs[0]); 406 407 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); 408 if (SrcSize == OrigTy.getSizeInBits()) 409 B.buildMergeValues(OrigRegs[0], Regs); 410 else { 411 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); 412 B.buildTrunc(OrigRegs[0], Widened); 413 } 414 415 return; 416 } 417 418 if (PartLLT.isVector()) { 419 assert(OrigRegs.size() == 1); 420 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 421 422 // If PartLLT is a mismatched vector in both number of elements and element 423 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 424 // have the same elt type, i.e. v4s32. 425 // TODO: Extend this coersion to element multiples other than just 2. 426 if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) && 427 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 428 Regs.size() == 1) { 429 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 430 .changeElementCount(PartLLT.getElementCount() * 2); 431 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 432 PartLLT = NewTy; 433 } 434 435 if (LLTy.getScalarType() == PartLLT.getElementType()) { 436 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 437 } else { 438 unsigned I = 0; 439 LLT GCDTy = getGCDType(LLTy, PartLLT); 440 441 // We are both splitting a vector, and bitcasting its element types. Cast 442 // the source pieces into the appropriate number of pieces with the result 443 // element type. 444 for (Register SrcReg : CastRegs) 445 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 446 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 447 } 448 449 return; 450 } 451 452 assert(LLTy.isVector() && !PartLLT.isVector()); 453 454 LLT DstEltTy = LLTy.getElementType(); 455 456 // Pointer information was discarded. We'll need to coerce some register types 457 // to avoid violating type constraints. 458 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 459 460 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 461 462 if (DstEltTy == PartLLT) { 463 // Vector was trivially scalarized. 464 465 if (RealDstEltTy.isPointer()) { 466 for (Register Reg : Regs) 467 MRI.setType(Reg, RealDstEltTy); 468 } 469 470 B.buildBuildVector(OrigRegs[0], Regs); 471 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 472 // Deal with vector with 64-bit elements decomposed to 32-bit 473 // registers. Need to create intermediate 64-bit elements. 474 SmallVector<Register, 8> EltMerges; 475 int PartsPerElt = 476 divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits()); 477 LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt); 478 479 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 480 auto Merge = 481 B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt)); 482 if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits()) 483 Merge = B.buildTrunc(RealDstEltTy, Merge); 484 // Fix the type in case this is really a vector of pointers. 485 MRI.setType(Merge.getReg(0), RealDstEltTy); 486 EltMerges.push_back(Merge.getReg(0)); 487 Regs = Regs.drop_front(PartsPerElt); 488 } 489 490 B.buildBuildVector(OrigRegs[0], EltMerges); 491 } else { 492 // Vector was split, and elements promoted to a wider type. 493 // FIXME: Should handle floating point promotions. 494 unsigned NumElts = LLTy.getNumElements(); 495 LLT BVType = LLT::fixed_vector(NumElts, PartLLT); 496 497 Register BuildVec; 498 if (NumElts == Regs.size()) 499 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0); 500 else { 501 // Vector elements are packed in the inputs. 502 // e.g. we have a <4 x s16> but 2 x s32 in regs. 503 assert(NumElts > Regs.size()); 504 LLT SrcEltTy = MRI.getType(Regs[0]); 505 506 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType(); 507 508 // Input registers contain packed elements. 509 // Determine how many elements per reg. 510 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0); 511 unsigned EltPerReg = 512 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits()); 513 514 SmallVector<Register, 0> BVRegs; 515 BVRegs.reserve(Regs.size() * EltPerReg); 516 for (Register R : Regs) { 517 auto Unmerge = B.buildUnmerge(OriginalEltTy, R); 518 for (unsigned K = 0; K < EltPerReg; ++K) 519 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0)); 520 } 521 522 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces 523 // for a <3 x s16> vector. We should have less than EltPerReg extra items. 524 if (BVRegs.size() > NumElts) { 525 assert((BVRegs.size() - NumElts) < EltPerReg); 526 BVRegs.truncate(NumElts); 527 } 528 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0); 529 } 530 B.buildTrunc(OrigRegs[0], BuildVec); 531 } 532 } 533 534 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 535 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 536 /// contain the type of scalar value extension if necessary. 537 /// 538 /// This is used for outgoing values (vregs to physregs) 539 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 540 Register SrcReg, LLT SrcTy, LLT PartTy, 541 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 542 // We could just insert a regular copy, but this is unreachable at the moment. 543 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 544 545 const TypeSize PartSize = PartTy.getSizeInBits(); 546 547 if (PartTy.isVector() == SrcTy.isVector() && 548 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 549 assert(DstRegs.size() == 1); 550 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 551 return; 552 } 553 554 if (SrcTy.isVector() && !PartTy.isVector() && 555 TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) { 556 // Vector was scalarized, and the elements extended. 557 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 558 for (int i = 0, e = DstRegs.size(); i != e; ++i) 559 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 560 return; 561 } 562 563 if (SrcTy.isVector() && PartTy.isVector() && 564 PartTy.getSizeInBits() == SrcTy.getSizeInBits() && 565 ElementCount::isKnownLT(SrcTy.getElementCount(), 566 PartTy.getElementCount())) { 567 // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32 568 Register DstReg = DstRegs.front(); 569 B.buildPadVectorWithUndefElements(DstReg, SrcReg); 570 return; 571 } 572 573 LLT GCDTy = getGCDType(SrcTy, PartTy); 574 if (GCDTy == PartTy) { 575 // If this already evenly divisible, we can create a simple unmerge. 576 B.buildUnmerge(DstRegs, SrcReg); 577 return; 578 } 579 580 if (SrcTy.isVector() && !PartTy.isVector() && 581 SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) { 582 LLT ExtTy = 583 LLT::vector(SrcTy.getElementCount(), 584 LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() / 585 SrcTy.getNumElements())); 586 auto Ext = B.buildAnyExt(ExtTy, SrcReg); 587 B.buildUnmerge(DstRegs, Ext); 588 return; 589 } 590 591 MachineRegisterInfo &MRI = *B.getMRI(); 592 LLT DstTy = MRI.getType(DstRegs[0]); 593 LLT LCMTy = getCoverTy(SrcTy, PartTy); 594 595 if (PartTy.isVector() && LCMTy == PartTy) { 596 assert(DstRegs.size() == 1); 597 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 598 return; 599 } 600 601 const unsigned DstSize = DstTy.getSizeInBits(); 602 const unsigned SrcSize = SrcTy.getSizeInBits(); 603 unsigned CoveringSize = LCMTy.getSizeInBits(); 604 605 Register UnmergeSrc = SrcReg; 606 607 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 608 // For scalars, it's common to be able to use a simple extension. 609 if (SrcTy.isScalar() && DstTy.isScalar()) { 610 CoveringSize = alignTo(SrcSize, DstSize); 611 LLT CoverTy = LLT::scalar(CoveringSize); 612 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 613 } else { 614 // Widen to the common type. 615 // FIXME: This should respect the extend type 616 Register Undef = B.buildUndef(SrcTy).getReg(0); 617 SmallVector<Register, 8> MergeParts(1, SrcReg); 618 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 619 MergeParts.push_back(Undef); 620 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); 621 } 622 } 623 624 if (LCMTy.isVector() && CoveringSize != SrcSize) 625 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 626 627 B.buildUnmerge(DstRegs, UnmergeSrc); 628 } 629 630 bool CallLowering::determineAndHandleAssignments( 631 ValueHandler &Handler, ValueAssigner &Assigner, 632 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 633 CallingConv::ID CallConv, bool IsVarArg, 634 ArrayRef<Register> ThisReturnRegs) const { 635 MachineFunction &MF = MIRBuilder.getMF(); 636 const Function &F = MF.getFunction(); 637 SmallVector<CCValAssign, 16> ArgLocs; 638 639 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 640 if (!determineAssignments(Assigner, Args, CCInfo)) 641 return false; 642 643 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 644 ThisReturnRegs); 645 } 646 647 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 648 if (Flags.isSExt()) 649 return TargetOpcode::G_SEXT; 650 if (Flags.isZExt()) 651 return TargetOpcode::G_ZEXT; 652 return TargetOpcode::G_ANYEXT; 653 } 654 655 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 656 SmallVectorImpl<ArgInfo> &Args, 657 CCState &CCInfo) const { 658 LLVMContext &Ctx = CCInfo.getContext(); 659 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 660 661 unsigned NumArgs = Args.size(); 662 for (unsigned i = 0; i != NumArgs; ++i) { 663 EVT CurVT = EVT::getEVT(Args[i].Ty); 664 665 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 666 667 // If we need to split the type over multiple regs, check it's a scenario 668 // we currently support. 669 unsigned NumParts = 670 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 671 672 if (NumParts == 1) { 673 // Try to use the register type if we couldn't assign the VT. 674 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 675 Args[i].Flags[0], CCInfo)) 676 return false; 677 continue; 678 } 679 680 // For incoming arguments (physregs to vregs), we could have values in 681 // physregs (or memlocs) which we want to extract and copy to vregs. 682 // During this, we might have to deal with the LLT being split across 683 // multiple regs, so we have to record this information for later. 684 // 685 // If we have outgoing args, then we have the opposite case. We have a 686 // vreg with an LLT which we want to assign to a physical location, and 687 // we might have to record that the value has to be split later. 688 689 // We're handling an incoming arg which is split over multiple regs. 690 // E.g. passing an s128 on AArch64. 691 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 692 Args[i].Flags.clear(); 693 694 for (unsigned Part = 0; Part < NumParts; ++Part) { 695 ISD::ArgFlagsTy Flags = OrigFlags; 696 if (Part == 0) { 697 Flags.setSplit(); 698 } else { 699 Flags.setOrigAlign(Align(1)); 700 if (Part == NumParts - 1) 701 Flags.setSplitEnd(); 702 } 703 704 Args[i].Flags.push_back(Flags); 705 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 706 Args[i].Flags[Part], CCInfo)) { 707 // Still couldn't assign this smaller part type for some reason. 708 return false; 709 } 710 } 711 } 712 713 return true; 714 } 715 716 bool CallLowering::handleAssignments(ValueHandler &Handler, 717 SmallVectorImpl<ArgInfo> &Args, 718 CCState &CCInfo, 719 SmallVectorImpl<CCValAssign> &ArgLocs, 720 MachineIRBuilder &MIRBuilder, 721 ArrayRef<Register> ThisReturnRegs) const { 722 MachineFunction &MF = MIRBuilder.getMF(); 723 MachineRegisterInfo &MRI = MF.getRegInfo(); 724 const Function &F = MF.getFunction(); 725 const DataLayout &DL = F.getParent()->getDataLayout(); 726 727 const unsigned NumArgs = Args.size(); 728 729 // Stores thunks for outgoing register assignments. This is used so we delay 730 // generating register copies until mem loc assignments are done. We do this 731 // so that if the target is using the delayed stack protector feature, we can 732 // find the split point of the block accurately. E.g. if we have: 733 // G_STORE %val, %memloc 734 // $x0 = COPY %foo 735 // $x1 = COPY %bar 736 // CALL func 737 // ... then the split point for the block will correctly be at, and including, 738 // the copy to $x0. If instead the G_STORE instruction immediately precedes 739 // the CALL, then we'd prematurely choose the CALL as the split point, thus 740 // generating a split block with a CALL that uses undefined physregs. 741 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 742 743 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 744 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 745 CCValAssign &VA = ArgLocs[j]; 746 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 747 748 if (VA.needsCustom()) { 749 std::function<void()> Thunk; 750 unsigned NumArgRegs = Handler.assignCustomValue( 751 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); 752 if (Thunk) 753 DelayedOutgoingRegAssignments.emplace_back(Thunk); 754 if (!NumArgRegs) 755 return false; 756 j += (NumArgRegs - 1); 757 continue; 758 } 759 760 auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace(); 761 762 const MVT ValVT = VA.getValVT(); 763 const MVT LocVT = VA.getLocVT(); 764 765 const LLT LocTy(LocVT); 766 const LLT ValTy(ValVT); 767 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 768 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 769 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 770 const LLT PointerTy = LLT::pointer( 771 AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace)); 772 773 // Expected to be multiple regs for a single incoming arg. 774 // There should be Regs.size() ArgLocs per argument. 775 // This should be the same as getNumRegistersForCallingConv 776 const unsigned NumParts = Args[i].Flags.size(); 777 778 // Now split the registers into the assigned types. 779 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 780 781 if (NumParts != 1 || NewLLT != OrigTy) { 782 // If we can't directly assign the register, we need one or more 783 // intermediate values. 784 Args[i].Regs.resize(NumParts); 785 786 // When we have indirect parameter passing we are receiving a pointer, 787 // that points to the actual value, so we need one "temporary" pointer. 788 if (VA.getLocInfo() == CCValAssign::Indirect) { 789 if (Handler.isIncomingArgumentHandler()) 790 Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy); 791 } else { 792 // For each split register, create and assign a vreg that will store 793 // the incoming component of the larger value. These will later be 794 // merged to form the final vreg. 795 for (unsigned Part = 0; Part < NumParts; ++Part) 796 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 797 } 798 } 799 800 assert((j + (NumParts - 1)) < ArgLocs.size() && 801 "Too many regs for number of args"); 802 803 // Coerce into outgoing value types before register assignment. 804 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy && 805 VA.getLocInfo() != CCValAssign::Indirect) { 806 assert(Args[i].OrigRegs.size() == 1); 807 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 808 ValTy, extendOpFromFlags(Args[i].Flags[0])); 809 } 810 811 bool IndirectParameterPassingHandled = false; 812 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 813 for (unsigned Part = 0; Part < NumParts; ++Part) { 814 assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) && 815 "Only the first parameter should be processed when " 816 "handling indirect passing!"); 817 Register ArgReg = Args[i].Regs[Part]; 818 // There should be Regs.size() ArgLocs per argument. 819 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 820 CCValAssign &VA = ArgLocs[j + Idx]; 821 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 822 823 // We found an indirect parameter passing, and we have an 824 // OutgoingValueHandler as our handler (so we are at the call site or the 825 // return value). In this case, start the construction of the following 826 // GMIR, that is responsible for the preparation of indirect parameter 827 // passing: 828 // 829 // %1(indirectly passed type) = The value to pass 830 // %3(pointer) = G_FRAME_INDEX %stack.0 831 // G_STORE %1, %3 :: (store (s128), align 8) 832 // 833 // After this GMIR, the remaining part of the loop body will decide how 834 // to get the value to the caller and we break out of the loop. 835 if (VA.getLocInfo() == CCValAssign::Indirect && 836 !Handler.isIncomingArgumentHandler()) { 837 Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty); 838 MachineFrameInfo &MFI = MF.getFrameInfo(); 839 // Get some space on the stack for the value, so later we can pass it 840 // as a reference. 841 int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(), 842 AlignmentForStored, false); 843 Register PointerToStackReg = 844 MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0); 845 MachinePointerInfo StackPointerMPO = 846 MachinePointerInfo::getFixedStack(MF, FrameIdx); 847 // Store the value in the previously created stack space. 848 MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg, 849 StackPointerMPO, 850 inferAlignFromPtrInfo(MF, StackPointerMPO)); 851 852 ArgReg = PointerToStackReg; 853 IndirectParameterPassingHandled = true; 854 } 855 856 if (VA.isMemLoc() && !Flags.isByVal()) { 857 // Individual pieces may have been spilled to the stack and others 858 // passed in registers. 859 860 // TODO: The memory size may be larger than the value we need to 861 // store. We may need to adjust the offset for big endian targets. 862 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 863 864 MachinePointerInfo MPO; 865 Register StackAddr = 866 Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect 867 ? PointerTy.getSizeInBytes() 868 : MemTy.getSizeInBytes(), 869 VA.getLocMemOffset(), MPO, Flags); 870 871 // Finish the handling of indirect passing from the passers 872 // (OutgoingParameterHandler) side. 873 // This branch is needed, so the pointer to the value is loaded onto the 874 // stack. 875 if (VA.getLocInfo() == CCValAssign::Indirect) 876 Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA); 877 else 878 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 879 } else if (VA.isMemLoc() && Flags.isByVal()) { 880 assert(Args[i].Regs.size() == 1 && 881 "didn't expect split byval pointer"); 882 883 if (Handler.isIncomingArgumentHandler()) { 884 // We just need to copy the frame index value to the pointer. 885 MachinePointerInfo MPO; 886 Register StackAddr = Handler.getStackAddress( 887 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 888 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 889 } else { 890 // For outgoing byval arguments, insert the implicit copy byval 891 // implies, such that writes in the callee do not modify the caller's 892 // value. 893 uint64_t MemSize = Flags.getByValSize(); 894 int64_t Offset = VA.getLocMemOffset(); 895 896 MachinePointerInfo DstMPO; 897 Register StackAddr = 898 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 899 900 MachinePointerInfo SrcMPO(Args[i].OrigValue); 901 if (!Args[i].OrigValue) { 902 // We still need to accurately track the stack address space if we 903 // don't know the underlying value. 904 const LLT PtrTy = MRI.getType(StackAddr); 905 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 906 } 907 908 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 909 inferAlignFromPtrInfo(MF, DstMPO)); 910 911 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 912 inferAlignFromPtrInfo(MF, SrcMPO)); 913 914 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 915 DstMPO, DstAlign, SrcMPO, SrcAlign, 916 MemSize, VA); 917 } 918 } else if (i == 0 && !ThisReturnRegs.empty() && 919 Handler.isIncomingArgumentHandler() && 920 isTypeIsValidForThisReturn(ValVT)) { 921 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 922 } else if (Handler.isIncomingArgumentHandler()) { 923 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 924 } else { 925 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 926 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 927 }); 928 } 929 930 // Finish the handling of indirect parameter passing when receiving 931 // the value (we are in the called function or the caller when receiving 932 // the return value). 933 if (VA.getLocInfo() == CCValAssign::Indirect && 934 Handler.isIncomingArgumentHandler()) { 935 Align Alignment = DL.getABITypeAlign(Args[i].Ty); 936 MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF); 937 938 // Since we are doing indirect parameter passing, we know that the value 939 // in the temporary register is not the value passed to the function, 940 // but rather a pointer to that value. Let's load that value into the 941 // virtual register where the parameter should go. 942 MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO, 943 Alignment); 944 945 IndirectParameterPassingHandled = true; 946 } 947 948 if (IndirectParameterPassingHandled) 949 break; 950 } 951 952 // Now that all pieces have been assigned, re-pack the register typed values 953 // into the original value typed registers. This is only necessary, when 954 // the value was passed in multiple registers, not indirectly. 955 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT && 956 !IndirectParameterPassingHandled) { 957 // Merge the split registers into the expected larger result vregs of 958 // the original call. 959 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 960 LocTy, Args[i].Flags[0]); 961 } 962 963 j += NumParts - 1; 964 } 965 for (auto &Fn : DelayedOutgoingRegAssignments) 966 Fn(); 967 968 return true; 969 } 970 971 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 972 ArrayRef<Register> VRegs, Register DemoteReg, 973 int FI) const { 974 MachineFunction &MF = MIRBuilder.getMF(); 975 MachineRegisterInfo &MRI = MF.getRegInfo(); 976 const DataLayout &DL = MF.getDataLayout(); 977 978 SmallVector<EVT, 4> SplitVTs; 979 SmallVector<uint64_t, 4> Offsets; 980 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 981 982 assert(VRegs.size() == SplitVTs.size()); 983 984 unsigned NumValues = SplitVTs.size(); 985 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 986 Type *RetPtrTy = 987 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); 988 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); 989 990 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 991 992 for (unsigned I = 0; I < NumValues; ++I) { 993 Register Addr; 994 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 995 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 996 MRI.getType(VRegs[I]), 997 commonAlignment(BaseAlign, Offsets[I])); 998 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 999 } 1000 } 1001 1002 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 1003 ArrayRef<Register> VRegs, 1004 Register DemoteReg) const { 1005 MachineFunction &MF = MIRBuilder.getMF(); 1006 MachineRegisterInfo &MRI = MF.getRegInfo(); 1007 const DataLayout &DL = MF.getDataLayout(); 1008 1009 SmallVector<EVT, 4> SplitVTs; 1010 SmallVector<uint64_t, 4> Offsets; 1011 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 1012 1013 assert(VRegs.size() == SplitVTs.size()); 1014 1015 unsigned NumValues = SplitVTs.size(); 1016 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 1017 unsigned AS = DL.getAllocaAddrSpace(); 1018 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL); 1019 1020 MachinePointerInfo PtrInfo(AS); 1021 1022 for (unsigned I = 0; I < NumValues; ++I) { 1023 Register Addr; 1024 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 1025 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 1026 MRI.getType(VRegs[I]), 1027 commonAlignment(BaseAlign, Offsets[I])); 1028 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 1029 } 1030 } 1031 1032 void CallLowering::insertSRetIncomingArgument( 1033 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 1034 MachineRegisterInfo &MRI, const DataLayout &DL) const { 1035 unsigned AS = DL.getAllocaAddrSpace(); 1036 DemoteReg = MRI.createGenericVirtualRegister( 1037 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 1038 1039 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 1040 1041 SmallVector<EVT, 1> ValueVTs; 1042 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 1043 1044 // NOTE: Assume that a pointer won't get split into more than one VT. 1045 assert(ValueVTs.size() == 1); 1046 1047 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 1048 ArgInfo::NoArgIndex); 1049 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 1050 DemoteArg.Flags[0].setSRet(); 1051 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 1052 } 1053 1054 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 1055 const CallBase &CB, 1056 CallLoweringInfo &Info) const { 1057 const DataLayout &DL = MIRBuilder.getDataLayout(); 1058 Type *RetTy = CB.getType(); 1059 unsigned AS = DL.getAllocaAddrSpace(); 1060 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1061 1062 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 1063 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 1064 1065 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 1066 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 1067 ArgInfo::NoArgIndex); 1068 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 1069 DemoteArg.Flags[0].setSRet(); 1070 1071 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 1072 Info.DemoteStackIndex = FI; 1073 Info.DemoteRegister = DemoteReg; 1074 } 1075 1076 bool CallLowering::checkReturn(CCState &CCInfo, 1077 SmallVectorImpl<BaseArgInfo> &Outs, 1078 CCAssignFn *Fn) const { 1079 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 1080 MVT VT = MVT::getVT(Outs[I].Ty); 1081 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 1082 return false; 1083 } 1084 return true; 1085 } 1086 1087 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 1088 AttributeList Attrs, 1089 SmallVectorImpl<BaseArgInfo> &Outs, 1090 const DataLayout &DL) const { 1091 LLVMContext &Context = RetTy->getContext(); 1092 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1093 1094 SmallVector<EVT, 4> SplitVTs; 1095 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 1096 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 1097 1098 for (EVT VT : SplitVTs) { 1099 unsigned NumParts = 1100 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 1101 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 1102 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 1103 1104 for (unsigned I = 0; I < NumParts; ++I) { 1105 Outs.emplace_back(PartTy, Flags); 1106 } 1107 } 1108 } 1109 1110 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 1111 const auto &F = MF.getFunction(); 1112 Type *ReturnType = F.getReturnType(); 1113 CallingConv::ID CallConv = F.getCallingConv(); 1114 1115 SmallVector<BaseArgInfo, 4> SplitArgs; 1116 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 1117 MF.getDataLayout()); 1118 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 1119 } 1120 1121 bool CallLowering::parametersInCSRMatch( 1122 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 1123 const SmallVectorImpl<CCValAssign> &OutLocs, 1124 const SmallVectorImpl<ArgInfo> &OutArgs) const { 1125 for (unsigned i = 0; i < OutLocs.size(); ++i) { 1126 const auto &ArgLoc = OutLocs[i]; 1127 // If it's not a register, it's fine. 1128 if (!ArgLoc.isRegLoc()) 1129 continue; 1130 1131 MCRegister PhysReg = ArgLoc.getLocReg(); 1132 1133 // Only look at callee-saved registers. 1134 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 1135 continue; 1136 1137 LLVM_DEBUG( 1138 dbgs() 1139 << "... Call has an argument passed in a callee-saved register.\n"); 1140 1141 // Check if it was copied from. 1142 const ArgInfo &OutInfo = OutArgs[i]; 1143 1144 if (OutInfo.Regs.size() > 1) { 1145 LLVM_DEBUG( 1146 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 1147 return false; 1148 } 1149 1150 // Check if we copy the register, walking through copies from virtual 1151 // registers. Note that getDefIgnoringCopies does not ignore copies from 1152 // physical registers. 1153 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 1154 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 1155 LLVM_DEBUG( 1156 dbgs() 1157 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1158 return false; 1159 } 1160 1161 // Got a copy. Verify that it's the same as the register we want. 1162 Register CopyRHS = RegDef->getOperand(1).getReg(); 1163 if (CopyRHS != PhysReg) { 1164 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1165 "VReg, cannot tail call.\n"); 1166 return false; 1167 } 1168 } 1169 1170 return true; 1171 } 1172 1173 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1174 MachineFunction &MF, 1175 SmallVectorImpl<ArgInfo> &InArgs, 1176 ValueAssigner &CalleeAssigner, 1177 ValueAssigner &CallerAssigner) const { 1178 const Function &F = MF.getFunction(); 1179 CallingConv::ID CalleeCC = Info.CallConv; 1180 CallingConv::ID CallerCC = F.getCallingConv(); 1181 1182 if (CallerCC == CalleeCC) 1183 return true; 1184 1185 SmallVector<CCValAssign, 16> ArgLocs1; 1186 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1187 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1188 return false; 1189 1190 SmallVector<CCValAssign, 16> ArgLocs2; 1191 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1192 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1193 return false; 1194 1195 // We need the argument locations to match up exactly. If there's more in 1196 // one than the other, then we are done. 1197 if (ArgLocs1.size() != ArgLocs2.size()) 1198 return false; 1199 1200 // Make sure that each location is passed in exactly the same way. 1201 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1202 const CCValAssign &Loc1 = ArgLocs1[i]; 1203 const CCValAssign &Loc2 = ArgLocs2[i]; 1204 1205 // We need both of them to be the same. So if one is a register and one 1206 // isn't, we're done. 1207 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1208 return false; 1209 1210 if (Loc1.isRegLoc()) { 1211 // If they don't have the same register location, we're done. 1212 if (Loc1.getLocReg() != Loc2.getLocReg()) 1213 return false; 1214 1215 // They matched, so we can move to the next ArgLoc. 1216 continue; 1217 } 1218 1219 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1220 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1221 return false; 1222 } 1223 1224 return true; 1225 } 1226 1227 LLT CallLowering::ValueHandler::getStackValueStoreType( 1228 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1229 const MVT ValVT = VA.getValVT(); 1230 if (ValVT != MVT::iPTR) { 1231 LLT ValTy(ValVT); 1232 1233 // We lost the pointeriness going through CCValAssign, so try to restore it 1234 // based on the flags. 1235 if (Flags.isPointer()) { 1236 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1237 ValTy.getScalarSizeInBits()); 1238 if (ValVT.isVector()) 1239 return LLT::vector(ValTy.getElementCount(), PtrTy); 1240 return PtrTy; 1241 } 1242 1243 return ValTy; 1244 } 1245 1246 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1247 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1248 } 1249 1250 void CallLowering::ValueHandler::copyArgumentMemory( 1251 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1252 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1253 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1254 CCValAssign &VA) const { 1255 MachineFunction &MF = MIRBuilder.getMF(); 1256 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1257 SrcPtrInfo, 1258 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1259 SrcAlign); 1260 1261 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1262 DstPtrInfo, 1263 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1264 MemSize, DstAlign); 1265 1266 const LLT PtrTy = MRI.getType(DstPtr); 1267 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1268 1269 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1270 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1271 } 1272 1273 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1274 const CCValAssign &VA, 1275 unsigned MaxSizeBits) { 1276 LLT LocTy{VA.getLocVT()}; 1277 LLT ValTy{VA.getValVT()}; 1278 1279 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1280 return ValReg; 1281 1282 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1283 if (MaxSizeBits <= ValTy.getSizeInBits()) 1284 return ValReg; 1285 LocTy = LLT::scalar(MaxSizeBits); 1286 } 1287 1288 const LLT ValRegTy = MRI.getType(ValReg); 1289 if (ValRegTy.isPointer()) { 1290 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1291 // we have to cast to do the extension. 1292 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1293 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1294 } 1295 1296 switch (VA.getLocInfo()) { 1297 default: break; 1298 case CCValAssign::Full: 1299 case CCValAssign::BCvt: 1300 // FIXME: bitconverting between vector types may or may not be a 1301 // nop in big-endian situations. 1302 return ValReg; 1303 case CCValAssign::AExt: { 1304 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1305 return MIB.getReg(0); 1306 } 1307 case CCValAssign::SExt: { 1308 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1309 MIRBuilder.buildSExt(NewReg, ValReg); 1310 return NewReg; 1311 } 1312 case CCValAssign::ZExt: { 1313 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1314 MIRBuilder.buildZExt(NewReg, ValReg); 1315 return NewReg; 1316 } 1317 } 1318 llvm_unreachable("unable to extend register"); 1319 } 1320 1321 void CallLowering::ValueAssigner::anchor() {} 1322 1323 Register CallLowering::IncomingValueHandler::buildExtensionHint( 1324 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { 1325 switch (VA.getLocInfo()) { 1326 case CCValAssign::LocInfo::ZExt: { 1327 return MIRBuilder 1328 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1329 NarrowTy.getScalarSizeInBits()) 1330 .getReg(0); 1331 } 1332 case CCValAssign::LocInfo::SExt: { 1333 return MIRBuilder 1334 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1335 NarrowTy.getScalarSizeInBits()) 1336 .getReg(0); 1337 break; 1338 } 1339 default: 1340 return SrcReg; 1341 } 1342 } 1343 1344 /// Check if we can use a basic COPY instruction between the two types. 1345 /// 1346 /// We're currently building on top of the infrastructure using MVT, which loses 1347 /// pointer information in the CCValAssign. We accept copies from physical 1348 /// registers that have been reported as integers if it's to an equivalent sized 1349 /// pointer LLT. 1350 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1351 if (SrcTy == DstTy) 1352 return true; 1353 1354 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1355 return false; 1356 1357 SrcTy = SrcTy.getScalarType(); 1358 DstTy = DstTy.getScalarType(); 1359 1360 return (SrcTy.isPointer() && DstTy.isScalar()) || 1361 (DstTy.isPointer() && SrcTy.isScalar()); 1362 } 1363 1364 void CallLowering::IncomingValueHandler::assignValueToReg( 1365 Register ValVReg, Register PhysReg, const CCValAssign &VA) { 1366 const MVT LocVT = VA.getLocVT(); 1367 const LLT LocTy(LocVT); 1368 const LLT RegTy = MRI.getType(ValVReg); 1369 1370 if (isCopyCompatibleType(RegTy, LocTy)) { 1371 MIRBuilder.buildCopy(ValVReg, PhysReg); 1372 return; 1373 } 1374 1375 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1376 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1377 MIRBuilder.buildTrunc(ValVReg, Hint); 1378 } 1379