1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftAsync)) 58 Flags.setSwiftAsync(); 59 if (AttrFn(Attribute::SwiftError)) 60 Flags.setSwiftError(); 61 } 62 63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 64 unsigned ArgIdx) const { 65 ISD::ArgFlagsTy Flags; 66 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 67 return Call.paramHasAttr(ArgIdx, Attr); 68 }); 69 return Flags; 70 } 71 72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 73 const AttributeList &Attrs, 74 unsigned OpIdx) const { 75 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 76 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 77 }); 78 } 79 80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 81 ArrayRef<Register> ResRegs, 82 ArrayRef<ArrayRef<Register>> ArgRegs, 83 Register SwiftErrorVReg, 84 std::function<unsigned()> GetCalleeReg) const { 85 CallLoweringInfo Info; 86 const DataLayout &DL = MIRBuilder.getDataLayout(); 87 MachineFunction &MF = MIRBuilder.getMF(); 88 MachineRegisterInfo &MRI = MF.getRegInfo(); 89 bool CanBeTailCalled = CB.isTailCall() && 90 isInTailCallPosition(CB, MF.getTarget()) && 91 (MF.getFunction() 92 .getFnAttribute("disable-tail-calls") 93 .getValueAsString() != "true"); 94 95 CallingConv::ID CallConv = CB.getCallingConv(); 96 Type *RetTy = CB.getType(); 97 bool IsVarArg = CB.getFunctionType()->isVarArg(); 98 99 SmallVector<BaseArgInfo, 4> SplitArgs; 100 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 101 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 102 103 if (!Info.CanLowerReturn) { 104 // Callee requires sret demotion. 105 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 106 107 // The sret demotion isn't compatible with tail-calls, since the sret 108 // argument points into the caller's stack frame. 109 CanBeTailCalled = false; 110 } 111 112 113 // First step is to marshall all the function's parameters into the correct 114 // physregs and memory locations. Gather the sequence of argument types that 115 // we'll pass to the assigner function. 116 unsigned i = 0; 117 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 118 for (auto &Arg : CB.args()) { 119 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 120 i < NumFixedArgs}; 121 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 122 123 // If we have an explicit sret argument that is an Instruction, (i.e., it 124 // might point to function-local memory), we can't meaningfully tail-call. 125 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 126 CanBeTailCalled = false; 127 128 Info.OrigArgs.push_back(OrigArg); 129 ++i; 130 } 131 132 // Try looking through a bitcast from one function type to another. 133 // Commonly happens with calls to objc_msgSend(). 134 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 135 if (const Function *F = dyn_cast<Function>(CalleeV)) 136 Info.Callee = MachineOperand::CreateGA(F, 0); 137 else 138 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 139 140 Register ReturnHintAlignReg; 141 Align ReturnHintAlign; 142 143 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 144 145 if (!Info.OrigRet.Ty->isVoidTy()) { 146 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 147 148 if (MaybeAlign Alignment = CB.getRetAlign()) { 149 if (*Alignment > Align(1)) { 150 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 151 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 152 ReturnHintAlign = *Alignment; 153 } 154 } 155 } 156 157 Info.CB = &CB; 158 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 159 Info.CallConv = CallConv; 160 Info.SwiftErrorVReg = SwiftErrorVReg; 161 Info.IsMustTailCall = CB.isMustTailCall(); 162 Info.IsTailCall = CanBeTailCalled; 163 Info.IsVarArg = IsVarArg; 164 if (!lowerCall(MIRBuilder, Info)) 165 return false; 166 167 if (ReturnHintAlignReg && !Info.IsTailCall) { 168 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 169 ReturnHintAlign); 170 } 171 172 return true; 173 } 174 175 template <typename FuncInfoTy> 176 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 177 const DataLayout &DL, 178 const FuncInfoTy &FuncInfo) const { 179 auto &Flags = Arg.Flags[0]; 180 const AttributeList &Attrs = FuncInfo.getAttributes(); 181 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 182 183 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 184 if (PtrTy) { 185 Flags.setPointer(); 186 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 187 } 188 189 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 190 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 191 assert(OpIdx >= AttributeList::FirstArgIndex); 192 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 193 194 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 195 if (!ElementTy) 196 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 197 if (!ElementTy) 198 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 199 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 200 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 201 202 // For ByVal, alignment should be passed from FE. BE will guess if 203 // this info is not there but there are cases it cannot get right. 204 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 205 MemAlign = *ParamAlign; 206 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 207 MemAlign = *ParamAlign; 208 else 209 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 210 } else if (OpIdx >= AttributeList::FirstArgIndex) { 211 if (auto ParamAlign = 212 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 213 MemAlign = *ParamAlign; 214 } 215 Flags.setMemAlign(MemAlign); 216 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 217 218 // Don't try to use the returned attribute if the argument is marked as 219 // swiftself, since it won't be passed in x0. 220 if (Flags.isSwiftSelf()) 221 Flags.setReturned(false); 222 } 223 224 template void 225 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 226 const DataLayout &DL, 227 const Function &FuncInfo) const; 228 229 template void 230 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 231 const DataLayout &DL, 232 const CallBase &FuncInfo) const; 233 234 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 235 SmallVectorImpl<ArgInfo> &SplitArgs, 236 const DataLayout &DL, 237 CallingConv::ID CallConv, 238 SmallVectorImpl<uint64_t> *Offsets) const { 239 LLVMContext &Ctx = OrigArg.Ty->getContext(); 240 241 SmallVector<EVT, 4> SplitVTs; 242 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 243 244 if (SplitVTs.size() == 0) 245 return; 246 247 if (SplitVTs.size() == 1) { 248 // No splitting to do, but we want to replace the original type (e.g. [1 x 249 // double] -> double). 250 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 251 OrigArg.OrigArgIndex, OrigArg.Flags[0], 252 OrigArg.IsFixed, OrigArg.OrigValue); 253 return; 254 } 255 256 // Create one ArgInfo for each virtual register in the original ArgInfo. 257 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 258 259 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 260 OrigArg.Ty, CallConv, false, DL); 261 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 262 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 263 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 264 OrigArg.Flags[0], OrigArg.IsFixed); 265 if (NeedsRegBlock) 266 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 267 } 268 269 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 270 } 271 272 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 273 static MachineInstrBuilder 274 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 275 ArrayRef<Register> SrcRegs) { 276 MachineRegisterInfo &MRI = *B.getMRI(); 277 LLT LLTy = MRI.getType(DstRegs[0]); 278 LLT PartLLT = MRI.getType(SrcRegs[0]); 279 280 // Deal with v3s16 split into v2s16 281 LLT LCMTy = getCoverTy(LLTy, PartLLT); 282 if (LCMTy == LLTy) { 283 // Common case where no padding is needed. 284 assert(DstRegs.size() == 1); 285 return B.buildConcatVectors(DstRegs[0], SrcRegs); 286 } 287 288 // We need to create an unmerge to the result registers, which may require 289 // widening the original value. 290 Register UnmergeSrcReg; 291 if (LCMTy != PartLLT) { 292 assert(DstRegs.size() == 1); 293 return B.buildDeleteTrailingVectorElements(DstRegs[0], 294 B.buildMerge(LCMTy, SrcRegs)); 295 } else { 296 // We don't need to widen anything if we're extracting a scalar which was 297 // promoted to a vector e.g. s8 -> v4s8 -> s8 298 assert(SrcRegs.size() == 1); 299 UnmergeSrcReg = SrcRegs[0]; 300 } 301 302 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 303 304 SmallVector<Register, 8> PadDstRegs(NumDst); 305 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 306 307 // Create the excess dead defs for the unmerge. 308 for (int I = DstRegs.size(); I != NumDst; ++I) 309 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 310 311 if (PadDstRegs.size() == 1) 312 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 313 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 314 } 315 316 /// Create a sequence of instructions to combine pieces split into register 317 /// typed values to the original IR value. \p OrigRegs contains the destination 318 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 319 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 320 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 321 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 322 const ISD::ArgFlagsTy Flags) { 323 MachineRegisterInfo &MRI = *B.getMRI(); 324 325 if (PartLLT == LLTy) { 326 // We should have avoided introducing a new virtual register, and just 327 // directly assigned here. 328 assert(OrigRegs[0] == Regs[0]); 329 return; 330 } 331 332 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 333 Regs.size() == 1) { 334 B.buildBitcast(OrigRegs[0], Regs[0]); 335 return; 336 } 337 338 // A vector PartLLT needs extending to LLTy's element size. 339 // E.g. <2 x s64> = G_SEXT <2 x s32>. 340 if (PartLLT.isVector() == LLTy.isVector() && 341 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 342 (!PartLLT.isVector() || 343 PartLLT.getNumElements() == LLTy.getNumElements()) && 344 OrigRegs.size() == 1 && Regs.size() == 1) { 345 Register SrcReg = Regs[0]; 346 347 LLT LocTy = MRI.getType(SrcReg); 348 349 if (Flags.isSExt()) { 350 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 351 .getReg(0); 352 } else if (Flags.isZExt()) { 353 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 354 .getReg(0); 355 } 356 357 // Sometimes pointers are passed zero extended. 358 LLT OrigTy = MRI.getType(OrigRegs[0]); 359 if (OrigTy.isPointer()) { 360 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 361 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 362 return; 363 } 364 365 B.buildTrunc(OrigRegs[0], SrcReg); 366 return; 367 } 368 369 if (!LLTy.isVector() && !PartLLT.isVector()) { 370 assert(OrigRegs.size() == 1); 371 LLT OrigTy = MRI.getType(OrigRegs[0]); 372 373 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 374 if (SrcSize == OrigTy.getSizeInBits()) 375 B.buildMerge(OrigRegs[0], Regs); 376 else { 377 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 378 B.buildTrunc(OrigRegs[0], Widened); 379 } 380 381 return; 382 } 383 384 if (PartLLT.isVector()) { 385 assert(OrigRegs.size() == 1); 386 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 387 388 // If PartLLT is a mismatched vector in both number of elements and element 389 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 390 // have the same elt type, i.e. v4s32. 391 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 392 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 393 Regs.size() == 1) { 394 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 395 .changeElementCount(PartLLT.getElementCount() * 2); 396 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 397 PartLLT = NewTy; 398 } 399 400 if (LLTy.getScalarType() == PartLLT.getElementType()) { 401 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 402 } else { 403 unsigned I = 0; 404 LLT GCDTy = getGCDType(LLTy, PartLLT); 405 406 // We are both splitting a vector, and bitcasting its element types. Cast 407 // the source pieces into the appropriate number of pieces with the result 408 // element type. 409 for (Register SrcReg : CastRegs) 410 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 411 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 412 } 413 414 return; 415 } 416 417 assert(LLTy.isVector() && !PartLLT.isVector()); 418 419 LLT DstEltTy = LLTy.getElementType(); 420 421 // Pointer information was discarded. We'll need to coerce some register types 422 // to avoid violating type constraints. 423 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 424 425 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 426 427 if (DstEltTy == PartLLT) { 428 // Vector was trivially scalarized. 429 430 if (RealDstEltTy.isPointer()) { 431 for (Register Reg : Regs) 432 MRI.setType(Reg, RealDstEltTy); 433 } 434 435 B.buildBuildVector(OrigRegs[0], Regs); 436 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 437 // Deal with vector with 64-bit elements decomposed to 32-bit 438 // registers. Need to create intermediate 64-bit elements. 439 SmallVector<Register, 8> EltMerges; 440 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 441 442 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 443 444 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 445 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 446 // Fix the type in case this is really a vector of pointers. 447 MRI.setType(Merge.getReg(0), RealDstEltTy); 448 EltMerges.push_back(Merge.getReg(0)); 449 Regs = Regs.drop_front(PartsPerElt); 450 } 451 452 B.buildBuildVector(OrigRegs[0], EltMerges); 453 } else { 454 // Vector was split, and elements promoted to a wider type. 455 // FIXME: Should handle floating point promotions. 456 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 457 auto BV = B.buildBuildVector(BVType, Regs); 458 B.buildTrunc(OrigRegs[0], BV); 459 } 460 } 461 462 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 463 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 464 /// contain the type of scalar value extension if necessary. 465 /// 466 /// This is used for outgoing values (vregs to physregs) 467 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 468 Register SrcReg, LLT SrcTy, LLT PartTy, 469 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 470 // We could just insert a regular copy, but this is unreachable at the moment. 471 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 472 473 const unsigned PartSize = PartTy.getSizeInBits(); 474 475 if (PartTy.isVector() == SrcTy.isVector() && 476 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 477 assert(DstRegs.size() == 1); 478 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 479 return; 480 } 481 482 if (SrcTy.isVector() && !PartTy.isVector() && 483 PartSize > SrcTy.getElementType().getSizeInBits()) { 484 // Vector was scalarized, and the elements extended. 485 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 486 for (int i = 0, e = DstRegs.size(); i != e; ++i) 487 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 488 return; 489 } 490 491 LLT GCDTy = getGCDType(SrcTy, PartTy); 492 if (GCDTy == PartTy) { 493 // If this already evenly divisible, we can create a simple unmerge. 494 B.buildUnmerge(DstRegs, SrcReg); 495 return; 496 } 497 498 MachineRegisterInfo &MRI = *B.getMRI(); 499 LLT DstTy = MRI.getType(DstRegs[0]); 500 LLT LCMTy = getCoverTy(SrcTy, PartTy); 501 502 const unsigned DstSize = DstTy.getSizeInBits(); 503 const unsigned SrcSize = SrcTy.getSizeInBits(); 504 unsigned CoveringSize = LCMTy.getSizeInBits(); 505 506 Register UnmergeSrc = SrcReg; 507 508 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 509 // For scalars, it's common to be able to use a simple extension. 510 if (SrcTy.isScalar() && DstTy.isScalar()) { 511 CoveringSize = alignTo(SrcSize, DstSize); 512 LLT CoverTy = LLT::scalar(CoveringSize); 513 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 514 } else { 515 // Widen to the common type. 516 // FIXME: This should respect the extend type 517 Register Undef = B.buildUndef(SrcTy).getReg(0); 518 SmallVector<Register, 8> MergeParts(1, SrcReg); 519 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 520 MergeParts.push_back(Undef); 521 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 522 } 523 } 524 525 if (LCMTy.isVector() && CoveringSize != SrcSize) 526 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 527 528 B.buildUnmerge(DstRegs, UnmergeSrc); 529 } 530 531 bool CallLowering::determineAndHandleAssignments( 532 ValueHandler &Handler, ValueAssigner &Assigner, 533 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 534 CallingConv::ID CallConv, bool IsVarArg, 535 ArrayRef<Register> ThisReturnRegs) const { 536 MachineFunction &MF = MIRBuilder.getMF(); 537 const Function &F = MF.getFunction(); 538 SmallVector<CCValAssign, 16> ArgLocs; 539 540 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 541 if (!determineAssignments(Assigner, Args, CCInfo)) 542 return false; 543 544 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 545 ThisReturnRegs); 546 } 547 548 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 549 if (Flags.isSExt()) 550 return TargetOpcode::G_SEXT; 551 if (Flags.isZExt()) 552 return TargetOpcode::G_ZEXT; 553 return TargetOpcode::G_ANYEXT; 554 } 555 556 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 557 SmallVectorImpl<ArgInfo> &Args, 558 CCState &CCInfo) const { 559 LLVMContext &Ctx = CCInfo.getContext(); 560 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 561 562 unsigned NumArgs = Args.size(); 563 for (unsigned i = 0; i != NumArgs; ++i) { 564 EVT CurVT = EVT::getEVT(Args[i].Ty); 565 566 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 567 568 // If we need to split the type over multiple regs, check it's a scenario 569 // we currently support. 570 unsigned NumParts = 571 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 572 573 if (NumParts == 1) { 574 // Try to use the register type if we couldn't assign the VT. 575 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 576 Args[i].Flags[0], CCInfo)) 577 return false; 578 continue; 579 } 580 581 // For incoming arguments (physregs to vregs), we could have values in 582 // physregs (or memlocs) which we want to extract and copy to vregs. 583 // During this, we might have to deal with the LLT being split across 584 // multiple regs, so we have to record this information for later. 585 // 586 // If we have outgoing args, then we have the opposite case. We have a 587 // vreg with an LLT which we want to assign to a physical location, and 588 // we might have to record that the value has to be split later. 589 590 // We're handling an incoming arg which is split over multiple regs. 591 // E.g. passing an s128 on AArch64. 592 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 593 Args[i].Flags.clear(); 594 595 for (unsigned Part = 0; Part < NumParts; ++Part) { 596 ISD::ArgFlagsTy Flags = OrigFlags; 597 if (Part == 0) { 598 Flags.setSplit(); 599 } else { 600 Flags.setOrigAlign(Align(1)); 601 if (Part == NumParts - 1) 602 Flags.setSplitEnd(); 603 } 604 605 Args[i].Flags.push_back(Flags); 606 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 607 Args[i].Flags[Part], CCInfo)) { 608 // Still couldn't assign this smaller part type for some reason. 609 return false; 610 } 611 } 612 } 613 614 return true; 615 } 616 617 bool CallLowering::handleAssignments(ValueHandler &Handler, 618 SmallVectorImpl<ArgInfo> &Args, 619 CCState &CCInfo, 620 SmallVectorImpl<CCValAssign> &ArgLocs, 621 MachineIRBuilder &MIRBuilder, 622 ArrayRef<Register> ThisReturnRegs) const { 623 MachineFunction &MF = MIRBuilder.getMF(); 624 MachineRegisterInfo &MRI = MF.getRegInfo(); 625 const Function &F = MF.getFunction(); 626 const DataLayout &DL = F.getParent()->getDataLayout(); 627 628 const unsigned NumArgs = Args.size(); 629 630 // Stores thunks for outgoing register assignments. This is used so we delay 631 // generating register copies until mem loc assignments are done. We do this 632 // so that if the target is using the delayed stack protector feature, we can 633 // find the split point of the block accurately. E.g. if we have: 634 // G_STORE %val, %memloc 635 // $x0 = COPY %foo 636 // $x1 = COPY %bar 637 // CALL func 638 // ... then the split point for the block will correctly be at, and including, 639 // the copy to $x0. If instead the G_STORE instruction immediately precedes 640 // the CALL, then we'd prematurely choose the CALL as the split point, thus 641 // generating a split block with a CALL that uses undefined physregs. 642 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 643 644 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 645 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 646 CCValAssign &VA = ArgLocs[j]; 647 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 648 649 if (VA.needsCustom()) { 650 std::function<void()> Thunk; 651 unsigned NumArgRegs = Handler.assignCustomValue( 652 Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk); 653 if (Thunk) 654 DelayedOutgoingRegAssignments.emplace_back(Thunk); 655 if (!NumArgRegs) 656 return false; 657 j += NumArgRegs; 658 continue; 659 } 660 661 const MVT ValVT = VA.getValVT(); 662 const MVT LocVT = VA.getLocVT(); 663 664 const LLT LocTy(LocVT); 665 const LLT ValTy(ValVT); 666 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 667 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 668 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 669 670 // Expected to be multiple regs for a single incoming arg. 671 // There should be Regs.size() ArgLocs per argument. 672 // This should be the same as getNumRegistersForCallingConv 673 const unsigned NumParts = Args[i].Flags.size(); 674 675 // Now split the registers into the assigned types. 676 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 677 678 if (NumParts != 1 || NewLLT != OrigTy) { 679 // If we can't directly assign the register, we need one or more 680 // intermediate values. 681 Args[i].Regs.resize(NumParts); 682 683 // For each split register, create and assign a vreg that will store 684 // the incoming component of the larger value. These will later be 685 // merged to form the final vreg. 686 for (unsigned Part = 0; Part < NumParts; ++Part) 687 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 688 } 689 690 assert((j + (NumParts - 1)) < ArgLocs.size() && 691 "Too many regs for number of args"); 692 693 // Coerce into outgoing value types before register assignment. 694 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 695 assert(Args[i].OrigRegs.size() == 1); 696 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 697 ValTy, extendOpFromFlags(Args[i].Flags[0])); 698 } 699 700 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 701 for (unsigned Part = 0; Part < NumParts; ++Part) { 702 Register ArgReg = Args[i].Regs[Part]; 703 // There should be Regs.size() ArgLocs per argument. 704 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 705 CCValAssign &VA = ArgLocs[j + Idx]; 706 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 707 708 if (VA.isMemLoc() && !Flags.isByVal()) { 709 // Individual pieces may have been spilled to the stack and others 710 // passed in registers. 711 712 // TODO: The memory size may be larger than the value we need to 713 // store. We may need to adjust the offset for big endian targets. 714 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 715 716 MachinePointerInfo MPO; 717 Register StackAddr = Handler.getStackAddress( 718 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 719 720 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 721 continue; 722 } 723 724 if (VA.isMemLoc() && Flags.isByVal()) { 725 assert(Args[i].Regs.size() == 1 && 726 "didn't expect split byval pointer"); 727 728 if (Handler.isIncomingArgumentHandler()) { 729 // We just need to copy the frame index value to the pointer. 730 MachinePointerInfo MPO; 731 Register StackAddr = Handler.getStackAddress( 732 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 733 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 734 } else { 735 // For outgoing byval arguments, insert the implicit copy byval 736 // implies, such that writes in the callee do not modify the caller's 737 // value. 738 uint64_t MemSize = Flags.getByValSize(); 739 int64_t Offset = VA.getLocMemOffset(); 740 741 MachinePointerInfo DstMPO; 742 Register StackAddr = 743 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 744 745 MachinePointerInfo SrcMPO(Args[i].OrigValue); 746 if (!Args[i].OrigValue) { 747 // We still need to accurately track the stack address space if we 748 // don't know the underlying value. 749 const LLT PtrTy = MRI.getType(StackAddr); 750 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 751 } 752 753 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 754 inferAlignFromPtrInfo(MF, DstMPO)); 755 756 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 757 inferAlignFromPtrInfo(MF, SrcMPO)); 758 759 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 760 DstMPO, DstAlign, SrcMPO, SrcAlign, 761 MemSize, VA); 762 } 763 continue; 764 } 765 766 assert(!VA.needsCustom() && "custom loc should have been handled already"); 767 768 if (i == 0 && !ThisReturnRegs.empty() && 769 Handler.isIncomingArgumentHandler() && 770 isTypeIsValidForThisReturn(ValVT)) { 771 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 772 continue; 773 } 774 775 if (Handler.isIncomingArgumentHandler()) 776 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 777 else { 778 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 779 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 780 }); 781 } 782 } 783 784 // Now that all pieces have been assigned, re-pack the register typed values 785 // into the original value typed registers. 786 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 787 // Merge the split registers into the expected larger result vregs of 788 // the original call. 789 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 790 LocTy, Args[i].Flags[0]); 791 } 792 793 j += NumParts - 1; 794 } 795 for (auto &Fn : DelayedOutgoingRegAssignments) 796 Fn(); 797 798 return true; 799 } 800 801 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 802 ArrayRef<Register> VRegs, Register DemoteReg, 803 int FI) const { 804 MachineFunction &MF = MIRBuilder.getMF(); 805 MachineRegisterInfo &MRI = MF.getRegInfo(); 806 const DataLayout &DL = MF.getDataLayout(); 807 808 SmallVector<EVT, 4> SplitVTs; 809 SmallVector<uint64_t, 4> Offsets; 810 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 811 812 assert(VRegs.size() == SplitVTs.size()); 813 814 unsigned NumValues = SplitVTs.size(); 815 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 816 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 817 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 818 819 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 820 821 for (unsigned I = 0; I < NumValues; ++I) { 822 Register Addr; 823 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 824 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 825 MRI.getType(VRegs[I]), 826 commonAlignment(BaseAlign, Offsets[I])); 827 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 828 } 829 } 830 831 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 832 ArrayRef<Register> VRegs, 833 Register DemoteReg) const { 834 MachineFunction &MF = MIRBuilder.getMF(); 835 MachineRegisterInfo &MRI = MF.getRegInfo(); 836 const DataLayout &DL = MF.getDataLayout(); 837 838 SmallVector<EVT, 4> SplitVTs; 839 SmallVector<uint64_t, 4> Offsets; 840 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 841 842 assert(VRegs.size() == SplitVTs.size()); 843 844 unsigned NumValues = SplitVTs.size(); 845 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 846 unsigned AS = DL.getAllocaAddrSpace(); 847 LLT OffsetLLTy = 848 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 849 850 MachinePointerInfo PtrInfo(AS); 851 852 for (unsigned I = 0; I < NumValues; ++I) { 853 Register Addr; 854 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 855 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 856 MRI.getType(VRegs[I]), 857 commonAlignment(BaseAlign, Offsets[I])); 858 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 859 } 860 } 861 862 void CallLowering::insertSRetIncomingArgument( 863 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 864 MachineRegisterInfo &MRI, const DataLayout &DL) const { 865 unsigned AS = DL.getAllocaAddrSpace(); 866 DemoteReg = MRI.createGenericVirtualRegister( 867 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 868 869 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 870 871 SmallVector<EVT, 1> ValueVTs; 872 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 873 874 // NOTE: Assume that a pointer won't get split into more than one VT. 875 assert(ValueVTs.size() == 1); 876 877 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 878 ArgInfo::NoArgIndex); 879 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 880 DemoteArg.Flags[0].setSRet(); 881 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 882 } 883 884 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 885 const CallBase &CB, 886 CallLoweringInfo &Info) const { 887 const DataLayout &DL = MIRBuilder.getDataLayout(); 888 Type *RetTy = CB.getType(); 889 unsigned AS = DL.getAllocaAddrSpace(); 890 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 891 892 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 893 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 894 895 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 896 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 897 ArgInfo::NoArgIndex); 898 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 899 DemoteArg.Flags[0].setSRet(); 900 901 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 902 Info.DemoteStackIndex = FI; 903 Info.DemoteRegister = DemoteReg; 904 } 905 906 bool CallLowering::checkReturn(CCState &CCInfo, 907 SmallVectorImpl<BaseArgInfo> &Outs, 908 CCAssignFn *Fn) const { 909 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 910 MVT VT = MVT::getVT(Outs[I].Ty); 911 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 912 return false; 913 } 914 return true; 915 } 916 917 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 918 AttributeList Attrs, 919 SmallVectorImpl<BaseArgInfo> &Outs, 920 const DataLayout &DL) const { 921 LLVMContext &Context = RetTy->getContext(); 922 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 923 924 SmallVector<EVT, 4> SplitVTs; 925 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 926 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 927 928 for (EVT VT : SplitVTs) { 929 unsigned NumParts = 930 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 931 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 932 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 933 934 for (unsigned I = 0; I < NumParts; ++I) { 935 Outs.emplace_back(PartTy, Flags); 936 } 937 } 938 } 939 940 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 941 const auto &F = MF.getFunction(); 942 Type *ReturnType = F.getReturnType(); 943 CallingConv::ID CallConv = F.getCallingConv(); 944 945 SmallVector<BaseArgInfo, 4> SplitArgs; 946 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 947 MF.getDataLayout()); 948 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 949 } 950 951 bool CallLowering::parametersInCSRMatch( 952 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 953 const SmallVectorImpl<CCValAssign> &OutLocs, 954 const SmallVectorImpl<ArgInfo> &OutArgs) const { 955 for (unsigned i = 0; i < OutLocs.size(); ++i) { 956 auto &ArgLoc = OutLocs[i]; 957 // If it's not a register, it's fine. 958 if (!ArgLoc.isRegLoc()) 959 continue; 960 961 MCRegister PhysReg = ArgLoc.getLocReg(); 962 963 // Only look at callee-saved registers. 964 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 965 continue; 966 967 LLVM_DEBUG( 968 dbgs() 969 << "... Call has an argument passed in a callee-saved register.\n"); 970 971 // Check if it was copied from. 972 const ArgInfo &OutInfo = OutArgs[i]; 973 974 if (OutInfo.Regs.size() > 1) { 975 LLVM_DEBUG( 976 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 977 return false; 978 } 979 980 // Check if we copy the register, walking through copies from virtual 981 // registers. Note that getDefIgnoringCopies does not ignore copies from 982 // physical registers. 983 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 984 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 985 LLVM_DEBUG( 986 dbgs() 987 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 988 return false; 989 } 990 991 // Got a copy. Verify that it's the same as the register we want. 992 Register CopyRHS = RegDef->getOperand(1).getReg(); 993 if (CopyRHS != PhysReg) { 994 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 995 "VReg, cannot tail call.\n"); 996 return false; 997 } 998 } 999 1000 return true; 1001 } 1002 1003 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1004 MachineFunction &MF, 1005 SmallVectorImpl<ArgInfo> &InArgs, 1006 ValueAssigner &CalleeAssigner, 1007 ValueAssigner &CallerAssigner) const { 1008 const Function &F = MF.getFunction(); 1009 CallingConv::ID CalleeCC = Info.CallConv; 1010 CallingConv::ID CallerCC = F.getCallingConv(); 1011 1012 if (CallerCC == CalleeCC) 1013 return true; 1014 1015 SmallVector<CCValAssign, 16> ArgLocs1; 1016 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1017 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1018 return false; 1019 1020 SmallVector<CCValAssign, 16> ArgLocs2; 1021 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1022 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1023 return false; 1024 1025 // We need the argument locations to match up exactly. If there's more in 1026 // one than the other, then we are done. 1027 if (ArgLocs1.size() != ArgLocs2.size()) 1028 return false; 1029 1030 // Make sure that each location is passed in exactly the same way. 1031 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1032 const CCValAssign &Loc1 = ArgLocs1[i]; 1033 const CCValAssign &Loc2 = ArgLocs2[i]; 1034 1035 // We need both of them to be the same. So if one is a register and one 1036 // isn't, we're done. 1037 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1038 return false; 1039 1040 if (Loc1.isRegLoc()) { 1041 // If they don't have the same register location, we're done. 1042 if (Loc1.getLocReg() != Loc2.getLocReg()) 1043 return false; 1044 1045 // They matched, so we can move to the next ArgLoc. 1046 continue; 1047 } 1048 1049 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1050 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1051 return false; 1052 } 1053 1054 return true; 1055 } 1056 1057 LLT CallLowering::ValueHandler::getStackValueStoreType( 1058 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1059 const MVT ValVT = VA.getValVT(); 1060 if (ValVT != MVT::iPTR) { 1061 LLT ValTy(ValVT); 1062 1063 // We lost the pointeriness going through CCValAssign, so try to restore it 1064 // based on the flags. 1065 if (Flags.isPointer()) { 1066 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1067 ValTy.getScalarSizeInBits()); 1068 if (ValVT.isVector()) 1069 return LLT::vector(ValTy.getElementCount(), PtrTy); 1070 return PtrTy; 1071 } 1072 1073 return ValTy; 1074 } 1075 1076 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1077 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1078 } 1079 1080 void CallLowering::ValueHandler::copyArgumentMemory( 1081 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1082 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1083 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1084 CCValAssign &VA) const { 1085 MachineFunction &MF = MIRBuilder.getMF(); 1086 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1087 SrcPtrInfo, 1088 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1089 SrcAlign); 1090 1091 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1092 DstPtrInfo, 1093 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1094 MemSize, DstAlign); 1095 1096 const LLT PtrTy = MRI.getType(DstPtr); 1097 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1098 1099 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1100 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1101 } 1102 1103 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1104 CCValAssign &VA, 1105 unsigned MaxSizeBits) { 1106 LLT LocTy{VA.getLocVT()}; 1107 LLT ValTy{VA.getValVT()}; 1108 1109 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1110 return ValReg; 1111 1112 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1113 if (MaxSizeBits <= ValTy.getSizeInBits()) 1114 return ValReg; 1115 LocTy = LLT::scalar(MaxSizeBits); 1116 } 1117 1118 const LLT ValRegTy = MRI.getType(ValReg); 1119 if (ValRegTy.isPointer()) { 1120 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1121 // we have to cast to do the extension. 1122 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1123 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1124 } 1125 1126 switch (VA.getLocInfo()) { 1127 default: break; 1128 case CCValAssign::Full: 1129 case CCValAssign::BCvt: 1130 // FIXME: bitconverting between vector types may or may not be a 1131 // nop in big-endian situations. 1132 return ValReg; 1133 case CCValAssign::AExt: { 1134 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1135 return MIB.getReg(0); 1136 } 1137 case CCValAssign::SExt: { 1138 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1139 MIRBuilder.buildSExt(NewReg, ValReg); 1140 return NewReg; 1141 } 1142 case CCValAssign::ZExt: { 1143 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1144 MIRBuilder.buildZExt(NewReg, ValReg); 1145 return NewReg; 1146 } 1147 } 1148 llvm_unreachable("unable to extend register"); 1149 } 1150 1151 void CallLowering::ValueAssigner::anchor() {} 1152 1153 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1154 Register SrcReg, 1155 LLT NarrowTy) { 1156 switch (VA.getLocInfo()) { 1157 case CCValAssign::LocInfo::ZExt: { 1158 return MIRBuilder 1159 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1160 NarrowTy.getScalarSizeInBits()) 1161 .getReg(0); 1162 } 1163 case CCValAssign::LocInfo::SExt: { 1164 return MIRBuilder 1165 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1166 NarrowTy.getScalarSizeInBits()) 1167 .getReg(0); 1168 break; 1169 } 1170 default: 1171 return SrcReg; 1172 } 1173 } 1174 1175 /// Check if we can use a basic COPY instruction between the two types. 1176 /// 1177 /// We're currently building on top of the infrastructure using MVT, which loses 1178 /// pointer information in the CCValAssign. We accept copies from physical 1179 /// registers that have been reported as integers if it's to an equivalent sized 1180 /// pointer LLT. 1181 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1182 if (SrcTy == DstTy) 1183 return true; 1184 1185 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1186 return false; 1187 1188 SrcTy = SrcTy.getScalarType(); 1189 DstTy = DstTy.getScalarType(); 1190 1191 return (SrcTy.isPointer() && DstTy.isScalar()) || 1192 (DstTy.isScalar() && SrcTy.isPointer()); 1193 } 1194 1195 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1196 Register PhysReg, 1197 CCValAssign VA) { 1198 const MVT LocVT = VA.getLocVT(); 1199 const LLT LocTy(LocVT); 1200 const LLT RegTy = MRI.getType(ValVReg); 1201 1202 if (isCopyCompatibleType(RegTy, LocTy)) { 1203 MIRBuilder.buildCopy(ValVReg, PhysReg); 1204 return; 1205 } 1206 1207 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1208 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1209 MIRBuilder.buildTrunc(ValVReg, Hint); 1210 } 1211