xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision ed98c1b37661b0795a5e34517941485f0f0688d1)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftAsync))
58     Flags.setSwiftAsync();
59   if (AttrFn(Attribute::SwiftError))
60     Flags.setSwiftError();
61 }
62 
63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
64                                                      unsigned ArgIdx) const {
65   ISD::ArgFlagsTy Flags;
66   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
67     return Call.paramHasAttr(ArgIdx, Attr);
68   });
69   return Flags;
70 }
71 
72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
73                                              const AttributeList &Attrs,
74                                              unsigned OpIdx) const {
75   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
76     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
77   });
78 }
79 
80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
81                              ArrayRef<Register> ResRegs,
82                              ArrayRef<ArrayRef<Register>> ArgRegs,
83                              Register SwiftErrorVReg,
84                              std::function<unsigned()> GetCalleeReg) const {
85   CallLoweringInfo Info;
86   const DataLayout &DL = MIRBuilder.getDataLayout();
87   MachineFunction &MF = MIRBuilder.getMF();
88   MachineRegisterInfo &MRI = MF.getRegInfo();
89   bool CanBeTailCalled = CB.isTailCall() &&
90                          isInTailCallPosition(CB, MF.getTarget()) &&
91                          (MF.getFunction()
92                               .getFnAttribute("disable-tail-calls")
93                               .getValueAsString() != "true");
94 
95   CallingConv::ID CallConv = CB.getCallingConv();
96   Type *RetTy = CB.getType();
97   bool IsVarArg = CB.getFunctionType()->isVarArg();
98 
99   SmallVector<BaseArgInfo, 4> SplitArgs;
100   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
101   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
102 
103   if (!Info.CanLowerReturn) {
104     // Callee requires sret demotion.
105     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
106 
107     // The sret demotion isn't compatible with tail-calls, since the sret
108     // argument points into the caller's stack frame.
109     CanBeTailCalled = false;
110   }
111 
112 
113   // First step is to marshall all the function's parameters into the correct
114   // physregs and memory locations. Gather the sequence of argument types that
115   // we'll pass to the assigner function.
116   unsigned i = 0;
117   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
118   for (auto &Arg : CB.args()) {
119     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
120                     i < NumFixedArgs};
121     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
122 
123     // If we have an explicit sret argument that is an Instruction, (i.e., it
124     // might point to function-local memory), we can't meaningfully tail-call.
125     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
126       CanBeTailCalled = false;
127 
128     Info.OrigArgs.push_back(OrigArg);
129     ++i;
130   }
131 
132   // Try looking through a bitcast from one function type to another.
133   // Commonly happens with calls to objc_msgSend().
134   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
135   if (const Function *F = dyn_cast<Function>(CalleeV))
136     Info.Callee = MachineOperand::CreateGA(F, 0);
137   else
138     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
139 
140   Register ReturnHintAlignReg;
141   Align ReturnHintAlign;
142 
143   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
144 
145   if (!Info.OrigRet.Ty->isVoidTy()) {
146     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
147 
148     if (MaybeAlign Alignment = CB.getRetAlign()) {
149       if (*Alignment > Align(1)) {
150         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
151         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
152         ReturnHintAlign = *Alignment;
153       }
154     }
155   }
156 
157   Info.CB = &CB;
158   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
159   Info.CallConv = CallConv;
160   Info.SwiftErrorVReg = SwiftErrorVReg;
161   Info.IsMustTailCall = CB.isMustTailCall();
162   Info.IsTailCall = CanBeTailCalled;
163   Info.IsVarArg = IsVarArg;
164   if (!lowerCall(MIRBuilder, Info))
165     return false;
166 
167   if (ReturnHintAlignReg && !Info.IsTailCall) {
168     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
169                                 ReturnHintAlign);
170   }
171 
172   return true;
173 }
174 
175 template <typename FuncInfoTy>
176 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
177                                const DataLayout &DL,
178                                const FuncInfoTy &FuncInfo) const {
179   auto &Flags = Arg.Flags[0];
180   const AttributeList &Attrs = FuncInfo.getAttributes();
181   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
182 
183   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
184   if (PtrTy) {
185     Flags.setPointer();
186     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
187   }
188 
189   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
190   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
191     assert(OpIdx >= AttributeList::FirstArgIndex);
192     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
193 
194     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
195     if (!ElementTy)
196       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
197     if (!ElementTy)
198       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
199     assert(ElementTy && "Must have byval, inalloca or preallocated type");
200     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
201 
202     // For ByVal, alignment should be passed from FE.  BE will guess if
203     // this info is not there but there are cases it cannot get right.
204     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
205       MemAlign = *ParamAlign;
206     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
207       MemAlign = *ParamAlign;
208     else
209       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
210   } else if (OpIdx >= AttributeList::FirstArgIndex) {
211     if (auto ParamAlign =
212             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
213       MemAlign = *ParamAlign;
214   }
215   Flags.setMemAlign(MemAlign);
216   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
217 
218   // Don't try to use the returned attribute if the argument is marked as
219   // swiftself, since it won't be passed in x0.
220   if (Flags.isSwiftSelf())
221     Flags.setReturned(false);
222 }
223 
224 template void
225 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
226                                     const DataLayout &DL,
227                                     const Function &FuncInfo) const;
228 
229 template void
230 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
231                                     const DataLayout &DL,
232                                     const CallBase &FuncInfo) const;
233 
234 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
235                                      SmallVectorImpl<ArgInfo> &SplitArgs,
236                                      const DataLayout &DL,
237                                      CallingConv::ID CallConv,
238                                      SmallVectorImpl<uint64_t> *Offsets) const {
239   LLVMContext &Ctx = OrigArg.Ty->getContext();
240 
241   SmallVector<EVT, 4> SplitVTs;
242   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
243 
244   if (SplitVTs.size() == 0)
245     return;
246 
247   if (SplitVTs.size() == 1) {
248     // No splitting to do, but we want to replace the original type (e.g. [1 x
249     // double] -> double).
250     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
251                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
252                            OrigArg.IsFixed, OrigArg.OrigValue);
253     return;
254   }
255 
256   // Create one ArgInfo for each virtual register in the original ArgInfo.
257   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
258 
259   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
260       OrigArg.Ty, CallConv, false, DL);
261   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
262     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
263     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
264                            OrigArg.Flags[0], OrigArg.IsFixed);
265     if (NeedsRegBlock)
266       SplitArgs.back().Flags[0].setInConsecutiveRegs();
267   }
268 
269   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
270 }
271 
272 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
273 static MachineInstrBuilder
274 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
275                             ArrayRef<Register> SrcRegs) {
276   MachineRegisterInfo &MRI = *B.getMRI();
277   LLT LLTy = MRI.getType(DstRegs[0]);
278   LLT PartLLT = MRI.getType(SrcRegs[0]);
279 
280   // Deal with v3s16 split into v2s16
281   LLT LCMTy = getCoverTy(LLTy, PartLLT);
282   if (LCMTy == LLTy) {
283     // Common case where no padding is needed.
284     assert(DstRegs.size() == 1);
285     return B.buildConcatVectors(DstRegs[0], SrcRegs);
286   }
287 
288   // We need to create an unmerge to the result registers, which may require
289   // widening the original value.
290   Register UnmergeSrcReg;
291   if (LCMTy != PartLLT) {
292     assert(DstRegs.size() == 1);
293     return B.buildDeleteTrailingVectorElements(DstRegs[0],
294                                                B.buildMerge(LCMTy, SrcRegs));
295   } else {
296     // We don't need to widen anything if we're extracting a scalar which was
297     // promoted to a vector e.g. s8 -> v4s8 -> s8
298     assert(SrcRegs.size() == 1);
299     UnmergeSrcReg = SrcRegs[0];
300   }
301 
302   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
303 
304   SmallVector<Register, 8> PadDstRegs(NumDst);
305   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
306 
307   // Create the excess dead defs for the unmerge.
308   for (int I = DstRegs.size(); I != NumDst; ++I)
309     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
310 
311   if (PadDstRegs.size() == 1)
312     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
313   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
314 }
315 
316 /// Create a sequence of instructions to combine pieces split into register
317 /// typed values to the original IR value. \p OrigRegs contains the destination
318 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
319 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
320 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
321                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
322                               const ISD::ArgFlagsTy Flags) {
323   MachineRegisterInfo &MRI = *B.getMRI();
324 
325   if (PartLLT == LLTy) {
326     // We should have avoided introducing a new virtual register, and just
327     // directly assigned here.
328     assert(OrigRegs[0] == Regs[0]);
329     return;
330   }
331 
332   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
333       Regs.size() == 1) {
334     B.buildBitcast(OrigRegs[0], Regs[0]);
335     return;
336   }
337 
338   // A vector PartLLT needs extending to LLTy's element size.
339   // E.g. <2 x s64> = G_SEXT <2 x s32>.
340   if (PartLLT.isVector() == LLTy.isVector() &&
341       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
342       (!PartLLT.isVector() ||
343        PartLLT.getNumElements() == LLTy.getNumElements()) &&
344       OrigRegs.size() == 1 && Regs.size() == 1) {
345     Register SrcReg = Regs[0];
346 
347     LLT LocTy = MRI.getType(SrcReg);
348 
349     if (Flags.isSExt()) {
350       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
351                    .getReg(0);
352     } else if (Flags.isZExt()) {
353       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
354                    .getReg(0);
355     }
356 
357     // Sometimes pointers are passed zero extended.
358     LLT OrigTy = MRI.getType(OrigRegs[0]);
359     if (OrigTy.isPointer()) {
360       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
361       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
362       return;
363     }
364 
365     B.buildTrunc(OrigRegs[0], SrcReg);
366     return;
367   }
368 
369   if (!LLTy.isVector() && !PartLLT.isVector()) {
370     assert(OrigRegs.size() == 1);
371     LLT OrigTy = MRI.getType(OrigRegs[0]);
372 
373     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
374     if (SrcSize == OrigTy.getSizeInBits())
375       B.buildMerge(OrigRegs[0], Regs);
376     else {
377       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
378       B.buildTrunc(OrigRegs[0], Widened);
379     }
380 
381     return;
382   }
383 
384   if (PartLLT.isVector()) {
385     assert(OrigRegs.size() == 1);
386     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
387 
388     // If PartLLT is a mismatched vector in both number of elements and element
389     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
390     // have the same elt type, i.e. v4s32.
391     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
392         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
393         Regs.size() == 1) {
394       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
395                       .changeElementCount(PartLLT.getElementCount() * 2);
396       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
397       PartLLT = NewTy;
398     }
399 
400     if (LLTy.getScalarType() == PartLLT.getElementType()) {
401       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
402     } else {
403       unsigned I = 0;
404       LLT GCDTy = getGCDType(LLTy, PartLLT);
405 
406       // We are both splitting a vector, and bitcasting its element types. Cast
407       // the source pieces into the appropriate number of pieces with the result
408       // element type.
409       for (Register SrcReg : CastRegs)
410         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
411       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
412     }
413 
414     return;
415   }
416 
417   assert(LLTy.isVector() && !PartLLT.isVector());
418 
419   LLT DstEltTy = LLTy.getElementType();
420 
421   // Pointer information was discarded. We'll need to coerce some register types
422   // to avoid violating type constraints.
423   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
424 
425   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
426 
427   if (DstEltTy == PartLLT) {
428     // Vector was trivially scalarized.
429 
430     if (RealDstEltTy.isPointer()) {
431       for (Register Reg : Regs)
432         MRI.setType(Reg, RealDstEltTy);
433     }
434 
435     B.buildBuildVector(OrigRegs[0], Regs);
436   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
437     // Deal with vector with 64-bit elements decomposed to 32-bit
438     // registers. Need to create intermediate 64-bit elements.
439     SmallVector<Register, 8> EltMerges;
440     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
441 
442     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
443 
444     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
445       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
446       // Fix the type in case this is really a vector of pointers.
447       MRI.setType(Merge.getReg(0), RealDstEltTy);
448       EltMerges.push_back(Merge.getReg(0));
449       Regs = Regs.drop_front(PartsPerElt);
450     }
451 
452     B.buildBuildVector(OrigRegs[0], EltMerges);
453   } else {
454     // Vector was split, and elements promoted to a wider type.
455     // FIXME: Should handle floating point promotions.
456     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
457     auto BV = B.buildBuildVector(BVType, Regs);
458     B.buildTrunc(OrigRegs[0], BV);
459   }
460 }
461 
462 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
463 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
464 /// contain the type of scalar value extension if necessary.
465 ///
466 /// This is used for outgoing values (vregs to physregs)
467 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
468                             Register SrcReg, LLT SrcTy, LLT PartTy,
469                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
470   // We could just insert a regular copy, but this is unreachable at the moment.
471   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
472 
473   const unsigned PartSize = PartTy.getSizeInBits();
474 
475   if (PartTy.isVector() == SrcTy.isVector() &&
476       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
477     assert(DstRegs.size() == 1);
478     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
479     return;
480   }
481 
482   if (SrcTy.isVector() && !PartTy.isVector() &&
483       PartSize > SrcTy.getElementType().getSizeInBits()) {
484     // Vector was scalarized, and the elements extended.
485     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
486     for (int i = 0, e = DstRegs.size(); i != e; ++i)
487       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
488     return;
489   }
490 
491   LLT GCDTy = getGCDType(SrcTy, PartTy);
492   if (GCDTy == PartTy) {
493     // If this already evenly divisible, we can create a simple unmerge.
494     B.buildUnmerge(DstRegs, SrcReg);
495     return;
496   }
497 
498   MachineRegisterInfo &MRI = *B.getMRI();
499   LLT DstTy = MRI.getType(DstRegs[0]);
500   LLT LCMTy = getCoverTy(SrcTy, PartTy);
501 
502   const unsigned DstSize = DstTy.getSizeInBits();
503   const unsigned SrcSize = SrcTy.getSizeInBits();
504   unsigned CoveringSize = LCMTy.getSizeInBits();
505 
506   Register UnmergeSrc = SrcReg;
507 
508   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
509     // For scalars, it's common to be able to use a simple extension.
510     if (SrcTy.isScalar() && DstTy.isScalar()) {
511       CoveringSize = alignTo(SrcSize, DstSize);
512       LLT CoverTy = LLT::scalar(CoveringSize);
513       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
514     } else {
515       // Widen to the common type.
516       // FIXME: This should respect the extend type
517       Register Undef = B.buildUndef(SrcTy).getReg(0);
518       SmallVector<Register, 8> MergeParts(1, SrcReg);
519       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
520         MergeParts.push_back(Undef);
521       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
522     }
523   }
524 
525   if (LCMTy.isVector() && CoveringSize != SrcSize)
526     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
527 
528   B.buildUnmerge(DstRegs, UnmergeSrc);
529 }
530 
531 bool CallLowering::determineAndHandleAssignments(
532     ValueHandler &Handler, ValueAssigner &Assigner,
533     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
534     CallingConv::ID CallConv, bool IsVarArg,
535     ArrayRef<Register> ThisReturnRegs) const {
536   MachineFunction &MF = MIRBuilder.getMF();
537   const Function &F = MF.getFunction();
538   SmallVector<CCValAssign, 16> ArgLocs;
539 
540   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
541   if (!determineAssignments(Assigner, Args, CCInfo))
542     return false;
543 
544   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
545                            ThisReturnRegs);
546 }
547 
548 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
549   if (Flags.isSExt())
550     return TargetOpcode::G_SEXT;
551   if (Flags.isZExt())
552     return TargetOpcode::G_ZEXT;
553   return TargetOpcode::G_ANYEXT;
554 }
555 
556 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
557                                         SmallVectorImpl<ArgInfo> &Args,
558                                         CCState &CCInfo) const {
559   LLVMContext &Ctx = CCInfo.getContext();
560   const CallingConv::ID CallConv = CCInfo.getCallingConv();
561 
562   unsigned NumArgs = Args.size();
563   for (unsigned i = 0; i != NumArgs; ++i) {
564     EVT CurVT = EVT::getEVT(Args[i].Ty);
565 
566     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
567 
568     // If we need to split the type over multiple regs, check it's a scenario
569     // we currently support.
570     unsigned NumParts =
571         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
572 
573     if (NumParts == 1) {
574       // Try to use the register type if we couldn't assign the VT.
575       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
576                              Args[i].Flags[0], CCInfo))
577         return false;
578       continue;
579     }
580 
581     // For incoming arguments (physregs to vregs), we could have values in
582     // physregs (or memlocs) which we want to extract and copy to vregs.
583     // During this, we might have to deal with the LLT being split across
584     // multiple regs, so we have to record this information for later.
585     //
586     // If we have outgoing args, then we have the opposite case. We have a
587     // vreg with an LLT which we want to assign to a physical location, and
588     // we might have to record that the value has to be split later.
589 
590     // We're handling an incoming arg which is split over multiple regs.
591     // E.g. passing an s128 on AArch64.
592     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
593     Args[i].Flags.clear();
594 
595     for (unsigned Part = 0; Part < NumParts; ++Part) {
596       ISD::ArgFlagsTy Flags = OrigFlags;
597       if (Part == 0) {
598         Flags.setSplit();
599       } else {
600         Flags.setOrigAlign(Align(1));
601         if (Part == NumParts - 1)
602           Flags.setSplitEnd();
603       }
604 
605       Args[i].Flags.push_back(Flags);
606       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
607                              Args[i].Flags[Part], CCInfo)) {
608         // Still couldn't assign this smaller part type for some reason.
609         return false;
610       }
611     }
612   }
613 
614   return true;
615 }
616 
617 bool CallLowering::handleAssignments(ValueHandler &Handler,
618                                      SmallVectorImpl<ArgInfo> &Args,
619                                      CCState &CCInfo,
620                                      SmallVectorImpl<CCValAssign> &ArgLocs,
621                                      MachineIRBuilder &MIRBuilder,
622                                      ArrayRef<Register> ThisReturnRegs) const {
623   MachineFunction &MF = MIRBuilder.getMF();
624   MachineRegisterInfo &MRI = MF.getRegInfo();
625   const Function &F = MF.getFunction();
626   const DataLayout &DL = F.getParent()->getDataLayout();
627 
628   const unsigned NumArgs = Args.size();
629 
630   // Stores thunks for outgoing register assignments. This is used so we delay
631   // generating register copies until mem loc assignments are done. We do this
632   // so that if the target is using the delayed stack protector feature, we can
633   // find the split point of the block accurately. E.g. if we have:
634   // G_STORE %val, %memloc
635   // $x0 = COPY %foo
636   // $x1 = COPY %bar
637   // CALL func
638   // ... then the split point for the block will correctly be at, and including,
639   // the copy to $x0. If instead the G_STORE instruction immediately precedes
640   // the CALL, then we'd prematurely choose the CALL as the split point, thus
641   // generating a split block with a CALL that uses undefined physregs.
642   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
643 
644   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
645     assert(j < ArgLocs.size() && "Skipped too many arg locs");
646     CCValAssign &VA = ArgLocs[j];
647     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
648 
649     if (VA.needsCustom()) {
650       std::function<void()> Thunk;
651       unsigned NumArgRegs = Handler.assignCustomValue(
652           Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
653       if (Thunk)
654         DelayedOutgoingRegAssignments.emplace_back(Thunk);
655       if (!NumArgRegs)
656         return false;
657       j += NumArgRegs;
658       continue;
659     }
660 
661     const MVT ValVT = VA.getValVT();
662     const MVT LocVT = VA.getLocVT();
663 
664     const LLT LocTy(LocVT);
665     const LLT ValTy(ValVT);
666     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
667     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
668     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
669 
670     // Expected to be multiple regs for a single incoming arg.
671     // There should be Regs.size() ArgLocs per argument.
672     // This should be the same as getNumRegistersForCallingConv
673     const unsigned NumParts = Args[i].Flags.size();
674 
675     // Now split the registers into the assigned types.
676     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
677 
678     if (NumParts != 1 || NewLLT != OrigTy) {
679       // If we can't directly assign the register, we need one or more
680       // intermediate values.
681       Args[i].Regs.resize(NumParts);
682 
683       // For each split register, create and assign a vreg that will store
684       // the incoming component of the larger value. These will later be
685       // merged to form the final vreg.
686       for (unsigned Part = 0; Part < NumParts; ++Part)
687         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
688     }
689 
690     assert((j + (NumParts - 1)) < ArgLocs.size() &&
691            "Too many regs for number of args");
692 
693     // Coerce into outgoing value types before register assignment.
694     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
695       assert(Args[i].OrigRegs.size() == 1);
696       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
697                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
698     }
699 
700     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
701     for (unsigned Part = 0; Part < NumParts; ++Part) {
702       Register ArgReg = Args[i].Regs[Part];
703       // There should be Regs.size() ArgLocs per argument.
704       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
705       CCValAssign &VA = ArgLocs[j + Idx];
706       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
707 
708       if (VA.isMemLoc() && !Flags.isByVal()) {
709         // Individual pieces may have been spilled to the stack and others
710         // passed in registers.
711 
712         // TODO: The memory size may be larger than the value we need to
713         // store. We may need to adjust the offset for big endian targets.
714         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
715 
716         MachinePointerInfo MPO;
717         Register StackAddr = Handler.getStackAddress(
718             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
719 
720         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
721         continue;
722       }
723 
724       if (VA.isMemLoc() && Flags.isByVal()) {
725         assert(Args[i].Regs.size() == 1 &&
726                "didn't expect split byval pointer");
727 
728         if (Handler.isIncomingArgumentHandler()) {
729           // We just need to copy the frame index value to the pointer.
730           MachinePointerInfo MPO;
731           Register StackAddr = Handler.getStackAddress(
732               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
733           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
734         } else {
735           // For outgoing byval arguments, insert the implicit copy byval
736           // implies, such that writes in the callee do not modify the caller's
737           // value.
738           uint64_t MemSize = Flags.getByValSize();
739           int64_t Offset = VA.getLocMemOffset();
740 
741           MachinePointerInfo DstMPO;
742           Register StackAddr =
743               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
744 
745           MachinePointerInfo SrcMPO(Args[i].OrigValue);
746           if (!Args[i].OrigValue) {
747             // We still need to accurately track the stack address space if we
748             // don't know the underlying value.
749             const LLT PtrTy = MRI.getType(StackAddr);
750             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
751           }
752 
753           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
754                                     inferAlignFromPtrInfo(MF, DstMPO));
755 
756           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
757                                     inferAlignFromPtrInfo(MF, SrcMPO));
758 
759           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
760                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
761                                      MemSize, VA);
762         }
763         continue;
764       }
765 
766       assert(!VA.needsCustom() && "custom loc should have been handled already");
767 
768       if (i == 0 && !ThisReturnRegs.empty() &&
769           Handler.isIncomingArgumentHandler() &&
770           isTypeIsValidForThisReturn(ValVT)) {
771         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
772         continue;
773       }
774 
775       if (Handler.isIncomingArgumentHandler())
776         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
777       else {
778         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
779           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
780         });
781       }
782     }
783 
784     // Now that all pieces have been assigned, re-pack the register typed values
785     // into the original value typed registers.
786     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
787       // Merge the split registers into the expected larger result vregs of
788       // the original call.
789       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
790                         LocTy, Args[i].Flags[0]);
791     }
792 
793     j += NumParts - 1;
794   }
795   for (auto &Fn : DelayedOutgoingRegAssignments)
796     Fn();
797 
798   return true;
799 }
800 
801 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
802                                    ArrayRef<Register> VRegs, Register DemoteReg,
803                                    int FI) const {
804   MachineFunction &MF = MIRBuilder.getMF();
805   MachineRegisterInfo &MRI = MF.getRegInfo();
806   const DataLayout &DL = MF.getDataLayout();
807 
808   SmallVector<EVT, 4> SplitVTs;
809   SmallVector<uint64_t, 4> Offsets;
810   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
811 
812   assert(VRegs.size() == SplitVTs.size());
813 
814   unsigned NumValues = SplitVTs.size();
815   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
816   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
817   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
818 
819   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
820 
821   for (unsigned I = 0; I < NumValues; ++I) {
822     Register Addr;
823     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
824     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
825                                         MRI.getType(VRegs[I]),
826                                         commonAlignment(BaseAlign, Offsets[I]));
827     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
828   }
829 }
830 
831 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
832                                     ArrayRef<Register> VRegs,
833                                     Register DemoteReg) const {
834   MachineFunction &MF = MIRBuilder.getMF();
835   MachineRegisterInfo &MRI = MF.getRegInfo();
836   const DataLayout &DL = MF.getDataLayout();
837 
838   SmallVector<EVT, 4> SplitVTs;
839   SmallVector<uint64_t, 4> Offsets;
840   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
841 
842   assert(VRegs.size() == SplitVTs.size());
843 
844   unsigned NumValues = SplitVTs.size();
845   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
846   unsigned AS = DL.getAllocaAddrSpace();
847   LLT OffsetLLTy =
848       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
849 
850   MachinePointerInfo PtrInfo(AS);
851 
852   for (unsigned I = 0; I < NumValues; ++I) {
853     Register Addr;
854     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
855     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
856                                         MRI.getType(VRegs[I]),
857                                         commonAlignment(BaseAlign, Offsets[I]));
858     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
859   }
860 }
861 
862 void CallLowering::insertSRetIncomingArgument(
863     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
864     MachineRegisterInfo &MRI, const DataLayout &DL) const {
865   unsigned AS = DL.getAllocaAddrSpace();
866   DemoteReg = MRI.createGenericVirtualRegister(
867       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
868 
869   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
870 
871   SmallVector<EVT, 1> ValueVTs;
872   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
873 
874   // NOTE: Assume that a pointer won't get split into more than one VT.
875   assert(ValueVTs.size() == 1);
876 
877   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
878                     ArgInfo::NoArgIndex);
879   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
880   DemoteArg.Flags[0].setSRet();
881   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
882 }
883 
884 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
885                                               const CallBase &CB,
886                                               CallLoweringInfo &Info) const {
887   const DataLayout &DL = MIRBuilder.getDataLayout();
888   Type *RetTy = CB.getType();
889   unsigned AS = DL.getAllocaAddrSpace();
890   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
891 
892   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
893       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
894 
895   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
896   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
897                     ArgInfo::NoArgIndex);
898   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
899   DemoteArg.Flags[0].setSRet();
900 
901   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
902   Info.DemoteStackIndex = FI;
903   Info.DemoteRegister = DemoteReg;
904 }
905 
906 bool CallLowering::checkReturn(CCState &CCInfo,
907                                SmallVectorImpl<BaseArgInfo> &Outs,
908                                CCAssignFn *Fn) const {
909   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
910     MVT VT = MVT::getVT(Outs[I].Ty);
911     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
912       return false;
913   }
914   return true;
915 }
916 
917 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
918                                  AttributeList Attrs,
919                                  SmallVectorImpl<BaseArgInfo> &Outs,
920                                  const DataLayout &DL) const {
921   LLVMContext &Context = RetTy->getContext();
922   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
923 
924   SmallVector<EVT, 4> SplitVTs;
925   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
926   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
927 
928   for (EVT VT : SplitVTs) {
929     unsigned NumParts =
930         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
931     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
932     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
933 
934     for (unsigned I = 0; I < NumParts; ++I) {
935       Outs.emplace_back(PartTy, Flags);
936     }
937   }
938 }
939 
940 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
941   const auto &F = MF.getFunction();
942   Type *ReturnType = F.getReturnType();
943   CallingConv::ID CallConv = F.getCallingConv();
944 
945   SmallVector<BaseArgInfo, 4> SplitArgs;
946   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
947                 MF.getDataLayout());
948   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
949 }
950 
951 bool CallLowering::parametersInCSRMatch(
952     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
953     const SmallVectorImpl<CCValAssign> &OutLocs,
954     const SmallVectorImpl<ArgInfo> &OutArgs) const {
955   for (unsigned i = 0; i < OutLocs.size(); ++i) {
956     auto &ArgLoc = OutLocs[i];
957     // If it's not a register, it's fine.
958     if (!ArgLoc.isRegLoc())
959       continue;
960 
961     MCRegister PhysReg = ArgLoc.getLocReg();
962 
963     // Only look at callee-saved registers.
964     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
965       continue;
966 
967     LLVM_DEBUG(
968         dbgs()
969         << "... Call has an argument passed in a callee-saved register.\n");
970 
971     // Check if it was copied from.
972     const ArgInfo &OutInfo = OutArgs[i];
973 
974     if (OutInfo.Regs.size() > 1) {
975       LLVM_DEBUG(
976           dbgs() << "... Cannot handle arguments in multiple registers.\n");
977       return false;
978     }
979 
980     // Check if we copy the register, walking through copies from virtual
981     // registers. Note that getDefIgnoringCopies does not ignore copies from
982     // physical registers.
983     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
984     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
985       LLVM_DEBUG(
986           dbgs()
987           << "... Parameter was not copied into a VReg, cannot tail call.\n");
988       return false;
989     }
990 
991     // Got a copy. Verify that it's the same as the register we want.
992     Register CopyRHS = RegDef->getOperand(1).getReg();
993     if (CopyRHS != PhysReg) {
994       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
995                            "VReg, cannot tail call.\n");
996       return false;
997     }
998   }
999 
1000   return true;
1001 }
1002 
1003 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1004                                      MachineFunction &MF,
1005                                      SmallVectorImpl<ArgInfo> &InArgs,
1006                                      ValueAssigner &CalleeAssigner,
1007                                      ValueAssigner &CallerAssigner) const {
1008   const Function &F = MF.getFunction();
1009   CallingConv::ID CalleeCC = Info.CallConv;
1010   CallingConv::ID CallerCC = F.getCallingConv();
1011 
1012   if (CallerCC == CalleeCC)
1013     return true;
1014 
1015   SmallVector<CCValAssign, 16> ArgLocs1;
1016   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1017   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1018     return false;
1019 
1020   SmallVector<CCValAssign, 16> ArgLocs2;
1021   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1022   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1023     return false;
1024 
1025   // We need the argument locations to match up exactly. If there's more in
1026   // one than the other, then we are done.
1027   if (ArgLocs1.size() != ArgLocs2.size())
1028     return false;
1029 
1030   // Make sure that each location is passed in exactly the same way.
1031   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1032     const CCValAssign &Loc1 = ArgLocs1[i];
1033     const CCValAssign &Loc2 = ArgLocs2[i];
1034 
1035     // We need both of them to be the same. So if one is a register and one
1036     // isn't, we're done.
1037     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1038       return false;
1039 
1040     if (Loc1.isRegLoc()) {
1041       // If they don't have the same register location, we're done.
1042       if (Loc1.getLocReg() != Loc2.getLocReg())
1043         return false;
1044 
1045       // They matched, so we can move to the next ArgLoc.
1046       continue;
1047     }
1048 
1049     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1050     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1051       return false;
1052   }
1053 
1054   return true;
1055 }
1056 
1057 LLT CallLowering::ValueHandler::getStackValueStoreType(
1058     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1059   const MVT ValVT = VA.getValVT();
1060   if (ValVT != MVT::iPTR) {
1061     LLT ValTy(ValVT);
1062 
1063     // We lost the pointeriness going through CCValAssign, so try to restore it
1064     // based on the flags.
1065     if (Flags.isPointer()) {
1066       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1067                                ValTy.getScalarSizeInBits());
1068       if (ValVT.isVector())
1069         return LLT::vector(ValTy.getElementCount(), PtrTy);
1070       return PtrTy;
1071     }
1072 
1073     return ValTy;
1074   }
1075 
1076   unsigned AddrSpace = Flags.getPointerAddrSpace();
1077   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1078 }
1079 
1080 void CallLowering::ValueHandler::copyArgumentMemory(
1081     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1082     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1083     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1084     CCValAssign &VA) const {
1085   MachineFunction &MF = MIRBuilder.getMF();
1086   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1087       SrcPtrInfo,
1088       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1089       SrcAlign);
1090 
1091   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1092       DstPtrInfo,
1093       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1094       MemSize, DstAlign);
1095 
1096   const LLT PtrTy = MRI.getType(DstPtr);
1097   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1098 
1099   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1100   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1101 }
1102 
1103 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1104                                                     CCValAssign &VA,
1105                                                     unsigned MaxSizeBits) {
1106   LLT LocTy{VA.getLocVT()};
1107   LLT ValTy{VA.getValVT()};
1108 
1109   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1110     return ValReg;
1111 
1112   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1113     if (MaxSizeBits <= ValTy.getSizeInBits())
1114       return ValReg;
1115     LocTy = LLT::scalar(MaxSizeBits);
1116   }
1117 
1118   const LLT ValRegTy = MRI.getType(ValReg);
1119   if (ValRegTy.isPointer()) {
1120     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1121     // we have to cast to do the extension.
1122     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1123     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1124   }
1125 
1126   switch (VA.getLocInfo()) {
1127   default: break;
1128   case CCValAssign::Full:
1129   case CCValAssign::BCvt:
1130     // FIXME: bitconverting between vector types may or may not be a
1131     // nop in big-endian situations.
1132     return ValReg;
1133   case CCValAssign::AExt: {
1134     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1135     return MIB.getReg(0);
1136   }
1137   case CCValAssign::SExt: {
1138     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1139     MIRBuilder.buildSExt(NewReg, ValReg);
1140     return NewReg;
1141   }
1142   case CCValAssign::ZExt: {
1143     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1144     MIRBuilder.buildZExt(NewReg, ValReg);
1145     return NewReg;
1146   }
1147   }
1148   llvm_unreachable("unable to extend register");
1149 }
1150 
1151 void CallLowering::ValueAssigner::anchor() {}
1152 
1153 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1154                                                                 Register SrcReg,
1155                                                                 LLT NarrowTy) {
1156   switch (VA.getLocInfo()) {
1157   case CCValAssign::LocInfo::ZExt: {
1158     return MIRBuilder
1159         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1160                          NarrowTy.getScalarSizeInBits())
1161         .getReg(0);
1162   }
1163   case CCValAssign::LocInfo::SExt: {
1164     return MIRBuilder
1165         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1166                          NarrowTy.getScalarSizeInBits())
1167         .getReg(0);
1168     break;
1169   }
1170   default:
1171     return SrcReg;
1172   }
1173 }
1174 
1175 /// Check if we can use a basic COPY instruction between the two types.
1176 ///
1177 /// We're currently building on top of the infrastructure using MVT, which loses
1178 /// pointer information in the CCValAssign. We accept copies from physical
1179 /// registers that have been reported as integers if it's to an equivalent sized
1180 /// pointer LLT.
1181 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1182   if (SrcTy == DstTy)
1183     return true;
1184 
1185   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1186     return false;
1187 
1188   SrcTy = SrcTy.getScalarType();
1189   DstTy = DstTy.getScalarType();
1190 
1191   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1192          (DstTy.isScalar() && SrcTy.isPointer());
1193 }
1194 
1195 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1196                                                           Register PhysReg,
1197                                                           CCValAssign VA) {
1198   const MVT LocVT = VA.getLocVT();
1199   const LLT LocTy(LocVT);
1200   const LLT RegTy = MRI.getType(ValVReg);
1201 
1202   if (isCopyCompatibleType(RegTy, LocTy)) {
1203     MIRBuilder.buildCopy(ValVReg, PhysReg);
1204     return;
1205   }
1206 
1207   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1208   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1209   MIRBuilder.buildTrunc(ValVReg, Hint);
1210 }
1211