xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision ec34699f750efc5292db503c6700ddeede59ff03)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Target/TargetMachine.h"
28 
29 #define DEBUG_TYPE "call-lowering"
30 
31 using namespace llvm;
32 
33 void CallLowering::anchor() {}
34 
35 /// Helper function which updates \p Flags when \p AttrFn returns true.
36 static void
37 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
38                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
39   if (AttrFn(Attribute::SExt))
40     Flags.setSExt();
41   if (AttrFn(Attribute::ZExt))
42     Flags.setZExt();
43   if (AttrFn(Attribute::InReg))
44     Flags.setInReg();
45   if (AttrFn(Attribute::StructRet))
46     Flags.setSRet();
47   if (AttrFn(Attribute::Nest))
48     Flags.setNest();
49   if (AttrFn(Attribute::ByVal))
50     Flags.setByVal();
51   if (AttrFn(Attribute::Preallocated))
52     Flags.setPreallocated();
53   if (AttrFn(Attribute::InAlloca))
54     Flags.setInAlloca();
55   if (AttrFn(Attribute::Returned))
56     Flags.setReturned();
57   if (AttrFn(Attribute::SwiftSelf))
58     Flags.setSwiftSelf();
59   if (AttrFn(Attribute::SwiftAsync))
60     Flags.setSwiftAsync();
61   if (AttrFn(Attribute::SwiftError))
62     Flags.setSwiftError();
63 }
64 
65 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
66                                                      unsigned ArgIdx) const {
67   ISD::ArgFlagsTy Flags;
68   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
69     return Call.paramHasAttr(ArgIdx, Attr);
70   });
71   return Flags;
72 }
73 
74 ISD::ArgFlagsTy
75 CallLowering::getAttributesForReturn(const CallBase &Call) const {
76   ISD::ArgFlagsTy Flags;
77   addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
78     return Call.hasRetAttr(Attr);
79   });
80   return Flags;
81 }
82 
83 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
84                                              const AttributeList &Attrs,
85                                              unsigned OpIdx) const {
86   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
87     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
88   });
89 }
90 
91 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
92                              ArrayRef<Register> ResRegs,
93                              ArrayRef<ArrayRef<Register>> ArgRegs,
94                              Register SwiftErrorVReg,
95                              Register ConvergenceCtrlToken,
96                              std::function<unsigned()> GetCalleeReg) const {
97   CallLoweringInfo Info;
98   const DataLayout &DL = MIRBuilder.getDataLayout();
99   MachineFunction &MF = MIRBuilder.getMF();
100   MachineRegisterInfo &MRI = MF.getRegInfo();
101   bool CanBeTailCalled = CB.isTailCall() &&
102                          isInTailCallPosition(CB, MF.getTarget()) &&
103                          (MF.getFunction()
104                               .getFnAttribute("disable-tail-calls")
105                               .getValueAsString() != "true");
106 
107   CallingConv::ID CallConv = CB.getCallingConv();
108   Type *RetTy = CB.getType();
109   bool IsVarArg = CB.getFunctionType()->isVarArg();
110 
111   SmallVector<BaseArgInfo, 4> SplitArgs;
112   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
113   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
114 
115   Info.IsConvergent = CB.isConvergent();
116 
117   if (!Info.CanLowerReturn) {
118     // Callee requires sret demotion.
119     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
120 
121     // The sret demotion isn't compatible with tail-calls, since the sret
122     // argument points into the caller's stack frame.
123     CanBeTailCalled = false;
124   }
125 
126   // First step is to marshall all the function's parameters into the correct
127   // physregs and memory locations. Gather the sequence of argument types that
128   // we'll pass to the assigner function.
129   unsigned i = 0;
130   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
131   for (const auto &Arg : CB.args()) {
132     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
133                     i < NumFixedArgs};
134     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
135 
136     // If we have an explicit sret argument that is an Instruction, (i.e., it
137     // might point to function-local memory), we can't meaningfully tail-call.
138     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
139       CanBeTailCalled = false;
140 
141     Info.OrigArgs.push_back(OrigArg);
142     ++i;
143   }
144 
145   // Try looking through a bitcast from one function type to another.
146   // Commonly happens with calls to objc_msgSend().
147   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
148   if (const Function *F = dyn_cast<Function>(CalleeV)) {
149     if (F->hasFnAttribute(Attribute::NonLazyBind)) {
150       LLT Ty = getLLTForType(*F->getType(), DL);
151       Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0);
152       Info.Callee = MachineOperand::CreateReg(Reg, false);
153     } else {
154       Info.Callee = MachineOperand::CreateGA(F, 0);
155     }
156   } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
157     // IR IFuncs and Aliases can't be forward declared (only defined), so the
158     // callee must be in the same TU and therefore we can direct-call it without
159     // worrying about it being out of range.
160     Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
161   } else
162     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
163 
164   Register ReturnHintAlignReg;
165   Align ReturnHintAlign;
166 
167   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
168 
169   if (!Info.OrigRet.Ty->isVoidTy()) {
170     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
171 
172     if (MaybeAlign Alignment = CB.getRetAlign()) {
173       if (*Alignment > Align(1)) {
174         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
175         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
176         ReturnHintAlign = *Alignment;
177       }
178     }
179   }
180 
181   auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
182   if (Bundle && CB.isIndirectCall()) {
183     Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
184     assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
185   }
186 
187   Info.CB = &CB;
188   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
189   Info.CallConv = CallConv;
190   Info.SwiftErrorVReg = SwiftErrorVReg;
191   Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
192   Info.IsMustTailCall = CB.isMustTailCall();
193   Info.IsTailCall = CanBeTailCalled;
194   Info.IsVarArg = IsVarArg;
195   if (!lowerCall(MIRBuilder, Info))
196     return false;
197 
198   if (ReturnHintAlignReg && !Info.LoweredTailCall) {
199     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
200                                 ReturnHintAlign);
201   }
202 
203   return true;
204 }
205 
206 template <typename FuncInfoTy>
207 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
208                                const DataLayout &DL,
209                                const FuncInfoTy &FuncInfo) const {
210   auto &Flags = Arg.Flags[0];
211   const AttributeList &Attrs = FuncInfo.getAttributes();
212   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
213 
214   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
215   if (PtrTy) {
216     Flags.setPointer();
217     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
218   }
219 
220   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
221   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
222     assert(OpIdx >= AttributeList::FirstArgIndex);
223     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
224 
225     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
226     if (!ElementTy)
227       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
228     if (!ElementTy)
229       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
230     assert(ElementTy && "Must have byval, inalloca or preallocated type");
231     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
232 
233     // For ByVal, alignment should be passed from FE.  BE will guess if
234     // this info is not there but there are cases it cannot get right.
235     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
236       MemAlign = *ParamAlign;
237     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
238       MemAlign = *ParamAlign;
239     else
240       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
241   } else if (OpIdx >= AttributeList::FirstArgIndex) {
242     if (auto ParamAlign =
243             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
244       MemAlign = *ParamAlign;
245   }
246   Flags.setMemAlign(MemAlign);
247   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
248 
249   // Don't try to use the returned attribute if the argument is marked as
250   // swiftself, since it won't be passed in x0.
251   if (Flags.isSwiftSelf())
252     Flags.setReturned(false);
253 }
254 
255 template void
256 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
257                                     const DataLayout &DL,
258                                     const Function &FuncInfo) const;
259 
260 template void
261 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
262                                     const DataLayout &DL,
263                                     const CallBase &FuncInfo) const;
264 
265 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
266                                      SmallVectorImpl<ArgInfo> &SplitArgs,
267                                      const DataLayout &DL,
268                                      CallingConv::ID CallConv,
269                                      SmallVectorImpl<uint64_t> *Offsets) const {
270   LLVMContext &Ctx = OrigArg.Ty->getContext();
271 
272   SmallVector<EVT, 4> SplitVTs;
273   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
274 
275   if (SplitVTs.size() == 0)
276     return;
277 
278   if (SplitVTs.size() == 1) {
279     // No splitting to do, but we want to replace the original type (e.g. [1 x
280     // double] -> double).
281     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
282                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
283                            OrigArg.IsFixed, OrigArg.OrigValue);
284     return;
285   }
286 
287   // Create one ArgInfo for each virtual register in the original ArgInfo.
288   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
289 
290   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
291       OrigArg.Ty, CallConv, false, DL);
292   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
293     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
294     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
295                            OrigArg.Flags[0], OrigArg.IsFixed);
296     if (NeedsRegBlock)
297       SplitArgs.back().Flags[0].setInConsecutiveRegs();
298   }
299 
300   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
301 }
302 
303 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
304 static MachineInstrBuilder
305 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
306                             ArrayRef<Register> SrcRegs) {
307   MachineRegisterInfo &MRI = *B.getMRI();
308   LLT LLTy = MRI.getType(DstRegs[0]);
309   LLT PartLLT = MRI.getType(SrcRegs[0]);
310 
311   // Deal with v3s16 split into v2s16
312   LLT LCMTy = getCoverTy(LLTy, PartLLT);
313   if (LCMTy == LLTy) {
314     // Common case where no padding is needed.
315     assert(DstRegs.size() == 1);
316     return B.buildConcatVectors(DstRegs[0], SrcRegs);
317   }
318 
319   // We need to create an unmerge to the result registers, which may require
320   // widening the original value.
321   Register UnmergeSrcReg;
322   if (LCMTy != PartLLT) {
323     assert(DstRegs.size() == 1);
324     return B.buildDeleteTrailingVectorElements(
325         DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
326   } else {
327     // We don't need to widen anything if we're extracting a scalar which was
328     // promoted to a vector e.g. s8 -> v4s8 -> s8
329     assert(SrcRegs.size() == 1);
330     UnmergeSrcReg = SrcRegs[0];
331   }
332 
333   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
334 
335   SmallVector<Register, 8> PadDstRegs(NumDst);
336   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
337 
338   // Create the excess dead defs for the unmerge.
339   for (int I = DstRegs.size(); I != NumDst; ++I)
340     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
341 
342   if (PadDstRegs.size() == 1)
343     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
344   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
345 }
346 
347 /// Create a sequence of instructions to combine pieces split into register
348 /// typed values to the original IR value. \p OrigRegs contains the destination
349 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
350 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
351 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
352                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
353                               const ISD::ArgFlagsTy Flags) {
354   MachineRegisterInfo &MRI = *B.getMRI();
355 
356   if (PartLLT == LLTy) {
357     // We should have avoided introducing a new virtual register, and just
358     // directly assigned here.
359     assert(OrigRegs[0] == Regs[0]);
360     return;
361   }
362 
363   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
364       Regs.size() == 1) {
365     B.buildBitcast(OrigRegs[0], Regs[0]);
366     return;
367   }
368 
369   // A vector PartLLT needs extending to LLTy's element size.
370   // E.g. <2 x s64> = G_SEXT <2 x s32>.
371   if (PartLLT.isVector() == LLTy.isVector() &&
372       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
373       (!PartLLT.isVector() ||
374        PartLLT.getElementCount() == LLTy.getElementCount()) &&
375       OrigRegs.size() == 1 && Regs.size() == 1) {
376     Register SrcReg = Regs[0];
377 
378     LLT LocTy = MRI.getType(SrcReg);
379 
380     if (Flags.isSExt()) {
381       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
382                    .getReg(0);
383     } else if (Flags.isZExt()) {
384       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
385                    .getReg(0);
386     }
387 
388     // Sometimes pointers are passed zero extended.
389     LLT OrigTy = MRI.getType(OrigRegs[0]);
390     if (OrigTy.isPointer()) {
391       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
392       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
393       return;
394     }
395 
396     B.buildTrunc(OrigRegs[0], SrcReg);
397     return;
398   }
399 
400   if (!LLTy.isVector() && !PartLLT.isVector()) {
401     assert(OrigRegs.size() == 1);
402     LLT OrigTy = MRI.getType(OrigRegs[0]);
403 
404     unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
405     if (SrcSize == OrigTy.getSizeInBits())
406       B.buildMergeValues(OrigRegs[0], Regs);
407     else {
408       auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
409       B.buildTrunc(OrigRegs[0], Widened);
410     }
411 
412     return;
413   }
414 
415   if (PartLLT.isVector()) {
416     assert(OrigRegs.size() == 1);
417     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
418 
419     // If PartLLT is a mismatched vector in both number of elements and element
420     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
421     // have the same elt type, i.e. v4s32.
422     // TODO: Extend this coersion to element multiples other than just 2.
423     if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
424         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
425         Regs.size() == 1) {
426       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
427                       .changeElementCount(PartLLT.getElementCount() * 2);
428       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
429       PartLLT = NewTy;
430     }
431 
432     if (LLTy.getScalarType() == PartLLT.getElementType()) {
433       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
434     } else {
435       unsigned I = 0;
436       LLT GCDTy = getGCDType(LLTy, PartLLT);
437 
438       // We are both splitting a vector, and bitcasting its element types. Cast
439       // the source pieces into the appropriate number of pieces with the result
440       // element type.
441       for (Register SrcReg : CastRegs)
442         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
443       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
444     }
445 
446     return;
447   }
448 
449   assert(LLTy.isVector() && !PartLLT.isVector());
450 
451   LLT DstEltTy = LLTy.getElementType();
452 
453   // Pointer information was discarded. We'll need to coerce some register types
454   // to avoid violating type constraints.
455   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
456 
457   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
458 
459   if (DstEltTy == PartLLT) {
460     // Vector was trivially scalarized.
461 
462     if (RealDstEltTy.isPointer()) {
463       for (Register Reg : Regs)
464         MRI.setType(Reg, RealDstEltTy);
465     }
466 
467     B.buildBuildVector(OrigRegs[0], Regs);
468   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
469     // Deal with vector with 64-bit elements decomposed to 32-bit
470     // registers. Need to create intermediate 64-bit elements.
471     SmallVector<Register, 8> EltMerges;
472     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
473 
474     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
475 
476     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
477       auto Merge =
478           B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt));
479       // Fix the type in case this is really a vector of pointers.
480       MRI.setType(Merge.getReg(0), RealDstEltTy);
481       EltMerges.push_back(Merge.getReg(0));
482       Regs = Regs.drop_front(PartsPerElt);
483     }
484 
485     B.buildBuildVector(OrigRegs[0], EltMerges);
486   } else {
487     // Vector was split, and elements promoted to a wider type.
488     // FIXME: Should handle floating point promotions.
489     unsigned NumElts = LLTy.getNumElements();
490     LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
491 
492     Register BuildVec;
493     if (NumElts == Regs.size())
494       BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
495     else {
496       // Vector elements are packed in the inputs.
497       // e.g. we have a <4 x s16> but 2 x s32 in regs.
498       assert(NumElts > Regs.size());
499       LLT SrcEltTy = MRI.getType(Regs[0]);
500 
501       LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
502 
503       // Input registers contain packed elements.
504       // Determine how many elements per reg.
505       assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
506       unsigned EltPerReg =
507           (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
508 
509       SmallVector<Register, 0> BVRegs;
510       BVRegs.reserve(Regs.size() * EltPerReg);
511       for (Register R : Regs) {
512         auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
513         for (unsigned K = 0; K < EltPerReg; ++K)
514           BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
515       }
516 
517       // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
518       // for a <3 x s16> vector. We should have less than EltPerReg extra items.
519       if (BVRegs.size() > NumElts) {
520         assert((BVRegs.size() - NumElts) < EltPerReg);
521         BVRegs.truncate(NumElts);
522       }
523       BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
524     }
525     B.buildTrunc(OrigRegs[0], BuildVec);
526   }
527 }
528 
529 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
530 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
531 /// contain the type of scalar value extension if necessary.
532 ///
533 /// This is used for outgoing values (vregs to physregs)
534 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
535                             Register SrcReg, LLT SrcTy, LLT PartTy,
536                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
537   // We could just insert a regular copy, but this is unreachable at the moment.
538   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
539 
540   const TypeSize PartSize = PartTy.getSizeInBits();
541 
542   if (PartTy.isVector() == SrcTy.isVector() &&
543       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
544     assert(DstRegs.size() == 1);
545     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
546     return;
547   }
548 
549   if (SrcTy.isVector() && !PartTy.isVector() &&
550       TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
551     // Vector was scalarized, and the elements extended.
552     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
553     for (int i = 0, e = DstRegs.size(); i != e; ++i)
554       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
555     return;
556   }
557 
558   if (SrcTy.isVector() && PartTy.isVector() &&
559       PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
560       ElementCount::isKnownLT(SrcTy.getElementCount(),
561                               PartTy.getElementCount())) {
562     // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
563     Register DstReg = DstRegs.front();
564     B.buildPadVectorWithUndefElements(DstReg, SrcReg);
565     return;
566   }
567 
568   LLT GCDTy = getGCDType(SrcTy, PartTy);
569   if (GCDTy == PartTy) {
570     // If this already evenly divisible, we can create a simple unmerge.
571     B.buildUnmerge(DstRegs, SrcReg);
572     return;
573   }
574 
575   MachineRegisterInfo &MRI = *B.getMRI();
576   LLT DstTy = MRI.getType(DstRegs[0]);
577   LLT LCMTy = getCoverTy(SrcTy, PartTy);
578 
579   if (PartTy.isVector() && LCMTy == PartTy) {
580     assert(DstRegs.size() == 1);
581     B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
582     return;
583   }
584 
585   const unsigned DstSize = DstTy.getSizeInBits();
586   const unsigned SrcSize = SrcTy.getSizeInBits();
587   unsigned CoveringSize = LCMTy.getSizeInBits();
588 
589   Register UnmergeSrc = SrcReg;
590 
591   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
592     // For scalars, it's common to be able to use a simple extension.
593     if (SrcTy.isScalar() && DstTy.isScalar()) {
594       CoveringSize = alignTo(SrcSize, DstSize);
595       LLT CoverTy = LLT::scalar(CoveringSize);
596       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
597     } else {
598       // Widen to the common type.
599       // FIXME: This should respect the extend type
600       Register Undef = B.buildUndef(SrcTy).getReg(0);
601       SmallVector<Register, 8> MergeParts(1, SrcReg);
602       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
603         MergeParts.push_back(Undef);
604       UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
605     }
606   }
607 
608   if (LCMTy.isVector() && CoveringSize != SrcSize)
609     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
610 
611   B.buildUnmerge(DstRegs, UnmergeSrc);
612 }
613 
614 bool CallLowering::determineAndHandleAssignments(
615     ValueHandler &Handler, ValueAssigner &Assigner,
616     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
617     CallingConv::ID CallConv, bool IsVarArg,
618     ArrayRef<Register> ThisReturnRegs) const {
619   MachineFunction &MF = MIRBuilder.getMF();
620   const Function &F = MF.getFunction();
621   SmallVector<CCValAssign, 16> ArgLocs;
622 
623   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
624   if (!determineAssignments(Assigner, Args, CCInfo))
625     return false;
626 
627   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
628                            ThisReturnRegs);
629 }
630 
631 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
632   if (Flags.isSExt())
633     return TargetOpcode::G_SEXT;
634   if (Flags.isZExt())
635     return TargetOpcode::G_ZEXT;
636   return TargetOpcode::G_ANYEXT;
637 }
638 
639 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
640                                         SmallVectorImpl<ArgInfo> &Args,
641                                         CCState &CCInfo) const {
642   LLVMContext &Ctx = CCInfo.getContext();
643   const CallingConv::ID CallConv = CCInfo.getCallingConv();
644 
645   unsigned NumArgs = Args.size();
646   for (unsigned i = 0; i != NumArgs; ++i) {
647     EVT CurVT = EVT::getEVT(Args[i].Ty);
648 
649     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
650 
651     // If we need to split the type over multiple regs, check it's a scenario
652     // we currently support.
653     unsigned NumParts =
654         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
655 
656     if (NumParts == 1) {
657       // Try to use the register type if we couldn't assign the VT.
658       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
659                              Args[i].Flags[0], CCInfo))
660         return false;
661       continue;
662     }
663 
664     // For incoming arguments (physregs to vregs), we could have values in
665     // physregs (or memlocs) which we want to extract and copy to vregs.
666     // During this, we might have to deal with the LLT being split across
667     // multiple regs, so we have to record this information for later.
668     //
669     // If we have outgoing args, then we have the opposite case. We have a
670     // vreg with an LLT which we want to assign to a physical location, and
671     // we might have to record that the value has to be split later.
672 
673     // We're handling an incoming arg which is split over multiple regs.
674     // E.g. passing an s128 on AArch64.
675     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
676     Args[i].Flags.clear();
677 
678     for (unsigned Part = 0; Part < NumParts; ++Part) {
679       ISD::ArgFlagsTy Flags = OrigFlags;
680       if (Part == 0) {
681         Flags.setSplit();
682       } else {
683         Flags.setOrigAlign(Align(1));
684         if (Part == NumParts - 1)
685           Flags.setSplitEnd();
686       }
687 
688       Args[i].Flags.push_back(Flags);
689       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
690                              Args[i].Flags[Part], CCInfo)) {
691         // Still couldn't assign this smaller part type for some reason.
692         return false;
693       }
694     }
695   }
696 
697   return true;
698 }
699 
700 bool CallLowering::handleAssignments(ValueHandler &Handler,
701                                      SmallVectorImpl<ArgInfo> &Args,
702                                      CCState &CCInfo,
703                                      SmallVectorImpl<CCValAssign> &ArgLocs,
704                                      MachineIRBuilder &MIRBuilder,
705                                      ArrayRef<Register> ThisReturnRegs) const {
706   MachineFunction &MF = MIRBuilder.getMF();
707   MachineRegisterInfo &MRI = MF.getRegInfo();
708   const Function &F = MF.getFunction();
709   const DataLayout &DL = F.getParent()->getDataLayout();
710 
711   const unsigned NumArgs = Args.size();
712 
713   // Stores thunks for outgoing register assignments. This is used so we delay
714   // generating register copies until mem loc assignments are done. We do this
715   // so that if the target is using the delayed stack protector feature, we can
716   // find the split point of the block accurately. E.g. if we have:
717   // G_STORE %val, %memloc
718   // $x0 = COPY %foo
719   // $x1 = COPY %bar
720   // CALL func
721   // ... then the split point for the block will correctly be at, and including,
722   // the copy to $x0. If instead the G_STORE instruction immediately precedes
723   // the CALL, then we'd prematurely choose the CALL as the split point, thus
724   // generating a split block with a CALL that uses undefined physregs.
725   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
726 
727   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
728     assert(j < ArgLocs.size() && "Skipped too many arg locs");
729     CCValAssign &VA = ArgLocs[j];
730     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
731 
732     if (VA.needsCustom()) {
733       std::function<void()> Thunk;
734       unsigned NumArgRegs = Handler.assignCustomValue(
735           Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
736       if (Thunk)
737         DelayedOutgoingRegAssignments.emplace_back(Thunk);
738       if (!NumArgRegs)
739         return false;
740       j += (NumArgRegs - 1);
741       continue;
742     }
743 
744     const MVT ValVT = VA.getValVT();
745     const MVT LocVT = VA.getLocVT();
746 
747     const LLT LocTy(LocVT);
748     const LLT ValTy(ValVT);
749     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
750     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
751     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
752 
753     // Expected to be multiple regs for a single incoming arg.
754     // There should be Regs.size() ArgLocs per argument.
755     // This should be the same as getNumRegistersForCallingConv
756     const unsigned NumParts = Args[i].Flags.size();
757 
758     // Now split the registers into the assigned types.
759     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
760 
761     if (NumParts != 1 || NewLLT != OrigTy) {
762       // If we can't directly assign the register, we need one or more
763       // intermediate values.
764       Args[i].Regs.resize(NumParts);
765 
766       // For each split register, create and assign a vreg that will store
767       // the incoming component of the larger value. These will later be
768       // merged to form the final vreg.
769       for (unsigned Part = 0; Part < NumParts; ++Part)
770         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
771     }
772 
773     assert((j + (NumParts - 1)) < ArgLocs.size() &&
774            "Too many regs for number of args");
775 
776     // Coerce into outgoing value types before register assignment.
777     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
778       assert(Args[i].OrigRegs.size() == 1);
779       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
780                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
781     }
782 
783     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
784     for (unsigned Part = 0; Part < NumParts; ++Part) {
785       Register ArgReg = Args[i].Regs[Part];
786       // There should be Regs.size() ArgLocs per argument.
787       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
788       CCValAssign &VA = ArgLocs[j + Idx];
789       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
790 
791       if (VA.isMemLoc() && !Flags.isByVal()) {
792         // Individual pieces may have been spilled to the stack and others
793         // passed in registers.
794 
795         // TODO: The memory size may be larger than the value we need to
796         // store. We may need to adjust the offset for big endian targets.
797         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
798 
799         MachinePointerInfo MPO;
800         Register StackAddr = Handler.getStackAddress(
801             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
802 
803         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
804         continue;
805       }
806 
807       if (VA.isMemLoc() && Flags.isByVal()) {
808         assert(Args[i].Regs.size() == 1 &&
809                "didn't expect split byval pointer");
810 
811         if (Handler.isIncomingArgumentHandler()) {
812           // We just need to copy the frame index value to the pointer.
813           MachinePointerInfo MPO;
814           Register StackAddr = Handler.getStackAddress(
815               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
816           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
817         } else {
818           // For outgoing byval arguments, insert the implicit copy byval
819           // implies, such that writes in the callee do not modify the caller's
820           // value.
821           uint64_t MemSize = Flags.getByValSize();
822           int64_t Offset = VA.getLocMemOffset();
823 
824           MachinePointerInfo DstMPO;
825           Register StackAddr =
826               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
827 
828           MachinePointerInfo SrcMPO(Args[i].OrigValue);
829           if (!Args[i].OrigValue) {
830             // We still need to accurately track the stack address space if we
831             // don't know the underlying value.
832             const LLT PtrTy = MRI.getType(StackAddr);
833             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
834           }
835 
836           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
837                                     inferAlignFromPtrInfo(MF, DstMPO));
838 
839           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
840                                     inferAlignFromPtrInfo(MF, SrcMPO));
841 
842           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
843                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
844                                      MemSize, VA);
845         }
846         continue;
847       }
848 
849       assert(!VA.needsCustom() && "custom loc should have been handled already");
850 
851       if (i == 0 && !ThisReturnRegs.empty() &&
852           Handler.isIncomingArgumentHandler() &&
853           isTypeIsValidForThisReturn(ValVT)) {
854         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
855         continue;
856       }
857 
858       if (Handler.isIncomingArgumentHandler())
859         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
860       else {
861         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
862           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
863         });
864       }
865     }
866 
867     // Now that all pieces have been assigned, re-pack the register typed values
868     // into the original value typed registers.
869     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
870       // Merge the split registers into the expected larger result vregs of
871       // the original call.
872       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
873                         LocTy, Args[i].Flags[0]);
874     }
875 
876     j += NumParts - 1;
877   }
878   for (auto &Fn : DelayedOutgoingRegAssignments)
879     Fn();
880 
881   return true;
882 }
883 
884 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
885                                    ArrayRef<Register> VRegs, Register DemoteReg,
886                                    int FI) const {
887   MachineFunction &MF = MIRBuilder.getMF();
888   MachineRegisterInfo &MRI = MF.getRegInfo();
889   const DataLayout &DL = MF.getDataLayout();
890 
891   SmallVector<EVT, 4> SplitVTs;
892   SmallVector<uint64_t, 4> Offsets;
893   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
894 
895   assert(VRegs.size() == SplitVTs.size());
896 
897   unsigned NumValues = SplitVTs.size();
898   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
899   Type *RetPtrTy =
900       PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
901   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
902 
903   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
904 
905   for (unsigned I = 0; I < NumValues; ++I) {
906     Register Addr;
907     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
908     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
909                                         MRI.getType(VRegs[I]),
910                                         commonAlignment(BaseAlign, Offsets[I]));
911     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
912   }
913 }
914 
915 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
916                                     ArrayRef<Register> VRegs,
917                                     Register DemoteReg) const {
918   MachineFunction &MF = MIRBuilder.getMF();
919   MachineRegisterInfo &MRI = MF.getRegInfo();
920   const DataLayout &DL = MF.getDataLayout();
921 
922   SmallVector<EVT, 4> SplitVTs;
923   SmallVector<uint64_t, 4> Offsets;
924   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
925 
926   assert(VRegs.size() == SplitVTs.size());
927 
928   unsigned NumValues = SplitVTs.size();
929   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
930   unsigned AS = DL.getAllocaAddrSpace();
931   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
932 
933   MachinePointerInfo PtrInfo(AS);
934 
935   for (unsigned I = 0; I < NumValues; ++I) {
936     Register Addr;
937     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
938     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
939                                         MRI.getType(VRegs[I]),
940                                         commonAlignment(BaseAlign, Offsets[I]));
941     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
942   }
943 }
944 
945 void CallLowering::insertSRetIncomingArgument(
946     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
947     MachineRegisterInfo &MRI, const DataLayout &DL) const {
948   unsigned AS = DL.getAllocaAddrSpace();
949   DemoteReg = MRI.createGenericVirtualRegister(
950       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
951 
952   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
953 
954   SmallVector<EVT, 1> ValueVTs;
955   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
956 
957   // NOTE: Assume that a pointer won't get split into more than one VT.
958   assert(ValueVTs.size() == 1);
959 
960   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
961                     ArgInfo::NoArgIndex);
962   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
963   DemoteArg.Flags[0].setSRet();
964   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
965 }
966 
967 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
968                                               const CallBase &CB,
969                                               CallLoweringInfo &Info) const {
970   const DataLayout &DL = MIRBuilder.getDataLayout();
971   Type *RetTy = CB.getType();
972   unsigned AS = DL.getAllocaAddrSpace();
973   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
974 
975   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
976       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
977 
978   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
979   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
980                     ArgInfo::NoArgIndex);
981   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
982   DemoteArg.Flags[0].setSRet();
983 
984   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
985   Info.DemoteStackIndex = FI;
986   Info.DemoteRegister = DemoteReg;
987 }
988 
989 bool CallLowering::checkReturn(CCState &CCInfo,
990                                SmallVectorImpl<BaseArgInfo> &Outs,
991                                CCAssignFn *Fn) const {
992   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
993     MVT VT = MVT::getVT(Outs[I].Ty);
994     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
995       return false;
996   }
997   return true;
998 }
999 
1000 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
1001                                  AttributeList Attrs,
1002                                  SmallVectorImpl<BaseArgInfo> &Outs,
1003                                  const DataLayout &DL) const {
1004   LLVMContext &Context = RetTy->getContext();
1005   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1006 
1007   SmallVector<EVT, 4> SplitVTs;
1008   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1009   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1010 
1011   for (EVT VT : SplitVTs) {
1012     unsigned NumParts =
1013         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1014     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1015     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1016 
1017     for (unsigned I = 0; I < NumParts; ++I) {
1018       Outs.emplace_back(PartTy, Flags);
1019     }
1020   }
1021 }
1022 
1023 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
1024   const auto &F = MF.getFunction();
1025   Type *ReturnType = F.getReturnType();
1026   CallingConv::ID CallConv = F.getCallingConv();
1027 
1028   SmallVector<BaseArgInfo, 4> SplitArgs;
1029   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1030                 MF.getDataLayout());
1031   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1032 }
1033 
1034 bool CallLowering::parametersInCSRMatch(
1035     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1036     const SmallVectorImpl<CCValAssign> &OutLocs,
1037     const SmallVectorImpl<ArgInfo> &OutArgs) const {
1038   for (unsigned i = 0; i < OutLocs.size(); ++i) {
1039     const auto &ArgLoc = OutLocs[i];
1040     // If it's not a register, it's fine.
1041     if (!ArgLoc.isRegLoc())
1042       continue;
1043 
1044     MCRegister PhysReg = ArgLoc.getLocReg();
1045 
1046     // Only look at callee-saved registers.
1047     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1048       continue;
1049 
1050     LLVM_DEBUG(
1051         dbgs()
1052         << "... Call has an argument passed in a callee-saved register.\n");
1053 
1054     // Check if it was copied from.
1055     const ArgInfo &OutInfo = OutArgs[i];
1056 
1057     if (OutInfo.Regs.size() > 1) {
1058       LLVM_DEBUG(
1059           dbgs() << "... Cannot handle arguments in multiple registers.\n");
1060       return false;
1061     }
1062 
1063     // Check if we copy the register, walking through copies from virtual
1064     // registers. Note that getDefIgnoringCopies does not ignore copies from
1065     // physical registers.
1066     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1067     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1068       LLVM_DEBUG(
1069           dbgs()
1070           << "... Parameter was not copied into a VReg, cannot tail call.\n");
1071       return false;
1072     }
1073 
1074     // Got a copy. Verify that it's the same as the register we want.
1075     Register CopyRHS = RegDef->getOperand(1).getReg();
1076     if (CopyRHS != PhysReg) {
1077       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1078                            "VReg, cannot tail call.\n");
1079       return false;
1080     }
1081   }
1082 
1083   return true;
1084 }
1085 
1086 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1087                                      MachineFunction &MF,
1088                                      SmallVectorImpl<ArgInfo> &InArgs,
1089                                      ValueAssigner &CalleeAssigner,
1090                                      ValueAssigner &CallerAssigner) const {
1091   const Function &F = MF.getFunction();
1092   CallingConv::ID CalleeCC = Info.CallConv;
1093   CallingConv::ID CallerCC = F.getCallingConv();
1094 
1095   if (CallerCC == CalleeCC)
1096     return true;
1097 
1098   SmallVector<CCValAssign, 16> ArgLocs1;
1099   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1100   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1101     return false;
1102 
1103   SmallVector<CCValAssign, 16> ArgLocs2;
1104   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1105   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1106     return false;
1107 
1108   // We need the argument locations to match up exactly. If there's more in
1109   // one than the other, then we are done.
1110   if (ArgLocs1.size() != ArgLocs2.size())
1111     return false;
1112 
1113   // Make sure that each location is passed in exactly the same way.
1114   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1115     const CCValAssign &Loc1 = ArgLocs1[i];
1116     const CCValAssign &Loc2 = ArgLocs2[i];
1117 
1118     // We need both of them to be the same. So if one is a register and one
1119     // isn't, we're done.
1120     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1121       return false;
1122 
1123     if (Loc1.isRegLoc()) {
1124       // If they don't have the same register location, we're done.
1125       if (Loc1.getLocReg() != Loc2.getLocReg())
1126         return false;
1127 
1128       // They matched, so we can move to the next ArgLoc.
1129       continue;
1130     }
1131 
1132     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1133     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1134       return false;
1135   }
1136 
1137   return true;
1138 }
1139 
1140 LLT CallLowering::ValueHandler::getStackValueStoreType(
1141     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1142   const MVT ValVT = VA.getValVT();
1143   if (ValVT != MVT::iPTR) {
1144     LLT ValTy(ValVT);
1145 
1146     // We lost the pointeriness going through CCValAssign, so try to restore it
1147     // based on the flags.
1148     if (Flags.isPointer()) {
1149       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1150                                ValTy.getScalarSizeInBits());
1151       if (ValVT.isVector())
1152         return LLT::vector(ValTy.getElementCount(), PtrTy);
1153       return PtrTy;
1154     }
1155 
1156     return ValTy;
1157   }
1158 
1159   unsigned AddrSpace = Flags.getPointerAddrSpace();
1160   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1161 }
1162 
1163 void CallLowering::ValueHandler::copyArgumentMemory(
1164     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1165     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1166     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1167     CCValAssign &VA) const {
1168   MachineFunction &MF = MIRBuilder.getMF();
1169   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1170       SrcPtrInfo,
1171       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1172       SrcAlign);
1173 
1174   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1175       DstPtrInfo,
1176       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1177       MemSize, DstAlign);
1178 
1179   const LLT PtrTy = MRI.getType(DstPtr);
1180   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1181 
1182   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1183   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1184 }
1185 
1186 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1187                                                     const CCValAssign &VA,
1188                                                     unsigned MaxSizeBits) {
1189   LLT LocTy{VA.getLocVT()};
1190   LLT ValTy{VA.getValVT()};
1191 
1192   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1193     return ValReg;
1194 
1195   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1196     if (MaxSizeBits <= ValTy.getSizeInBits())
1197       return ValReg;
1198     LocTy = LLT::scalar(MaxSizeBits);
1199   }
1200 
1201   const LLT ValRegTy = MRI.getType(ValReg);
1202   if (ValRegTy.isPointer()) {
1203     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1204     // we have to cast to do the extension.
1205     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1206     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1207   }
1208 
1209   switch (VA.getLocInfo()) {
1210   default: break;
1211   case CCValAssign::Full:
1212   case CCValAssign::BCvt:
1213     // FIXME: bitconverting between vector types may or may not be a
1214     // nop in big-endian situations.
1215     return ValReg;
1216   case CCValAssign::AExt: {
1217     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1218     return MIB.getReg(0);
1219   }
1220   case CCValAssign::SExt: {
1221     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1222     MIRBuilder.buildSExt(NewReg, ValReg);
1223     return NewReg;
1224   }
1225   case CCValAssign::ZExt: {
1226     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1227     MIRBuilder.buildZExt(NewReg, ValReg);
1228     return NewReg;
1229   }
1230   }
1231   llvm_unreachable("unable to extend register");
1232 }
1233 
1234 void CallLowering::ValueAssigner::anchor() {}
1235 
1236 Register CallLowering::IncomingValueHandler::buildExtensionHint(
1237     const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1238   switch (VA.getLocInfo()) {
1239   case CCValAssign::LocInfo::ZExt: {
1240     return MIRBuilder
1241         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1242                          NarrowTy.getScalarSizeInBits())
1243         .getReg(0);
1244   }
1245   case CCValAssign::LocInfo::SExt: {
1246     return MIRBuilder
1247         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1248                          NarrowTy.getScalarSizeInBits())
1249         .getReg(0);
1250     break;
1251   }
1252   default:
1253     return SrcReg;
1254   }
1255 }
1256 
1257 /// Check if we can use a basic COPY instruction between the two types.
1258 ///
1259 /// We're currently building on top of the infrastructure using MVT, which loses
1260 /// pointer information in the CCValAssign. We accept copies from physical
1261 /// registers that have been reported as integers if it's to an equivalent sized
1262 /// pointer LLT.
1263 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1264   if (SrcTy == DstTy)
1265     return true;
1266 
1267   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1268     return false;
1269 
1270   SrcTy = SrcTy.getScalarType();
1271   DstTy = DstTy.getScalarType();
1272 
1273   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1274          (DstTy.isPointer() && SrcTy.isScalar());
1275 }
1276 
1277 void CallLowering::IncomingValueHandler::assignValueToReg(
1278     Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1279   const MVT LocVT = VA.getLocVT();
1280   const LLT LocTy(LocVT);
1281   const LLT RegTy = MRI.getType(ValVReg);
1282 
1283   if (isCopyCompatibleType(RegTy, LocTy)) {
1284     MIRBuilder.buildCopy(ValVReg, PhysReg);
1285     return;
1286   }
1287 
1288   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1289   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1290   MIRBuilder.buildTrunc(ValVReg, Hint);
1291 }
1292