1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 #define DEBUG_TYPE "call-lowering" 30 31 using namespace llvm; 32 33 void CallLowering::anchor() {} 34 35 /// Helper function which updates \p Flags when \p AttrFn returns true. 36 static void 37 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 38 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 39 if (AttrFn(Attribute::SExt)) 40 Flags.setSExt(); 41 if (AttrFn(Attribute::ZExt)) 42 Flags.setZExt(); 43 if (AttrFn(Attribute::InReg)) 44 Flags.setInReg(); 45 if (AttrFn(Attribute::StructRet)) 46 Flags.setSRet(); 47 if (AttrFn(Attribute::Nest)) 48 Flags.setNest(); 49 if (AttrFn(Attribute::ByVal)) 50 Flags.setByVal(); 51 if (AttrFn(Attribute::Preallocated)) 52 Flags.setPreallocated(); 53 if (AttrFn(Attribute::InAlloca)) 54 Flags.setInAlloca(); 55 if (AttrFn(Attribute::Returned)) 56 Flags.setReturned(); 57 if (AttrFn(Attribute::SwiftSelf)) 58 Flags.setSwiftSelf(); 59 if (AttrFn(Attribute::SwiftAsync)) 60 Flags.setSwiftAsync(); 61 if (AttrFn(Attribute::SwiftError)) 62 Flags.setSwiftError(); 63 } 64 65 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 66 unsigned ArgIdx) const { 67 ISD::ArgFlagsTy Flags; 68 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 69 return Call.paramHasAttr(ArgIdx, Attr); 70 }); 71 return Flags; 72 } 73 74 ISD::ArgFlagsTy 75 CallLowering::getAttributesForReturn(const CallBase &Call) const { 76 ISD::ArgFlagsTy Flags; 77 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { 78 return Call.hasRetAttr(Attr); 79 }); 80 return Flags; 81 } 82 83 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 84 const AttributeList &Attrs, 85 unsigned OpIdx) const { 86 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 87 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 88 }); 89 } 90 91 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 92 ArrayRef<Register> ResRegs, 93 ArrayRef<ArrayRef<Register>> ArgRegs, 94 Register SwiftErrorVReg, 95 Register ConvergenceCtrlToken, 96 std::function<unsigned()> GetCalleeReg) const { 97 CallLoweringInfo Info; 98 const DataLayout &DL = MIRBuilder.getDataLayout(); 99 MachineFunction &MF = MIRBuilder.getMF(); 100 MachineRegisterInfo &MRI = MF.getRegInfo(); 101 bool CanBeTailCalled = CB.isTailCall() && 102 isInTailCallPosition(CB, MF.getTarget()) && 103 (MF.getFunction() 104 .getFnAttribute("disable-tail-calls") 105 .getValueAsString() != "true"); 106 107 CallingConv::ID CallConv = CB.getCallingConv(); 108 Type *RetTy = CB.getType(); 109 bool IsVarArg = CB.getFunctionType()->isVarArg(); 110 111 SmallVector<BaseArgInfo, 4> SplitArgs; 112 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 113 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 114 115 Info.IsConvergent = CB.isConvergent(); 116 117 if (!Info.CanLowerReturn) { 118 // Callee requires sret demotion. 119 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 120 121 // The sret demotion isn't compatible with tail-calls, since the sret 122 // argument points into the caller's stack frame. 123 CanBeTailCalled = false; 124 } 125 126 // First step is to marshall all the function's parameters into the correct 127 // physregs and memory locations. Gather the sequence of argument types that 128 // we'll pass to the assigner function. 129 unsigned i = 0; 130 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 131 for (const auto &Arg : CB.args()) { 132 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 133 i < NumFixedArgs}; 134 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 135 136 // If we have an explicit sret argument that is an Instruction, (i.e., it 137 // might point to function-local memory), we can't meaningfully tail-call. 138 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 139 CanBeTailCalled = false; 140 141 Info.OrigArgs.push_back(OrigArg); 142 ++i; 143 } 144 145 // Try looking through a bitcast from one function type to another. 146 // Commonly happens with calls to objc_msgSend(). 147 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 148 if (const Function *F = dyn_cast<Function>(CalleeV)) { 149 if (F->hasFnAttribute(Attribute::NonLazyBind)) { 150 LLT Ty = getLLTForType(*F->getType(), DL); 151 Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0); 152 Info.Callee = MachineOperand::CreateReg(Reg, false); 153 } else { 154 Info.Callee = MachineOperand::CreateGA(F, 0); 155 } 156 } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) { 157 // IR IFuncs and Aliases can't be forward declared (only defined), so the 158 // callee must be in the same TU and therefore we can direct-call it without 159 // worrying about it being out of range. 160 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0); 161 } else 162 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 163 164 Register ReturnHintAlignReg; 165 Align ReturnHintAlign; 166 167 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; 168 169 if (!Info.OrigRet.Ty->isVoidTy()) { 170 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 171 172 if (MaybeAlign Alignment = CB.getRetAlign()) { 173 if (*Alignment > Align(1)) { 174 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 175 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 176 ReturnHintAlign = *Alignment; 177 } 178 } 179 } 180 181 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 182 if (Bundle && CB.isIndirectCall()) { 183 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 184 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 185 } 186 187 Info.CB = &CB; 188 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 189 Info.CallConv = CallConv; 190 Info.SwiftErrorVReg = SwiftErrorVReg; 191 Info.ConvergenceCtrlToken = ConvergenceCtrlToken; 192 Info.IsMustTailCall = CB.isMustTailCall(); 193 Info.IsTailCall = CanBeTailCalled; 194 Info.IsVarArg = IsVarArg; 195 if (!lowerCall(MIRBuilder, Info)) 196 return false; 197 198 if (ReturnHintAlignReg && !Info.LoweredTailCall) { 199 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 200 ReturnHintAlign); 201 } 202 203 return true; 204 } 205 206 template <typename FuncInfoTy> 207 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 208 const DataLayout &DL, 209 const FuncInfoTy &FuncInfo) const { 210 auto &Flags = Arg.Flags[0]; 211 const AttributeList &Attrs = FuncInfo.getAttributes(); 212 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 213 214 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 215 if (PtrTy) { 216 Flags.setPointer(); 217 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 218 } 219 220 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 221 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 222 assert(OpIdx >= AttributeList::FirstArgIndex); 223 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 224 225 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 226 if (!ElementTy) 227 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 228 if (!ElementTy) 229 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 230 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 231 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 232 233 // For ByVal, alignment should be passed from FE. BE will guess if 234 // this info is not there but there are cases it cannot get right. 235 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 236 MemAlign = *ParamAlign; 237 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 238 MemAlign = *ParamAlign; 239 else 240 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 241 } else if (OpIdx >= AttributeList::FirstArgIndex) { 242 if (auto ParamAlign = 243 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 244 MemAlign = *ParamAlign; 245 } 246 Flags.setMemAlign(MemAlign); 247 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 248 249 // Don't try to use the returned attribute if the argument is marked as 250 // swiftself, since it won't be passed in x0. 251 if (Flags.isSwiftSelf()) 252 Flags.setReturned(false); 253 } 254 255 template void 256 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 257 const DataLayout &DL, 258 const Function &FuncInfo) const; 259 260 template void 261 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 262 const DataLayout &DL, 263 const CallBase &FuncInfo) const; 264 265 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 266 SmallVectorImpl<ArgInfo> &SplitArgs, 267 const DataLayout &DL, 268 CallingConv::ID CallConv, 269 SmallVectorImpl<uint64_t> *Offsets) const { 270 LLVMContext &Ctx = OrigArg.Ty->getContext(); 271 272 SmallVector<EVT, 4> SplitVTs; 273 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 274 275 if (SplitVTs.size() == 0) 276 return; 277 278 if (SplitVTs.size() == 1) { 279 // No splitting to do, but we want to replace the original type (e.g. [1 x 280 // double] -> double). 281 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 282 OrigArg.OrigArgIndex, OrigArg.Flags[0], 283 OrigArg.IsFixed, OrigArg.OrigValue); 284 return; 285 } 286 287 // Create one ArgInfo for each virtual register in the original ArgInfo. 288 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 289 290 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 291 OrigArg.Ty, CallConv, false, DL); 292 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 293 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 294 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 295 OrigArg.Flags[0], OrigArg.IsFixed); 296 if (NeedsRegBlock) 297 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 298 } 299 300 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 301 } 302 303 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 304 static MachineInstrBuilder 305 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 306 ArrayRef<Register> SrcRegs) { 307 MachineRegisterInfo &MRI = *B.getMRI(); 308 LLT LLTy = MRI.getType(DstRegs[0]); 309 LLT PartLLT = MRI.getType(SrcRegs[0]); 310 311 // Deal with v3s16 split into v2s16 312 LLT LCMTy = getCoverTy(LLTy, PartLLT); 313 if (LCMTy == LLTy) { 314 // Common case where no padding is needed. 315 assert(DstRegs.size() == 1); 316 return B.buildConcatVectors(DstRegs[0], SrcRegs); 317 } 318 319 // We need to create an unmerge to the result registers, which may require 320 // widening the original value. 321 Register UnmergeSrcReg; 322 if (LCMTy != PartLLT) { 323 assert(DstRegs.size() == 1); 324 return B.buildDeleteTrailingVectorElements( 325 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); 326 } else { 327 // We don't need to widen anything if we're extracting a scalar which was 328 // promoted to a vector e.g. s8 -> v4s8 -> s8 329 assert(SrcRegs.size() == 1); 330 UnmergeSrcReg = SrcRegs[0]; 331 } 332 333 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 334 335 SmallVector<Register, 8> PadDstRegs(NumDst); 336 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 337 338 // Create the excess dead defs for the unmerge. 339 for (int I = DstRegs.size(); I != NumDst; ++I) 340 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 341 342 if (PadDstRegs.size() == 1) 343 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 344 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 345 } 346 347 /// Create a sequence of instructions to combine pieces split into register 348 /// typed values to the original IR value. \p OrigRegs contains the destination 349 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 350 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 351 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 352 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 353 const ISD::ArgFlagsTy Flags) { 354 MachineRegisterInfo &MRI = *B.getMRI(); 355 356 if (PartLLT == LLTy) { 357 // We should have avoided introducing a new virtual register, and just 358 // directly assigned here. 359 assert(OrigRegs[0] == Regs[0]); 360 return; 361 } 362 363 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 364 Regs.size() == 1) { 365 B.buildBitcast(OrigRegs[0], Regs[0]); 366 return; 367 } 368 369 // A vector PartLLT needs extending to LLTy's element size. 370 // E.g. <2 x s64> = G_SEXT <2 x s32>. 371 if (PartLLT.isVector() == LLTy.isVector() && 372 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 373 (!PartLLT.isVector() || 374 PartLLT.getElementCount() == LLTy.getElementCount()) && 375 OrigRegs.size() == 1 && Regs.size() == 1) { 376 Register SrcReg = Regs[0]; 377 378 LLT LocTy = MRI.getType(SrcReg); 379 380 if (Flags.isSExt()) { 381 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 382 .getReg(0); 383 } else if (Flags.isZExt()) { 384 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 385 .getReg(0); 386 } 387 388 // Sometimes pointers are passed zero extended. 389 LLT OrigTy = MRI.getType(OrigRegs[0]); 390 if (OrigTy.isPointer()) { 391 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 392 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 393 return; 394 } 395 396 B.buildTrunc(OrigRegs[0], SrcReg); 397 return; 398 } 399 400 if (!LLTy.isVector() && !PartLLT.isVector()) { 401 assert(OrigRegs.size() == 1); 402 LLT OrigTy = MRI.getType(OrigRegs[0]); 403 404 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); 405 if (SrcSize == OrigTy.getSizeInBits()) 406 B.buildMergeValues(OrigRegs[0], Regs); 407 else { 408 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); 409 B.buildTrunc(OrigRegs[0], Widened); 410 } 411 412 return; 413 } 414 415 if (PartLLT.isVector()) { 416 assert(OrigRegs.size() == 1); 417 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 418 419 // If PartLLT is a mismatched vector in both number of elements and element 420 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 421 // have the same elt type, i.e. v4s32. 422 // TODO: Extend this coersion to element multiples other than just 2. 423 if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) && 424 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 425 Regs.size() == 1) { 426 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 427 .changeElementCount(PartLLT.getElementCount() * 2); 428 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 429 PartLLT = NewTy; 430 } 431 432 if (LLTy.getScalarType() == PartLLT.getElementType()) { 433 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 434 } else { 435 unsigned I = 0; 436 LLT GCDTy = getGCDType(LLTy, PartLLT); 437 438 // We are both splitting a vector, and bitcasting its element types. Cast 439 // the source pieces into the appropriate number of pieces with the result 440 // element type. 441 for (Register SrcReg : CastRegs) 442 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 443 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 444 } 445 446 return; 447 } 448 449 assert(LLTy.isVector() && !PartLLT.isVector()); 450 451 LLT DstEltTy = LLTy.getElementType(); 452 453 // Pointer information was discarded. We'll need to coerce some register types 454 // to avoid violating type constraints. 455 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 456 457 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 458 459 if (DstEltTy == PartLLT) { 460 // Vector was trivially scalarized. 461 462 if (RealDstEltTy.isPointer()) { 463 for (Register Reg : Regs) 464 MRI.setType(Reg, RealDstEltTy); 465 } 466 467 B.buildBuildVector(OrigRegs[0], Regs); 468 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 469 // Deal with vector with 64-bit elements decomposed to 32-bit 470 // registers. Need to create intermediate 64-bit elements. 471 SmallVector<Register, 8> EltMerges; 472 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 473 474 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 475 476 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 477 auto Merge = 478 B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt)); 479 // Fix the type in case this is really a vector of pointers. 480 MRI.setType(Merge.getReg(0), RealDstEltTy); 481 EltMerges.push_back(Merge.getReg(0)); 482 Regs = Regs.drop_front(PartsPerElt); 483 } 484 485 B.buildBuildVector(OrigRegs[0], EltMerges); 486 } else { 487 // Vector was split, and elements promoted to a wider type. 488 // FIXME: Should handle floating point promotions. 489 unsigned NumElts = LLTy.getNumElements(); 490 LLT BVType = LLT::fixed_vector(NumElts, PartLLT); 491 492 Register BuildVec; 493 if (NumElts == Regs.size()) 494 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0); 495 else { 496 // Vector elements are packed in the inputs. 497 // e.g. we have a <4 x s16> but 2 x s32 in regs. 498 assert(NumElts > Regs.size()); 499 LLT SrcEltTy = MRI.getType(Regs[0]); 500 501 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType(); 502 503 // Input registers contain packed elements. 504 // Determine how many elements per reg. 505 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0); 506 unsigned EltPerReg = 507 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits()); 508 509 SmallVector<Register, 0> BVRegs; 510 BVRegs.reserve(Regs.size() * EltPerReg); 511 for (Register R : Regs) { 512 auto Unmerge = B.buildUnmerge(OriginalEltTy, R); 513 for (unsigned K = 0; K < EltPerReg; ++K) 514 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0)); 515 } 516 517 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces 518 // for a <3 x s16> vector. We should have less than EltPerReg extra items. 519 if (BVRegs.size() > NumElts) { 520 assert((BVRegs.size() - NumElts) < EltPerReg); 521 BVRegs.truncate(NumElts); 522 } 523 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0); 524 } 525 B.buildTrunc(OrigRegs[0], BuildVec); 526 } 527 } 528 529 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 530 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 531 /// contain the type of scalar value extension if necessary. 532 /// 533 /// This is used for outgoing values (vregs to physregs) 534 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 535 Register SrcReg, LLT SrcTy, LLT PartTy, 536 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 537 // We could just insert a regular copy, but this is unreachable at the moment. 538 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 539 540 const TypeSize PartSize = PartTy.getSizeInBits(); 541 542 if (PartTy.isVector() == SrcTy.isVector() && 543 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 544 assert(DstRegs.size() == 1); 545 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 546 return; 547 } 548 549 if (SrcTy.isVector() && !PartTy.isVector() && 550 TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) { 551 // Vector was scalarized, and the elements extended. 552 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 553 for (int i = 0, e = DstRegs.size(); i != e; ++i) 554 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 555 return; 556 } 557 558 if (SrcTy.isVector() && PartTy.isVector() && 559 PartTy.getSizeInBits() == SrcTy.getSizeInBits() && 560 ElementCount::isKnownLT(SrcTy.getElementCount(), 561 PartTy.getElementCount())) { 562 // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32 563 Register DstReg = DstRegs.front(); 564 B.buildPadVectorWithUndefElements(DstReg, SrcReg); 565 return; 566 } 567 568 LLT GCDTy = getGCDType(SrcTy, PartTy); 569 if (GCDTy == PartTy) { 570 // If this already evenly divisible, we can create a simple unmerge. 571 B.buildUnmerge(DstRegs, SrcReg); 572 return; 573 } 574 575 MachineRegisterInfo &MRI = *B.getMRI(); 576 LLT DstTy = MRI.getType(DstRegs[0]); 577 LLT LCMTy = getCoverTy(SrcTy, PartTy); 578 579 if (PartTy.isVector() && LCMTy == PartTy) { 580 assert(DstRegs.size() == 1); 581 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 582 return; 583 } 584 585 const unsigned DstSize = DstTy.getSizeInBits(); 586 const unsigned SrcSize = SrcTy.getSizeInBits(); 587 unsigned CoveringSize = LCMTy.getSizeInBits(); 588 589 Register UnmergeSrc = SrcReg; 590 591 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 592 // For scalars, it's common to be able to use a simple extension. 593 if (SrcTy.isScalar() && DstTy.isScalar()) { 594 CoveringSize = alignTo(SrcSize, DstSize); 595 LLT CoverTy = LLT::scalar(CoveringSize); 596 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 597 } else { 598 // Widen to the common type. 599 // FIXME: This should respect the extend type 600 Register Undef = B.buildUndef(SrcTy).getReg(0); 601 SmallVector<Register, 8> MergeParts(1, SrcReg); 602 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 603 MergeParts.push_back(Undef); 604 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); 605 } 606 } 607 608 if (LCMTy.isVector() && CoveringSize != SrcSize) 609 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 610 611 B.buildUnmerge(DstRegs, UnmergeSrc); 612 } 613 614 bool CallLowering::determineAndHandleAssignments( 615 ValueHandler &Handler, ValueAssigner &Assigner, 616 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 617 CallingConv::ID CallConv, bool IsVarArg, 618 ArrayRef<Register> ThisReturnRegs) const { 619 MachineFunction &MF = MIRBuilder.getMF(); 620 const Function &F = MF.getFunction(); 621 SmallVector<CCValAssign, 16> ArgLocs; 622 623 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 624 if (!determineAssignments(Assigner, Args, CCInfo)) 625 return false; 626 627 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 628 ThisReturnRegs); 629 } 630 631 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 632 if (Flags.isSExt()) 633 return TargetOpcode::G_SEXT; 634 if (Flags.isZExt()) 635 return TargetOpcode::G_ZEXT; 636 return TargetOpcode::G_ANYEXT; 637 } 638 639 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 640 SmallVectorImpl<ArgInfo> &Args, 641 CCState &CCInfo) const { 642 LLVMContext &Ctx = CCInfo.getContext(); 643 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 644 645 unsigned NumArgs = Args.size(); 646 for (unsigned i = 0; i != NumArgs; ++i) { 647 EVT CurVT = EVT::getEVT(Args[i].Ty); 648 649 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 650 651 // If we need to split the type over multiple regs, check it's a scenario 652 // we currently support. 653 unsigned NumParts = 654 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 655 656 if (NumParts == 1) { 657 // Try to use the register type if we couldn't assign the VT. 658 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 659 Args[i].Flags[0], CCInfo)) 660 return false; 661 continue; 662 } 663 664 // For incoming arguments (physregs to vregs), we could have values in 665 // physregs (or memlocs) which we want to extract and copy to vregs. 666 // During this, we might have to deal with the LLT being split across 667 // multiple regs, so we have to record this information for later. 668 // 669 // If we have outgoing args, then we have the opposite case. We have a 670 // vreg with an LLT which we want to assign to a physical location, and 671 // we might have to record that the value has to be split later. 672 673 // We're handling an incoming arg which is split over multiple regs. 674 // E.g. passing an s128 on AArch64. 675 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 676 Args[i].Flags.clear(); 677 678 for (unsigned Part = 0; Part < NumParts; ++Part) { 679 ISD::ArgFlagsTy Flags = OrigFlags; 680 if (Part == 0) { 681 Flags.setSplit(); 682 } else { 683 Flags.setOrigAlign(Align(1)); 684 if (Part == NumParts - 1) 685 Flags.setSplitEnd(); 686 } 687 688 Args[i].Flags.push_back(Flags); 689 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 690 Args[i].Flags[Part], CCInfo)) { 691 // Still couldn't assign this smaller part type for some reason. 692 return false; 693 } 694 } 695 } 696 697 return true; 698 } 699 700 bool CallLowering::handleAssignments(ValueHandler &Handler, 701 SmallVectorImpl<ArgInfo> &Args, 702 CCState &CCInfo, 703 SmallVectorImpl<CCValAssign> &ArgLocs, 704 MachineIRBuilder &MIRBuilder, 705 ArrayRef<Register> ThisReturnRegs) const { 706 MachineFunction &MF = MIRBuilder.getMF(); 707 MachineRegisterInfo &MRI = MF.getRegInfo(); 708 const Function &F = MF.getFunction(); 709 const DataLayout &DL = F.getParent()->getDataLayout(); 710 711 const unsigned NumArgs = Args.size(); 712 713 // Stores thunks for outgoing register assignments. This is used so we delay 714 // generating register copies until mem loc assignments are done. We do this 715 // so that if the target is using the delayed stack protector feature, we can 716 // find the split point of the block accurately. E.g. if we have: 717 // G_STORE %val, %memloc 718 // $x0 = COPY %foo 719 // $x1 = COPY %bar 720 // CALL func 721 // ... then the split point for the block will correctly be at, and including, 722 // the copy to $x0. If instead the G_STORE instruction immediately precedes 723 // the CALL, then we'd prematurely choose the CALL as the split point, thus 724 // generating a split block with a CALL that uses undefined physregs. 725 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 726 727 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 728 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 729 CCValAssign &VA = ArgLocs[j]; 730 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 731 732 if (VA.needsCustom()) { 733 std::function<void()> Thunk; 734 unsigned NumArgRegs = Handler.assignCustomValue( 735 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); 736 if (Thunk) 737 DelayedOutgoingRegAssignments.emplace_back(Thunk); 738 if (!NumArgRegs) 739 return false; 740 j += (NumArgRegs - 1); 741 continue; 742 } 743 744 const MVT ValVT = VA.getValVT(); 745 const MVT LocVT = VA.getLocVT(); 746 747 const LLT LocTy(LocVT); 748 const LLT ValTy(ValVT); 749 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 750 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 751 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 752 753 // Expected to be multiple regs for a single incoming arg. 754 // There should be Regs.size() ArgLocs per argument. 755 // This should be the same as getNumRegistersForCallingConv 756 const unsigned NumParts = Args[i].Flags.size(); 757 758 // Now split the registers into the assigned types. 759 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 760 761 if (NumParts != 1 || NewLLT != OrigTy) { 762 // If we can't directly assign the register, we need one or more 763 // intermediate values. 764 Args[i].Regs.resize(NumParts); 765 766 // For each split register, create and assign a vreg that will store 767 // the incoming component of the larger value. These will later be 768 // merged to form the final vreg. 769 for (unsigned Part = 0; Part < NumParts; ++Part) 770 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 771 } 772 773 assert((j + (NumParts - 1)) < ArgLocs.size() && 774 "Too many regs for number of args"); 775 776 // Coerce into outgoing value types before register assignment. 777 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 778 assert(Args[i].OrigRegs.size() == 1); 779 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 780 ValTy, extendOpFromFlags(Args[i].Flags[0])); 781 } 782 783 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 784 for (unsigned Part = 0; Part < NumParts; ++Part) { 785 Register ArgReg = Args[i].Regs[Part]; 786 // There should be Regs.size() ArgLocs per argument. 787 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 788 CCValAssign &VA = ArgLocs[j + Idx]; 789 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 790 791 if (VA.isMemLoc() && !Flags.isByVal()) { 792 // Individual pieces may have been spilled to the stack and others 793 // passed in registers. 794 795 // TODO: The memory size may be larger than the value we need to 796 // store. We may need to adjust the offset for big endian targets. 797 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 798 799 MachinePointerInfo MPO; 800 Register StackAddr = Handler.getStackAddress( 801 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 802 803 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 804 continue; 805 } 806 807 if (VA.isMemLoc() && Flags.isByVal()) { 808 assert(Args[i].Regs.size() == 1 && 809 "didn't expect split byval pointer"); 810 811 if (Handler.isIncomingArgumentHandler()) { 812 // We just need to copy the frame index value to the pointer. 813 MachinePointerInfo MPO; 814 Register StackAddr = Handler.getStackAddress( 815 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 816 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 817 } else { 818 // For outgoing byval arguments, insert the implicit copy byval 819 // implies, such that writes in the callee do not modify the caller's 820 // value. 821 uint64_t MemSize = Flags.getByValSize(); 822 int64_t Offset = VA.getLocMemOffset(); 823 824 MachinePointerInfo DstMPO; 825 Register StackAddr = 826 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 827 828 MachinePointerInfo SrcMPO(Args[i].OrigValue); 829 if (!Args[i].OrigValue) { 830 // We still need to accurately track the stack address space if we 831 // don't know the underlying value. 832 const LLT PtrTy = MRI.getType(StackAddr); 833 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 834 } 835 836 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 837 inferAlignFromPtrInfo(MF, DstMPO)); 838 839 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 840 inferAlignFromPtrInfo(MF, SrcMPO)); 841 842 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 843 DstMPO, DstAlign, SrcMPO, SrcAlign, 844 MemSize, VA); 845 } 846 continue; 847 } 848 849 assert(!VA.needsCustom() && "custom loc should have been handled already"); 850 851 if (i == 0 && !ThisReturnRegs.empty() && 852 Handler.isIncomingArgumentHandler() && 853 isTypeIsValidForThisReturn(ValVT)) { 854 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 855 continue; 856 } 857 858 if (Handler.isIncomingArgumentHandler()) 859 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 860 else { 861 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 862 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 863 }); 864 } 865 } 866 867 // Now that all pieces have been assigned, re-pack the register typed values 868 // into the original value typed registers. 869 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 870 // Merge the split registers into the expected larger result vregs of 871 // the original call. 872 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 873 LocTy, Args[i].Flags[0]); 874 } 875 876 j += NumParts - 1; 877 } 878 for (auto &Fn : DelayedOutgoingRegAssignments) 879 Fn(); 880 881 return true; 882 } 883 884 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 885 ArrayRef<Register> VRegs, Register DemoteReg, 886 int FI) const { 887 MachineFunction &MF = MIRBuilder.getMF(); 888 MachineRegisterInfo &MRI = MF.getRegInfo(); 889 const DataLayout &DL = MF.getDataLayout(); 890 891 SmallVector<EVT, 4> SplitVTs; 892 SmallVector<uint64_t, 4> Offsets; 893 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 894 895 assert(VRegs.size() == SplitVTs.size()); 896 897 unsigned NumValues = SplitVTs.size(); 898 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 899 Type *RetPtrTy = 900 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); 901 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); 902 903 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 904 905 for (unsigned I = 0; I < NumValues; ++I) { 906 Register Addr; 907 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 908 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 909 MRI.getType(VRegs[I]), 910 commonAlignment(BaseAlign, Offsets[I])); 911 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 912 } 913 } 914 915 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 916 ArrayRef<Register> VRegs, 917 Register DemoteReg) const { 918 MachineFunction &MF = MIRBuilder.getMF(); 919 MachineRegisterInfo &MRI = MF.getRegInfo(); 920 const DataLayout &DL = MF.getDataLayout(); 921 922 SmallVector<EVT, 4> SplitVTs; 923 SmallVector<uint64_t, 4> Offsets; 924 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 925 926 assert(VRegs.size() == SplitVTs.size()); 927 928 unsigned NumValues = SplitVTs.size(); 929 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 930 unsigned AS = DL.getAllocaAddrSpace(); 931 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL); 932 933 MachinePointerInfo PtrInfo(AS); 934 935 for (unsigned I = 0; I < NumValues; ++I) { 936 Register Addr; 937 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 938 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 939 MRI.getType(VRegs[I]), 940 commonAlignment(BaseAlign, Offsets[I])); 941 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 942 } 943 } 944 945 void CallLowering::insertSRetIncomingArgument( 946 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 947 MachineRegisterInfo &MRI, const DataLayout &DL) const { 948 unsigned AS = DL.getAllocaAddrSpace(); 949 DemoteReg = MRI.createGenericVirtualRegister( 950 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 951 952 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 953 954 SmallVector<EVT, 1> ValueVTs; 955 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 956 957 // NOTE: Assume that a pointer won't get split into more than one VT. 958 assert(ValueVTs.size() == 1); 959 960 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 961 ArgInfo::NoArgIndex); 962 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 963 DemoteArg.Flags[0].setSRet(); 964 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 965 } 966 967 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 968 const CallBase &CB, 969 CallLoweringInfo &Info) const { 970 const DataLayout &DL = MIRBuilder.getDataLayout(); 971 Type *RetTy = CB.getType(); 972 unsigned AS = DL.getAllocaAddrSpace(); 973 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 974 975 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 976 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 977 978 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 979 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 980 ArgInfo::NoArgIndex); 981 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 982 DemoteArg.Flags[0].setSRet(); 983 984 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 985 Info.DemoteStackIndex = FI; 986 Info.DemoteRegister = DemoteReg; 987 } 988 989 bool CallLowering::checkReturn(CCState &CCInfo, 990 SmallVectorImpl<BaseArgInfo> &Outs, 991 CCAssignFn *Fn) const { 992 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 993 MVT VT = MVT::getVT(Outs[I].Ty); 994 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 995 return false; 996 } 997 return true; 998 } 999 1000 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 1001 AttributeList Attrs, 1002 SmallVectorImpl<BaseArgInfo> &Outs, 1003 const DataLayout &DL) const { 1004 LLVMContext &Context = RetTy->getContext(); 1005 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1006 1007 SmallVector<EVT, 4> SplitVTs; 1008 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 1009 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 1010 1011 for (EVT VT : SplitVTs) { 1012 unsigned NumParts = 1013 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 1014 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 1015 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 1016 1017 for (unsigned I = 0; I < NumParts; ++I) { 1018 Outs.emplace_back(PartTy, Flags); 1019 } 1020 } 1021 } 1022 1023 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 1024 const auto &F = MF.getFunction(); 1025 Type *ReturnType = F.getReturnType(); 1026 CallingConv::ID CallConv = F.getCallingConv(); 1027 1028 SmallVector<BaseArgInfo, 4> SplitArgs; 1029 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 1030 MF.getDataLayout()); 1031 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 1032 } 1033 1034 bool CallLowering::parametersInCSRMatch( 1035 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 1036 const SmallVectorImpl<CCValAssign> &OutLocs, 1037 const SmallVectorImpl<ArgInfo> &OutArgs) const { 1038 for (unsigned i = 0; i < OutLocs.size(); ++i) { 1039 const auto &ArgLoc = OutLocs[i]; 1040 // If it's not a register, it's fine. 1041 if (!ArgLoc.isRegLoc()) 1042 continue; 1043 1044 MCRegister PhysReg = ArgLoc.getLocReg(); 1045 1046 // Only look at callee-saved registers. 1047 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 1048 continue; 1049 1050 LLVM_DEBUG( 1051 dbgs() 1052 << "... Call has an argument passed in a callee-saved register.\n"); 1053 1054 // Check if it was copied from. 1055 const ArgInfo &OutInfo = OutArgs[i]; 1056 1057 if (OutInfo.Regs.size() > 1) { 1058 LLVM_DEBUG( 1059 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 1060 return false; 1061 } 1062 1063 // Check if we copy the register, walking through copies from virtual 1064 // registers. Note that getDefIgnoringCopies does not ignore copies from 1065 // physical registers. 1066 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 1067 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 1068 LLVM_DEBUG( 1069 dbgs() 1070 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1071 return false; 1072 } 1073 1074 // Got a copy. Verify that it's the same as the register we want. 1075 Register CopyRHS = RegDef->getOperand(1).getReg(); 1076 if (CopyRHS != PhysReg) { 1077 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1078 "VReg, cannot tail call.\n"); 1079 return false; 1080 } 1081 } 1082 1083 return true; 1084 } 1085 1086 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1087 MachineFunction &MF, 1088 SmallVectorImpl<ArgInfo> &InArgs, 1089 ValueAssigner &CalleeAssigner, 1090 ValueAssigner &CallerAssigner) const { 1091 const Function &F = MF.getFunction(); 1092 CallingConv::ID CalleeCC = Info.CallConv; 1093 CallingConv::ID CallerCC = F.getCallingConv(); 1094 1095 if (CallerCC == CalleeCC) 1096 return true; 1097 1098 SmallVector<CCValAssign, 16> ArgLocs1; 1099 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1100 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1101 return false; 1102 1103 SmallVector<CCValAssign, 16> ArgLocs2; 1104 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1105 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1106 return false; 1107 1108 // We need the argument locations to match up exactly. If there's more in 1109 // one than the other, then we are done. 1110 if (ArgLocs1.size() != ArgLocs2.size()) 1111 return false; 1112 1113 // Make sure that each location is passed in exactly the same way. 1114 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1115 const CCValAssign &Loc1 = ArgLocs1[i]; 1116 const CCValAssign &Loc2 = ArgLocs2[i]; 1117 1118 // We need both of them to be the same. So if one is a register and one 1119 // isn't, we're done. 1120 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1121 return false; 1122 1123 if (Loc1.isRegLoc()) { 1124 // If they don't have the same register location, we're done. 1125 if (Loc1.getLocReg() != Loc2.getLocReg()) 1126 return false; 1127 1128 // They matched, so we can move to the next ArgLoc. 1129 continue; 1130 } 1131 1132 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1133 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1134 return false; 1135 } 1136 1137 return true; 1138 } 1139 1140 LLT CallLowering::ValueHandler::getStackValueStoreType( 1141 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1142 const MVT ValVT = VA.getValVT(); 1143 if (ValVT != MVT::iPTR) { 1144 LLT ValTy(ValVT); 1145 1146 // We lost the pointeriness going through CCValAssign, so try to restore it 1147 // based on the flags. 1148 if (Flags.isPointer()) { 1149 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1150 ValTy.getScalarSizeInBits()); 1151 if (ValVT.isVector()) 1152 return LLT::vector(ValTy.getElementCount(), PtrTy); 1153 return PtrTy; 1154 } 1155 1156 return ValTy; 1157 } 1158 1159 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1160 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1161 } 1162 1163 void CallLowering::ValueHandler::copyArgumentMemory( 1164 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1165 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1166 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1167 CCValAssign &VA) const { 1168 MachineFunction &MF = MIRBuilder.getMF(); 1169 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1170 SrcPtrInfo, 1171 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1172 SrcAlign); 1173 1174 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1175 DstPtrInfo, 1176 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1177 MemSize, DstAlign); 1178 1179 const LLT PtrTy = MRI.getType(DstPtr); 1180 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1181 1182 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1183 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1184 } 1185 1186 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1187 const CCValAssign &VA, 1188 unsigned MaxSizeBits) { 1189 LLT LocTy{VA.getLocVT()}; 1190 LLT ValTy{VA.getValVT()}; 1191 1192 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1193 return ValReg; 1194 1195 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1196 if (MaxSizeBits <= ValTy.getSizeInBits()) 1197 return ValReg; 1198 LocTy = LLT::scalar(MaxSizeBits); 1199 } 1200 1201 const LLT ValRegTy = MRI.getType(ValReg); 1202 if (ValRegTy.isPointer()) { 1203 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1204 // we have to cast to do the extension. 1205 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1206 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1207 } 1208 1209 switch (VA.getLocInfo()) { 1210 default: break; 1211 case CCValAssign::Full: 1212 case CCValAssign::BCvt: 1213 // FIXME: bitconverting between vector types may or may not be a 1214 // nop in big-endian situations. 1215 return ValReg; 1216 case CCValAssign::AExt: { 1217 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1218 return MIB.getReg(0); 1219 } 1220 case CCValAssign::SExt: { 1221 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1222 MIRBuilder.buildSExt(NewReg, ValReg); 1223 return NewReg; 1224 } 1225 case CCValAssign::ZExt: { 1226 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1227 MIRBuilder.buildZExt(NewReg, ValReg); 1228 return NewReg; 1229 } 1230 } 1231 llvm_unreachable("unable to extend register"); 1232 } 1233 1234 void CallLowering::ValueAssigner::anchor() {} 1235 1236 Register CallLowering::IncomingValueHandler::buildExtensionHint( 1237 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { 1238 switch (VA.getLocInfo()) { 1239 case CCValAssign::LocInfo::ZExt: { 1240 return MIRBuilder 1241 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1242 NarrowTy.getScalarSizeInBits()) 1243 .getReg(0); 1244 } 1245 case CCValAssign::LocInfo::SExt: { 1246 return MIRBuilder 1247 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1248 NarrowTy.getScalarSizeInBits()) 1249 .getReg(0); 1250 break; 1251 } 1252 default: 1253 return SrcReg; 1254 } 1255 } 1256 1257 /// Check if we can use a basic COPY instruction between the two types. 1258 /// 1259 /// We're currently building on top of the infrastructure using MVT, which loses 1260 /// pointer information in the CCValAssign. We accept copies from physical 1261 /// registers that have been reported as integers if it's to an equivalent sized 1262 /// pointer LLT. 1263 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1264 if (SrcTy == DstTy) 1265 return true; 1266 1267 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1268 return false; 1269 1270 SrcTy = SrcTy.getScalarType(); 1271 DstTy = DstTy.getScalarType(); 1272 1273 return (SrcTy.isPointer() && DstTy.isScalar()) || 1274 (DstTy.isPointer() && SrcTy.isScalar()); 1275 } 1276 1277 void CallLowering::IncomingValueHandler::assignValueToReg( 1278 Register ValVReg, Register PhysReg, const CCValAssign &VA) { 1279 const MVT LocVT = VA.getLocVT(); 1280 const LLT LocTy(LocVT); 1281 const LLT RegTy = MRI.getType(ValVReg); 1282 1283 if (isCopyCompatibleType(RegTy, LocTy)) { 1284 MIRBuilder.buildCopy(ValVReg, PhysReg); 1285 return; 1286 } 1287 1288 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1289 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1290 MIRBuilder.buildTrunc(ValVReg, Hint); 1291 } 1292