xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision d68458bd56d9d55b05fca5447891aa8752d70509)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftError))
58     Flags.setSwiftError();
59 }
60 
61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
62                                                      unsigned ArgIdx) const {
63   ISD::ArgFlagsTy Flags;
64   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
65     return Call.paramHasAttr(ArgIdx, Attr);
66   });
67   return Flags;
68 }
69 
70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
71                                              const AttributeList &Attrs,
72                                              unsigned OpIdx) const {
73   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
74     return Attrs.hasAttribute(OpIdx, Attr);
75   });
76 }
77 
78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
79                              ArrayRef<Register> ResRegs,
80                              ArrayRef<ArrayRef<Register>> ArgRegs,
81                              Register SwiftErrorVReg,
82                              std::function<unsigned()> GetCalleeReg) const {
83   CallLoweringInfo Info;
84   const DataLayout &DL = MIRBuilder.getDataLayout();
85   MachineFunction &MF = MIRBuilder.getMF();
86   bool CanBeTailCalled = CB.isTailCall() &&
87                          isInTailCallPosition(CB, MF.getTarget()) &&
88                          (MF.getFunction()
89                               .getFnAttribute("disable-tail-calls")
90                               .getValueAsString() != "true");
91 
92   CallingConv::ID CallConv = CB.getCallingConv();
93   Type *RetTy = CB.getType();
94   bool IsVarArg = CB.getFunctionType()->isVarArg();
95 
96   SmallVector<BaseArgInfo, 4> SplitArgs;
97   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
98   Info.CanLowerReturn =
99       canLowerReturn(MF, CallConv, SplitArgs, IsVarArg, RetTy->getContext());
100 
101   if (!Info.CanLowerReturn) {
102     // Callee requires sret demotion.
103     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
104 
105     // The sret demotion isn't compatible with tail-calls, since the sret
106     // argument points into the caller's stack frame.
107     CanBeTailCalled = false;
108   }
109 
110   // First step is to marshall all the function's parameters into the correct
111   // physregs and memory locations. Gather the sequence of argument types that
112   // we'll pass to the assigner function.
113   unsigned i = 0;
114   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
115   for (auto &Arg : CB.args()) {
116     ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i),
117                     i < NumFixedArgs};
118     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
119 
120     // If we have an explicit sret argument that is an Instruction, (i.e., it
121     // might point to function-local memory), we can't meaningfully tail-call.
122     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
123       CanBeTailCalled = false;
124 
125     Info.OrigArgs.push_back(OrigArg);
126     ++i;
127   }
128 
129   // Try looking through a bitcast from one function type to another.
130   // Commonly happens with calls to objc_msgSend().
131   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
132   if (const Function *F = dyn_cast<Function>(CalleeV))
133     Info.Callee = MachineOperand::CreateGA(F, 0);
134   else
135     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
136 
137   Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
138   if (!Info.OrigRet.Ty->isVoidTy())
139     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
140 
141   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
142   Info.CallConv = CallConv;
143   Info.SwiftErrorVReg = SwiftErrorVReg;
144   Info.IsMustTailCall = CB.isMustTailCall();
145   Info.IsTailCall = CanBeTailCalled;
146   Info.IsVarArg = IsVarArg;
147   return lowerCall(MIRBuilder, Info);
148 }
149 
150 template <typename FuncInfoTy>
151 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
152                                const DataLayout &DL,
153                                const FuncInfoTy &FuncInfo) const {
154   auto &Flags = Arg.Flags[0];
155   const AttributeList &Attrs = FuncInfo.getAttributes();
156   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
157 
158   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
159     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
160 
161     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
162     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
163 
164     // For ByVal, alignment should be passed from FE.  BE will guess if
165     // this info is not there but there are cases it cannot get right.
166     Align FrameAlign;
167     if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2))
168       FrameAlign = *ParamAlign;
169     else
170       FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
171     Flags.setByValAlign(FrameAlign);
172   }
173   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
174 }
175 
176 template void
177 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
178                                     const DataLayout &DL,
179                                     const Function &FuncInfo) const;
180 
181 template void
182 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
183                                     const DataLayout &DL,
184                                     const CallBase &FuncInfo) const;
185 
186 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
187                                 MachineIRBuilder &MIRBuilder) const {
188   assert(SrcRegs.size() > 1 && "Nothing to pack");
189 
190   const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
191   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
192 
193   LLT PackedLLT = getLLTForType(*PackedTy, DL);
194 
195   SmallVector<LLT, 8> LLTs;
196   SmallVector<uint64_t, 8> Offsets;
197   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
198   assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
199 
200   Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
201   MIRBuilder.buildUndef(Dst);
202   for (unsigned i = 0; i < SrcRegs.size(); ++i) {
203     Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
204     MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
205     Dst = NewDst;
206   }
207 
208   return Dst;
209 }
210 
211 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
212                               Type *PackedTy,
213                               MachineIRBuilder &MIRBuilder) const {
214   assert(DstRegs.size() > 1 && "Nothing to unpack");
215 
216   const DataLayout &DL = MIRBuilder.getDataLayout();
217 
218   SmallVector<LLT, 8> LLTs;
219   SmallVector<uint64_t, 8> Offsets;
220   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
221   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
222 
223   for (unsigned i = 0; i < DstRegs.size(); ++i)
224     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
225 }
226 
227 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
228                                      SmallVectorImpl<ArgInfo> &Args,
229                                      ValueHandler &Handler) const {
230   MachineFunction &MF = MIRBuilder.getMF();
231   const Function &F = MF.getFunction();
232   SmallVector<CCValAssign, 16> ArgLocs;
233   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
234   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler);
235 }
236 
237 bool CallLowering::handleAssignments(CCState &CCInfo,
238                                      SmallVectorImpl<CCValAssign> &ArgLocs,
239                                      MachineIRBuilder &MIRBuilder,
240                                      SmallVectorImpl<ArgInfo> &Args,
241                                      ValueHandler &Handler) const {
242   MachineFunction &MF = MIRBuilder.getMF();
243   const Function &F = MF.getFunction();
244   const DataLayout &DL = F.getParent()->getDataLayout();
245 
246   unsigned NumArgs = Args.size();
247   for (unsigned i = 0; i != NumArgs; ++i) {
248     EVT CurVT = EVT::getEVT(Args[i].Ty);
249     if (CurVT.isSimple() &&
250         !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(),
251                            CCValAssign::Full, Args[i], Args[i].Flags[0],
252                            CCInfo))
253       continue;
254 
255     MVT NewVT = TLI->getRegisterTypeForCallingConv(
256         F.getContext(), F.getCallingConv(), EVT(CurVT));
257 
258     // If we need to split the type over multiple regs, check it's a scenario
259     // we currently support.
260     unsigned NumParts = TLI->getNumRegistersForCallingConv(
261         F.getContext(), F.getCallingConv(), CurVT);
262 
263     if (NumParts == 1) {
264       // Try to use the register type if we couldn't assign the VT.
265       if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
266                             Args[i].Flags[0], CCInfo))
267         return false;
268       continue;
269     }
270 
271     assert(NumParts > 1);
272     // For now only handle exact splits.
273     if (NewVT.getSizeInBits() * NumParts != CurVT.getSizeInBits())
274       return false;
275 
276     // For incoming arguments (physregs to vregs), we could have values in
277     // physregs (or memlocs) which we want to extract and copy to vregs.
278     // During this, we might have to deal with the LLT being split across
279     // multiple regs, so we have to record this information for later.
280     //
281     // If we have outgoing args, then we have the opposite case. We have a
282     // vreg with an LLT which we want to assign to a physical location, and
283     // we might have to record that the value has to be split later.
284     if (Handler.isIncomingArgumentHandler()) {
285       // We're handling an incoming arg which is split over multiple regs.
286       // E.g. passing an s128 on AArch64.
287       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
288       Args[i].OrigRegs.push_back(Args[i].Regs[0]);
289       Args[i].Regs.clear();
290       Args[i].Flags.clear();
291       LLT NewLLT = getLLTForMVT(NewVT);
292       // For each split register, create and assign a vreg that will store
293       // the incoming component of the larger value. These will later be
294       // merged to form the final vreg.
295       for (unsigned Part = 0; Part < NumParts; ++Part) {
296         Register Reg =
297             MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
298         ISD::ArgFlagsTy Flags = OrigFlags;
299         if (Part == 0) {
300           Flags.setSplit();
301         } else {
302           Flags.setOrigAlign(Align(1));
303           if (Part == NumParts - 1)
304             Flags.setSplitEnd();
305         }
306         Args[i].Regs.push_back(Reg);
307         Args[i].Flags.push_back(Flags);
308         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
309                               Args[i].Flags[Part], CCInfo)) {
310           // Still couldn't assign this smaller part type for some reason.
311           return false;
312         }
313       }
314     } else {
315       // This type is passed via multiple registers in the calling convention.
316       // We need to extract the individual parts.
317       Register LargeReg = Args[i].Regs[0];
318       LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
319       auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
320       assert(Unmerge->getNumOperands() == NumParts + 1);
321       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
322       // We're going to replace the regs and flags with the split ones.
323       Args[i].Regs.clear();
324       Args[i].Flags.clear();
325       for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
326         ISD::ArgFlagsTy Flags = OrigFlags;
327         if (PartIdx == 0) {
328           Flags.setSplit();
329         } else {
330           Flags.setOrigAlign(Align(1));
331           if (PartIdx == NumParts - 1)
332             Flags.setSplitEnd();
333         }
334         Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
335         Args[i].Flags.push_back(Flags);
336         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full,
337                               Args[i], Args[i].Flags[PartIdx], CCInfo))
338           return false;
339       }
340     }
341   }
342 
343   for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
344     assert(j < ArgLocs.size() && "Skipped too many arg locs");
345 
346     CCValAssign &VA = ArgLocs[j];
347     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
348 
349     if (VA.needsCustom()) {
350       unsigned NumArgRegs =
351           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
352       if (!NumArgRegs)
353         return false;
354       j += NumArgRegs;
355       continue;
356     }
357 
358     // FIXME: Pack registers if we have more than one.
359     Register ArgReg = Args[i].Regs[0];
360 
361     EVT OrigVT = EVT::getEVT(Args[i].Ty);
362     EVT VAVT = VA.getValVT();
363     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
364 
365     // Expected to be multiple regs for a single incoming arg.
366     // There should be Regs.size() ArgLocs per argument.
367     unsigned NumArgRegs = Args[i].Regs.size();
368 
369     assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
370            "Too many regs for number of args");
371     for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
372       // There should be Regs.size() ArgLocs per argument.
373       VA = ArgLocs[j + Part];
374       if (VA.isMemLoc()) {
375         // Don't currently support loading/storing a type that needs to be split
376         // to the stack. Should be easy, just not implemented yet.
377         if (NumArgRegs > 1) {
378           LLVM_DEBUG(
379             dbgs()
380             << "Load/store a split arg to/from the stack not implemented yet\n");
381           return false;
382         }
383 
384         // FIXME: Use correct address space for pointer size
385         EVT LocVT = VA.getValVT();
386         unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize()
387                                               : LocVT.getStoreSize();
388         unsigned Offset = VA.getLocMemOffset();
389         MachinePointerInfo MPO;
390         Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO);
391         Handler.assignValueToAddress(Args[i], StackAddr,
392                                      MemSize, MPO, VA);
393         continue;
394       }
395 
396       assert(VA.isRegLoc() && "custom loc should have been handled already");
397 
398       // GlobalISel does not currently work for scalable vectors.
399       if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() ||
400           !Handler.isIncomingArgumentHandler()) {
401         // This is an argument that might have been split. There should be
402         // Regs.size() ArgLocs per argument.
403 
404         // Insert the argument copies. If VAVT < OrigVT, we'll insert the merge
405         // to the original register after handling all of the parts.
406         Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
407         continue;
408       }
409 
410       // This ArgLoc covers multiple pieces, so we need to split it.
411       const LLT VATy(VAVT.getSimpleVT());
412       Register NewReg =
413         MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
414       Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
415       // If it's a vector type, we either need to truncate the elements
416       // or do an unmerge to get the lower block of elements.
417       if (VATy.isVector() &&
418           VATy.getNumElements() > OrigVT.getVectorNumElements()) {
419         // Just handle the case where the VA type is 2 * original type.
420         if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
421           LLVM_DEBUG(dbgs()
422                      << "Incoming promoted vector arg has too many elts");
423           return false;
424         }
425         auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
426         MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0));
427       } else {
428         MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
429       }
430     }
431 
432     // Now that all pieces have been handled, re-pack any arguments into any
433     // wider, original registers.
434     if (Handler.isIncomingArgumentHandler()) {
435       if (VAVT.getFixedSizeInBits() < OrigVT.getFixedSizeInBits()) {
436         assert(NumArgRegs >= 2);
437 
438         // Merge the split registers into the expected larger result vreg
439         // of the original call.
440         MIRBuilder.buildMerge(Args[i].OrigRegs[0], Args[i].Regs);
441       }
442     }
443 
444     j += NumArgRegs - 1;
445   }
446 
447   return true;
448 }
449 
450 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
451                                    ArrayRef<Register> VRegs, Register DemoteReg,
452                                    int FI) const {
453   MachineFunction &MF = MIRBuilder.getMF();
454   MachineRegisterInfo &MRI = MF.getRegInfo();
455   const DataLayout &DL = MF.getDataLayout();
456 
457   SmallVector<EVT, 4> SplitVTs;
458   SmallVector<uint64_t, 4> Offsets;
459   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
460 
461   assert(VRegs.size() == SplitVTs.size());
462 
463   unsigned NumValues = SplitVTs.size();
464   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
465   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
466   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
467 
468   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
469 
470   for (unsigned I = 0; I < NumValues; ++I) {
471     Register Addr;
472     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
473     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
474                                         MRI.getType(VRegs[I]).getSizeInBytes(),
475                                         commonAlignment(BaseAlign, Offsets[I]));
476     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
477   }
478 }
479 
480 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
481                                     ArrayRef<Register> VRegs,
482                                     Register DemoteReg) const {
483   MachineFunction &MF = MIRBuilder.getMF();
484   MachineRegisterInfo &MRI = MF.getRegInfo();
485   const DataLayout &DL = MF.getDataLayout();
486 
487   SmallVector<EVT, 4> SplitVTs;
488   SmallVector<uint64_t, 4> Offsets;
489   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
490 
491   assert(VRegs.size() == SplitVTs.size());
492 
493   unsigned NumValues = SplitVTs.size();
494   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
495   unsigned AS = DL.getAllocaAddrSpace();
496   LLT OffsetLLTy =
497       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
498 
499   MachinePointerInfo PtrInfo(AS);
500 
501   for (unsigned I = 0; I < NumValues; ++I) {
502     Register Addr;
503     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
504     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
505                                         MRI.getType(VRegs[I]).getSizeInBytes(),
506                                         commonAlignment(BaseAlign, Offsets[I]));
507     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
508   }
509 }
510 
511 void CallLowering::insertSRetIncomingArgument(
512     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
513     MachineRegisterInfo &MRI, const DataLayout &DL) const {
514   unsigned AS = DL.getAllocaAddrSpace();
515   DemoteReg = MRI.createGenericVirtualRegister(
516       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
517 
518   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
519 
520   SmallVector<EVT, 1> ValueVTs;
521   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
522 
523   // NOTE: Assume that a pointer won't get split into more than one VT.
524   assert(ValueVTs.size() == 1);
525 
526   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
527   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
528   DemoteArg.Flags[0].setSRet();
529   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
530 }
531 
532 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
533                                               const CallBase &CB,
534                                               CallLoweringInfo &Info) const {
535   const DataLayout &DL = MIRBuilder.getDataLayout();
536   Type *RetTy = CB.getType();
537   unsigned AS = DL.getAllocaAddrSpace();
538   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
539 
540   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
541       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
542 
543   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
544   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
545   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
546   DemoteArg.Flags[0].setSRet();
547 
548   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
549   Info.DemoteStackIndex = FI;
550   Info.DemoteRegister = DemoteReg;
551 }
552 
553 bool CallLowering::checkReturn(CCState &CCInfo,
554                                SmallVectorImpl<BaseArgInfo> &Outs,
555                                CCAssignFn *Fn) const {
556   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
557     MVT VT = MVT::getVT(Outs[I].Ty);
558     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
559       return false;
560   }
561   return true;
562 }
563 
564 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
565                                  AttributeList Attrs,
566                                  SmallVectorImpl<BaseArgInfo> &Outs,
567                                  const DataLayout &DL) const {
568   LLVMContext &Context = RetTy->getContext();
569   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
570 
571   SmallVector<EVT, 4> SplitVTs;
572   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
573   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
574 
575   for (EVT VT : SplitVTs) {
576     unsigned NumParts =
577         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
578     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
579     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
580 
581     for (unsigned I = 0; I < NumParts; ++I) {
582       Outs.emplace_back(PartTy, Flags);
583     }
584   }
585 }
586 
587 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
588   const auto &F = MF.getFunction();
589   Type *ReturnType = F.getReturnType();
590   CallingConv::ID CallConv = F.getCallingConv();
591 
592   SmallVector<BaseArgInfo, 4> SplitArgs;
593   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
594                 MF.getDataLayout());
595   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg(),
596                         ReturnType->getContext());
597 }
598 
599 bool CallLowering::analyzeArgInfo(CCState &CCState,
600                                   SmallVectorImpl<ArgInfo> &Args,
601                                   CCAssignFn &AssignFnFixed,
602                                   CCAssignFn &AssignFnVarArg) const {
603   for (unsigned i = 0, e = Args.size(); i < e; ++i) {
604     MVT VT = MVT::getVT(Args[i].Ty);
605     CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
606     if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
607       // Bail out on anything we can't handle.
608       LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
609                         << " (arg number = " << i << "\n");
610       return false;
611     }
612   }
613   return true;
614 }
615 
616 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
617                                      MachineFunction &MF,
618                                      SmallVectorImpl<ArgInfo> &InArgs,
619                                      CCAssignFn &CalleeAssignFnFixed,
620                                      CCAssignFn &CalleeAssignFnVarArg,
621                                      CCAssignFn &CallerAssignFnFixed,
622                                      CCAssignFn &CallerAssignFnVarArg) const {
623   const Function &F = MF.getFunction();
624   CallingConv::ID CalleeCC = Info.CallConv;
625   CallingConv::ID CallerCC = F.getCallingConv();
626 
627   if (CallerCC == CalleeCC)
628     return true;
629 
630   SmallVector<CCValAssign, 16> ArgLocs1;
631   CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
632   if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
633                       CalleeAssignFnVarArg))
634     return false;
635 
636   SmallVector<CCValAssign, 16> ArgLocs2;
637   CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
638   if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
639                       CalleeAssignFnVarArg))
640     return false;
641 
642   // We need the argument locations to match up exactly. If there's more in
643   // one than the other, then we are done.
644   if (ArgLocs1.size() != ArgLocs2.size())
645     return false;
646 
647   // Make sure that each location is passed in exactly the same way.
648   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
649     const CCValAssign &Loc1 = ArgLocs1[i];
650     const CCValAssign &Loc2 = ArgLocs2[i];
651 
652     // We need both of them to be the same. So if one is a register and one
653     // isn't, we're done.
654     if (Loc1.isRegLoc() != Loc2.isRegLoc())
655       return false;
656 
657     if (Loc1.isRegLoc()) {
658       // If they don't have the same register location, we're done.
659       if (Loc1.getLocReg() != Loc2.getLocReg())
660         return false;
661 
662       // They matched, so we can move to the next ArgLoc.
663       continue;
664     }
665 
666     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
667     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
668       return false;
669   }
670 
671   return true;
672 }
673 
674 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
675                                                     CCValAssign &VA,
676                                                     unsigned MaxSizeBits) {
677   LLT LocTy{VA.getLocVT()};
678   LLT ValTy = MRI.getType(ValReg);
679   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
680     return ValReg;
681 
682   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
683     if (MaxSizeBits <= ValTy.getSizeInBits())
684       return ValReg;
685     LocTy = LLT::scalar(MaxSizeBits);
686   }
687 
688   switch (VA.getLocInfo()) {
689   default: break;
690   case CCValAssign::Full:
691   case CCValAssign::BCvt:
692     // FIXME: bitconverting between vector types may or may not be a
693     // nop in big-endian situations.
694     return ValReg;
695   case CCValAssign::AExt: {
696     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
697     return MIB.getReg(0);
698   }
699   case CCValAssign::SExt: {
700     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
701     MIRBuilder.buildSExt(NewReg, ValReg);
702     return NewReg;
703   }
704   case CCValAssign::ZExt: {
705     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
706     MIRBuilder.buildZExt(NewReg, ValReg);
707     return NewReg;
708   }
709   }
710   llvm_unreachable("unable to extend register");
711 }
712 
713 void CallLowering::ValueHandler::anchor() {}
714