xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision bac5f6bd21de81a9041a94c12b49eb108dbc77c4)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 
26 #define DEBUG_TYPE "call-lowering"
27 
28 using namespace llvm;
29 
30 void CallLowering::anchor() {}
31 
32 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, ImmutableCallSite CS,
33                              ArrayRef<Register> ResRegs,
34                              ArrayRef<ArrayRef<Register>> ArgRegs,
35                              Register SwiftErrorVReg,
36                              std::function<unsigned()> GetCalleeReg) const {
37   CallLoweringInfo Info;
38   auto &DL = CS.getParent()->getParent()->getParent()->getDataLayout();
39 
40   // First step is to marshall all the function's parameters into the correct
41   // physregs and memory locations. Gather the sequence of argument types that
42   // we'll pass to the assigner function.
43   unsigned i = 0;
44   unsigned NumFixedArgs = CS.getFunctionType()->getNumParams();
45   for (auto &Arg : CS.args()) {
46     ArgInfo OrigArg{ArgRegs[i], Arg->getType(), ISD::ArgFlagsTy{},
47                     i < NumFixedArgs};
48     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CS);
49     Info.OrigArgs.push_back(OrigArg);
50     ++i;
51   }
52 
53   if (const Function *F = CS.getCalledFunction())
54     Info.Callee = MachineOperand::CreateGA(F, 0);
55   else
56     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
57 
58   Info.OrigRet = ArgInfo{ResRegs, CS.getType(), ISD::ArgFlagsTy{}};
59   if (!Info.OrigRet.Ty->isVoidTy())
60     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CS);
61 
62   Info.KnownCallees =
63       CS.getInstruction()->getMetadata(LLVMContext::MD_callees);
64   Info.CallConv = CS.getCallingConv();
65   Info.SwiftErrorVReg = SwiftErrorVReg;
66   Info.IsMustTailCall = CS.isMustTailCall();
67   Info.IsTailCall = CS.isTailCall() &&
68                     isInTailCallPosition(CS, MIRBuilder.getMF().getTarget());
69   Info.IsVarArg = CS.getFunctionType()->isVarArg();
70   return lowerCall(MIRBuilder, Info);
71 }
72 
73 template <typename FuncInfoTy>
74 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
75                                const DataLayout &DL,
76                                const FuncInfoTy &FuncInfo) const {
77   auto &Flags = Arg.Flags[0];
78   const AttributeList &Attrs = FuncInfo.getAttributes();
79   if (Attrs.hasAttribute(OpIdx, Attribute::ZExt))
80     Flags.setZExt();
81   if (Attrs.hasAttribute(OpIdx, Attribute::SExt))
82     Flags.setSExt();
83   if (Attrs.hasAttribute(OpIdx, Attribute::InReg))
84     Flags.setInReg();
85   if (Attrs.hasAttribute(OpIdx, Attribute::StructRet))
86     Flags.setSRet();
87   if (Attrs.hasAttribute(OpIdx, Attribute::SwiftSelf))
88     Flags.setSwiftSelf();
89   if (Attrs.hasAttribute(OpIdx, Attribute::SwiftError))
90     Flags.setSwiftError();
91   if (Attrs.hasAttribute(OpIdx, Attribute::ByVal))
92     Flags.setByVal();
93   if (Attrs.hasAttribute(OpIdx, Attribute::InAlloca))
94     Flags.setInAlloca();
95 
96   if (Flags.isByVal() || Flags.isInAlloca()) {
97     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
98 
99     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
100     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
101 
102     // For ByVal, alignment should be passed from FE.  BE will guess if
103     // this info is not there but there are cases it cannot get right.
104     unsigned FrameAlign;
105     if (FuncInfo.getParamAlignment(OpIdx - 2))
106       FrameAlign = FuncInfo.getParamAlignment(OpIdx - 2);
107     else
108       FrameAlign = getTLI()->getByValTypeAlignment(ElementTy, DL);
109     Flags.setByValAlign(FrameAlign);
110   }
111   if (Attrs.hasAttribute(OpIdx, Attribute::Nest))
112     Flags.setNest();
113   Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty)));
114 }
115 
116 template void
117 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
118                                     const DataLayout &DL,
119                                     const Function &FuncInfo) const;
120 
121 template void
122 CallLowering::setArgFlags<CallInst>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
123                                     const DataLayout &DL,
124                                     const CallInst &FuncInfo) const;
125 
126 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
127                                 MachineIRBuilder &MIRBuilder) const {
128   assert(SrcRegs.size() > 1 && "Nothing to pack");
129 
130   const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
131   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
132 
133   LLT PackedLLT = getLLTForType(*PackedTy, DL);
134 
135   SmallVector<LLT, 8> LLTs;
136   SmallVector<uint64_t, 8> Offsets;
137   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
138   assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
139 
140   Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
141   MIRBuilder.buildUndef(Dst);
142   for (unsigned i = 0; i < SrcRegs.size(); ++i) {
143     Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
144     MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
145     Dst = NewDst;
146   }
147 
148   return Dst;
149 }
150 
151 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
152                               Type *PackedTy,
153                               MachineIRBuilder &MIRBuilder) const {
154   assert(DstRegs.size() > 1 && "Nothing to unpack");
155 
156   const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
157 
158   SmallVector<LLT, 8> LLTs;
159   SmallVector<uint64_t, 8> Offsets;
160   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
161   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
162 
163   for (unsigned i = 0; i < DstRegs.size(); ++i)
164     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
165 }
166 
167 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
168                                      SmallVectorImpl<ArgInfo> &Args,
169                                      ValueHandler &Handler) const {
170   MachineFunction &MF = MIRBuilder.getMF();
171   const Function &F = MF.getFunction();
172   SmallVector<CCValAssign, 16> ArgLocs;
173   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
174   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler);
175 }
176 
177 bool CallLowering::handleAssignments(CCState &CCInfo,
178                                      SmallVectorImpl<CCValAssign> &ArgLocs,
179                                      MachineIRBuilder &MIRBuilder,
180                                      SmallVectorImpl<ArgInfo> &Args,
181                                      ValueHandler &Handler) const {
182   MachineFunction &MF = MIRBuilder.getMF();
183   const Function &F = MF.getFunction();
184   const DataLayout &DL = F.getParent()->getDataLayout();
185 
186   unsigned NumArgs = Args.size();
187   for (unsigned i = 0; i != NumArgs; ++i) {
188     MVT CurVT = MVT::getVT(Args[i].Ty);
189     if (Handler.assignArg(i, CurVT, CurVT, CCValAssign::Full, Args[i],
190                           Args[i].Flags[0], CCInfo)) {
191       if (!CurVT.isValid())
192         return false;
193       MVT NewVT = TLI->getRegisterTypeForCallingConv(
194           F.getContext(), F.getCallingConv(), EVT(CurVT));
195 
196       // If we need to split the type over multiple regs, check it's a scenario
197       // we currently support.
198       unsigned NumParts = TLI->getNumRegistersForCallingConv(
199           F.getContext(), F.getCallingConv(), CurVT);
200       if (NumParts > 1) {
201         // For now only handle exact splits.
202         if (NewVT.getSizeInBits() * NumParts != CurVT.getSizeInBits())
203           return false;
204       }
205 
206       // For incoming arguments (physregs to vregs), we could have values in
207       // physregs (or memlocs) which we want to extract and copy to vregs.
208       // During this, we might have to deal with the LLT being split across
209       // multiple regs, so we have to record this information for later.
210       //
211       // If we have outgoing args, then we have the opposite case. We have a
212       // vreg with an LLT which we want to assign to a physical location, and
213       // we might have to record that the value has to be split later.
214       if (Handler.isIncomingArgumentHandler()) {
215         if (NumParts == 1) {
216           // Try to use the register type if we couldn't assign the VT.
217           if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
218                                 Args[i].Flags[0], CCInfo))
219             return false;
220         } else {
221           // We're handling an incoming arg which is split over multiple regs.
222           // E.g. passing an s128 on AArch64.
223           ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
224           Args[i].OrigRegs.push_back(Args[i].Regs[0]);
225           Args[i].Regs.clear();
226           Args[i].Flags.clear();
227           LLT NewLLT = getLLTForMVT(NewVT);
228           // For each split register, create and assign a vreg that will store
229           // the incoming component of the larger value. These will later be
230           // merged to form the final vreg.
231           for (unsigned Part = 0; Part < NumParts; ++Part) {
232             Register Reg =
233                 MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
234             ISD::ArgFlagsTy Flags = OrigFlags;
235             if (Part == 0) {
236               Flags.setSplit();
237             } else {
238               Flags.setOrigAlign(Align::None());
239               if (Part == NumParts - 1)
240                 Flags.setSplitEnd();
241             }
242             Args[i].Regs.push_back(Reg);
243             Args[i].Flags.push_back(Flags);
244             if (Handler.assignArg(i + Part, NewVT, NewVT, CCValAssign::Full,
245                                   Args[i], Args[i].Flags[Part], CCInfo)) {
246               // Still couldn't assign this smaller part type for some reason.
247               return false;
248             }
249           }
250         }
251       } else {
252         // Handling an outgoing arg that might need to be split.
253         if (NumParts < 2)
254           return false; // Don't know how to deal with this type combination.
255 
256         // This type is passed via multiple registers in the calling convention.
257         // We need to extract the individual parts.
258         Register LargeReg = Args[i].Regs[0];
259         LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
260         auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
261         assert(Unmerge->getNumOperands() == NumParts + 1);
262         ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
263         // We're going to replace the regs and flags with the split ones.
264         Args[i].Regs.clear();
265         Args[i].Flags.clear();
266         for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
267           ISD::ArgFlagsTy Flags = OrigFlags;
268           if (PartIdx == 0) {
269             Flags.setSplit();
270           } else {
271             Flags.setOrigAlign(Align::None());
272             if (PartIdx == NumParts - 1)
273               Flags.setSplitEnd();
274           }
275           Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
276           Args[i].Flags.push_back(Flags);
277           if (Handler.assignArg(i + PartIdx, NewVT, NewVT, CCValAssign::Full,
278                                 Args[i], Args[i].Flags[PartIdx], CCInfo))
279             return false;
280         }
281       }
282     }
283   }
284 
285   for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
286     assert(j < ArgLocs.size() && "Skipped too many arg locs");
287 
288     CCValAssign &VA = ArgLocs[j];
289     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
290 
291     if (VA.needsCustom()) {
292       j += Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
293       continue;
294     }
295 
296     // FIXME: Pack registers if we have more than one.
297     Register ArgReg = Args[i].Regs[0];
298 
299     MVT OrigVT = MVT::getVT(Args[i].Ty);
300     MVT VAVT = VA.getValVT();
301     if (VA.isRegLoc()) {
302       if (Handler.isIncomingArgumentHandler() && VAVT != OrigVT) {
303         if (VAVT.getSizeInBits() < OrigVT.getSizeInBits()) {
304           // Expected to be multiple regs for a single incoming arg.
305           unsigned NumArgRegs = Args[i].Regs.size();
306           if (NumArgRegs < 2)
307             return false;
308 
309           assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
310                  "Too many regs for number of args");
311           for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
312             // There should be Regs.size() ArgLocs per argument.
313             VA = ArgLocs[j + Part];
314             Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
315           }
316           j += NumArgRegs - 1;
317           // Merge the split registers into the expected larger result vreg
318           // of the original call.
319           MIRBuilder.buildMerge(Args[i].OrigRegs[0], Args[i].Regs);
320           continue;
321         }
322         const LLT VATy(VAVT);
323         Register NewReg =
324             MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
325         Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
326         // If it's a vector type, we either need to truncate the elements
327         // or do an unmerge to get the lower block of elements.
328         if (VATy.isVector() &&
329             VATy.getNumElements() > OrigVT.getVectorNumElements()) {
330           const LLT OrigTy(OrigVT);
331           // Just handle the case where the VA type is 2 * original type.
332           if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
333             LLVM_DEBUG(dbgs()
334                        << "Incoming promoted vector arg has too many elts");
335             return false;
336           }
337           auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
338           MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0));
339         } else {
340           MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
341         }
342       } else if (!Handler.isIncomingArgumentHandler()) {
343         assert((j + (Args[i].Regs.size() - 1)) < ArgLocs.size() &&
344                "Too many regs for number of args");
345         // This is an outgoing argument that might have been split.
346         for (unsigned Part = 0; Part < Args[i].Regs.size(); ++Part) {
347           // There should be Regs.size() ArgLocs per argument.
348           VA = ArgLocs[j + Part];
349           Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
350         }
351         j += Args[i].Regs.size() - 1;
352       } else {
353         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
354       }
355     } else if (VA.isMemLoc()) {
356       // Don't currently support loading/storing a type that needs to be split
357       // to the stack. Should be easy, just not implemented yet.
358       if (Args[i].Regs.size() > 1) {
359         LLVM_DEBUG(
360             dbgs()
361             << "Load/store a split arg to/from the stack not implemented yet");
362         return false;
363       }
364       MVT VT = MVT::getVT(Args[i].Ty);
365       unsigned Size = VT == MVT::iPTR ? DL.getPointerSize()
366                                       : alignTo(VT.getSizeInBits(), 8) / 8;
367       unsigned Offset = VA.getLocMemOffset();
368       MachinePointerInfo MPO;
369       Register StackAddr = Handler.getStackAddress(Size, Offset, MPO);
370       Handler.assignValueToAddress(ArgReg, StackAddr, Size, MPO, VA);
371     } else {
372       // FIXME: Support byvals and other weirdness
373       return false;
374     }
375   }
376   return true;
377 }
378 
379 bool CallLowering::analyzeArgInfo(CCState &CCState,
380                                   SmallVectorImpl<ArgInfo> &Args,
381                                   CCAssignFn &AssignFnFixed,
382                                   CCAssignFn &AssignFnVarArg) const {
383   for (unsigned i = 0, e = Args.size(); i < e; ++i) {
384     MVT VT = MVT::getVT(Args[i].Ty);
385     CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
386     if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
387       // Bail out on anything we can't handle.
388       LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
389                         << " (arg number = " << i << "\n");
390       return false;
391     }
392   }
393   return true;
394 }
395 
396 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
397                                      MachineFunction &MF,
398                                      SmallVectorImpl<ArgInfo> &InArgs,
399                                      CCAssignFn &CalleeAssignFnFixed,
400                                      CCAssignFn &CalleeAssignFnVarArg,
401                                      CCAssignFn &CallerAssignFnFixed,
402                                      CCAssignFn &CallerAssignFnVarArg) const {
403   const Function &F = MF.getFunction();
404   CallingConv::ID CalleeCC = Info.CallConv;
405   CallingConv::ID CallerCC = F.getCallingConv();
406 
407   if (CallerCC == CalleeCC)
408     return true;
409 
410   SmallVector<CCValAssign, 16> ArgLocs1;
411   CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
412   if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
413                       CalleeAssignFnVarArg))
414     return false;
415 
416   SmallVector<CCValAssign, 16> ArgLocs2;
417   CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
418   if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
419                       CalleeAssignFnVarArg))
420     return false;
421 
422   // We need the argument locations to match up exactly. If there's more in
423   // one than the other, then we are done.
424   if (ArgLocs1.size() != ArgLocs2.size())
425     return false;
426 
427   // Make sure that each location is passed in exactly the same way.
428   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
429     const CCValAssign &Loc1 = ArgLocs1[i];
430     const CCValAssign &Loc2 = ArgLocs2[i];
431 
432     // We need both of them to be the same. So if one is a register and one
433     // isn't, we're done.
434     if (Loc1.isRegLoc() != Loc2.isRegLoc())
435       return false;
436 
437     if (Loc1.isRegLoc()) {
438       // If they don't have the same register location, we're done.
439       if (Loc1.getLocReg() != Loc2.getLocReg())
440         return false;
441 
442       // They matched, so we can move to the next ArgLoc.
443       continue;
444     }
445 
446     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
447     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
448       return false;
449   }
450 
451   return true;
452 }
453 
454 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
455                                                     CCValAssign &VA) {
456   LLT LocTy{VA.getLocVT()};
457   if (LocTy.getSizeInBits() == MRI.getType(ValReg).getSizeInBits())
458     return ValReg;
459   switch (VA.getLocInfo()) {
460   default: break;
461   case CCValAssign::Full:
462   case CCValAssign::BCvt:
463     // FIXME: bitconverting between vector types may or may not be a
464     // nop in big-endian situations.
465     return ValReg;
466   case CCValAssign::AExt: {
467     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
468     return MIB->getOperand(0).getReg();
469   }
470   case CCValAssign::SExt: {
471     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
472     MIRBuilder.buildSExt(NewReg, ValReg);
473     return NewReg;
474   }
475   case CCValAssign::ZExt: {
476     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
477     MIRBuilder.buildZExt(NewReg, ValReg);
478     return NewReg;
479   }
480   }
481   llvm_unreachable("unable to extend register");
482 }
483 
484 void CallLowering::ValueHandler::anchor() {}
485