1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "call-lowering" 29 30 using namespace llvm; 31 32 void CallLowering::anchor() {} 33 34 /// Helper function which updates \p Flags when \p AttrFn returns true. 35 static void 36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 37 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 38 if (AttrFn(Attribute::SExt)) 39 Flags.setSExt(); 40 if (AttrFn(Attribute::ZExt)) 41 Flags.setZExt(); 42 if (AttrFn(Attribute::InReg)) 43 Flags.setInReg(); 44 if (AttrFn(Attribute::StructRet)) 45 Flags.setSRet(); 46 if (AttrFn(Attribute::Nest)) 47 Flags.setNest(); 48 if (AttrFn(Attribute::ByVal)) 49 Flags.setByVal(); 50 if (AttrFn(Attribute::Preallocated)) 51 Flags.setPreallocated(); 52 if (AttrFn(Attribute::InAlloca)) 53 Flags.setInAlloca(); 54 if (AttrFn(Attribute::Returned)) 55 Flags.setReturned(); 56 if (AttrFn(Attribute::SwiftSelf)) 57 Flags.setSwiftSelf(); 58 if (AttrFn(Attribute::SwiftAsync)) 59 Flags.setSwiftAsync(); 60 if (AttrFn(Attribute::SwiftError)) 61 Flags.setSwiftError(); 62 } 63 64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 65 unsigned ArgIdx) const { 66 ISD::ArgFlagsTy Flags; 67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 68 return Call.paramHasAttr(ArgIdx, Attr); 69 }); 70 return Flags; 71 } 72 73 ISD::ArgFlagsTy 74 CallLowering::getAttributesForReturn(const CallBase &Call) const { 75 ISD::ArgFlagsTy Flags; 76 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { 77 return Call.hasRetAttr(Attr); 78 }); 79 return Flags; 80 } 81 82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 83 const AttributeList &Attrs, 84 unsigned OpIdx) const { 85 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 86 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 87 }); 88 } 89 90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 91 ArrayRef<Register> ResRegs, 92 ArrayRef<ArrayRef<Register>> ArgRegs, 93 Register SwiftErrorVReg, 94 std::function<unsigned()> GetCalleeReg) const { 95 CallLoweringInfo Info; 96 const DataLayout &DL = MIRBuilder.getDataLayout(); 97 MachineFunction &MF = MIRBuilder.getMF(); 98 MachineRegisterInfo &MRI = MF.getRegInfo(); 99 bool CanBeTailCalled = CB.isTailCall() && 100 isInTailCallPosition(CB, MF.getTarget()) && 101 (MF.getFunction() 102 .getFnAttribute("disable-tail-calls") 103 .getValueAsString() != "true"); 104 105 CallingConv::ID CallConv = CB.getCallingConv(); 106 Type *RetTy = CB.getType(); 107 bool IsVarArg = CB.getFunctionType()->isVarArg(); 108 109 SmallVector<BaseArgInfo, 4> SplitArgs; 110 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 111 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 112 113 if (!Info.CanLowerReturn) { 114 // Callee requires sret demotion. 115 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 116 117 // The sret demotion isn't compatible with tail-calls, since the sret 118 // argument points into the caller's stack frame. 119 CanBeTailCalled = false; 120 } 121 122 123 // First step is to marshall all the function's parameters into the correct 124 // physregs and memory locations. Gather the sequence of argument types that 125 // we'll pass to the assigner function. 126 unsigned i = 0; 127 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 128 for (const auto &Arg : CB.args()) { 129 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 130 i < NumFixedArgs}; 131 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 132 133 // If we have an explicit sret argument that is an Instruction, (i.e., it 134 // might point to function-local memory), we can't meaningfully tail-call. 135 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 136 CanBeTailCalled = false; 137 138 Info.OrigArgs.push_back(OrigArg); 139 ++i; 140 } 141 142 // Try looking through a bitcast from one function type to another. 143 // Commonly happens with calls to objc_msgSend(). 144 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 145 if (const Function *F = dyn_cast<Function>(CalleeV)) 146 Info.Callee = MachineOperand::CreateGA(F, 0); 147 else 148 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 149 150 Register ReturnHintAlignReg; 151 Align ReturnHintAlign; 152 153 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; 154 155 if (!Info.OrigRet.Ty->isVoidTy()) { 156 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 157 158 if (MaybeAlign Alignment = CB.getRetAlign()) { 159 if (*Alignment > Align(1)) { 160 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 161 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 162 ReturnHintAlign = *Alignment; 163 } 164 } 165 } 166 167 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 168 if (Bundle && CB.isIndirectCall()) { 169 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 170 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 171 } 172 173 Info.CB = &CB; 174 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 175 Info.CallConv = CallConv; 176 Info.SwiftErrorVReg = SwiftErrorVReg; 177 Info.IsMustTailCall = CB.isMustTailCall(); 178 Info.IsTailCall = CanBeTailCalled; 179 Info.IsVarArg = IsVarArg; 180 if (!lowerCall(MIRBuilder, Info)) 181 return false; 182 183 if (ReturnHintAlignReg && !Info.IsTailCall) { 184 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 185 ReturnHintAlign); 186 } 187 188 return true; 189 } 190 191 template <typename FuncInfoTy> 192 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 193 const DataLayout &DL, 194 const FuncInfoTy &FuncInfo) const { 195 auto &Flags = Arg.Flags[0]; 196 const AttributeList &Attrs = FuncInfo.getAttributes(); 197 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 198 199 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 200 if (PtrTy) { 201 Flags.setPointer(); 202 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 203 } 204 205 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 206 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 207 assert(OpIdx >= AttributeList::FirstArgIndex); 208 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 209 210 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 211 if (!ElementTy) 212 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 213 if (!ElementTy) 214 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 215 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 216 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 217 218 // For ByVal, alignment should be passed from FE. BE will guess if 219 // this info is not there but there are cases it cannot get right. 220 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 221 MemAlign = *ParamAlign; 222 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 223 MemAlign = *ParamAlign; 224 else 225 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 226 } else if (OpIdx >= AttributeList::FirstArgIndex) { 227 if (auto ParamAlign = 228 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 229 MemAlign = *ParamAlign; 230 } 231 Flags.setMemAlign(MemAlign); 232 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 233 234 // Don't try to use the returned attribute if the argument is marked as 235 // swiftself, since it won't be passed in x0. 236 if (Flags.isSwiftSelf()) 237 Flags.setReturned(false); 238 } 239 240 template void 241 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 242 const DataLayout &DL, 243 const Function &FuncInfo) const; 244 245 template void 246 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 247 const DataLayout &DL, 248 const CallBase &FuncInfo) const; 249 250 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 251 SmallVectorImpl<ArgInfo> &SplitArgs, 252 const DataLayout &DL, 253 CallingConv::ID CallConv, 254 SmallVectorImpl<uint64_t> *Offsets) const { 255 LLVMContext &Ctx = OrigArg.Ty->getContext(); 256 257 SmallVector<EVT, 4> SplitVTs; 258 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 259 260 if (SplitVTs.size() == 0) 261 return; 262 263 if (SplitVTs.size() == 1) { 264 // No splitting to do, but we want to replace the original type (e.g. [1 x 265 // double] -> double). 266 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 267 OrigArg.OrigArgIndex, OrigArg.Flags[0], 268 OrigArg.IsFixed, OrigArg.OrigValue); 269 return; 270 } 271 272 // Create one ArgInfo for each virtual register in the original ArgInfo. 273 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 274 275 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 276 OrigArg.Ty, CallConv, false, DL); 277 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 278 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 279 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 280 OrigArg.Flags[0], OrigArg.IsFixed); 281 if (NeedsRegBlock) 282 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 283 } 284 285 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 286 } 287 288 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 289 static MachineInstrBuilder 290 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 291 ArrayRef<Register> SrcRegs) { 292 MachineRegisterInfo &MRI = *B.getMRI(); 293 LLT LLTy = MRI.getType(DstRegs[0]); 294 LLT PartLLT = MRI.getType(SrcRegs[0]); 295 296 // Deal with v3s16 split into v2s16 297 LLT LCMTy = getCoverTy(LLTy, PartLLT); 298 if (LCMTy == LLTy) { 299 // Common case where no padding is needed. 300 assert(DstRegs.size() == 1); 301 return B.buildConcatVectors(DstRegs[0], SrcRegs); 302 } 303 304 // We need to create an unmerge to the result registers, which may require 305 // widening the original value. 306 Register UnmergeSrcReg; 307 if (LCMTy != PartLLT) { 308 assert(DstRegs.size() == 1); 309 return B.buildDeleteTrailingVectorElements(DstRegs[0], 310 B.buildMerge(LCMTy, SrcRegs)); 311 } else { 312 // We don't need to widen anything if we're extracting a scalar which was 313 // promoted to a vector e.g. s8 -> v4s8 -> s8 314 assert(SrcRegs.size() == 1); 315 UnmergeSrcReg = SrcRegs[0]; 316 } 317 318 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 319 320 SmallVector<Register, 8> PadDstRegs(NumDst); 321 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 322 323 // Create the excess dead defs for the unmerge. 324 for (int I = DstRegs.size(); I != NumDst; ++I) 325 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 326 327 if (PadDstRegs.size() == 1) 328 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 329 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 330 } 331 332 /// Create a sequence of instructions to combine pieces split into register 333 /// typed values to the original IR value. \p OrigRegs contains the destination 334 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 335 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 336 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 337 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 338 const ISD::ArgFlagsTy Flags) { 339 MachineRegisterInfo &MRI = *B.getMRI(); 340 341 if (PartLLT == LLTy) { 342 // We should have avoided introducing a new virtual register, and just 343 // directly assigned here. 344 assert(OrigRegs[0] == Regs[0]); 345 return; 346 } 347 348 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 349 Regs.size() == 1) { 350 B.buildBitcast(OrigRegs[0], Regs[0]); 351 return; 352 } 353 354 // A vector PartLLT needs extending to LLTy's element size. 355 // E.g. <2 x s64> = G_SEXT <2 x s32>. 356 if (PartLLT.isVector() == LLTy.isVector() && 357 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 358 (!PartLLT.isVector() || 359 PartLLT.getNumElements() == LLTy.getNumElements()) && 360 OrigRegs.size() == 1 && Regs.size() == 1) { 361 Register SrcReg = Regs[0]; 362 363 LLT LocTy = MRI.getType(SrcReg); 364 365 if (Flags.isSExt()) { 366 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 367 .getReg(0); 368 } else if (Flags.isZExt()) { 369 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 370 .getReg(0); 371 } 372 373 // Sometimes pointers are passed zero extended. 374 LLT OrigTy = MRI.getType(OrigRegs[0]); 375 if (OrigTy.isPointer()) { 376 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 377 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 378 return; 379 } 380 381 B.buildTrunc(OrigRegs[0], SrcReg); 382 return; 383 } 384 385 if (!LLTy.isVector() && !PartLLT.isVector()) { 386 assert(OrigRegs.size() == 1); 387 LLT OrigTy = MRI.getType(OrigRegs[0]); 388 389 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 390 if (SrcSize == OrigTy.getSizeInBits()) 391 B.buildMerge(OrigRegs[0], Regs); 392 else { 393 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 394 B.buildTrunc(OrigRegs[0], Widened); 395 } 396 397 return; 398 } 399 400 if (PartLLT.isVector()) { 401 assert(OrigRegs.size() == 1); 402 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 403 404 // If PartLLT is a mismatched vector in both number of elements and element 405 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 406 // have the same elt type, i.e. v4s32. 407 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 408 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 409 Regs.size() == 1) { 410 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 411 .changeElementCount(PartLLT.getElementCount() * 2); 412 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 413 PartLLT = NewTy; 414 } 415 416 if (LLTy.getScalarType() == PartLLT.getElementType()) { 417 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 418 } else { 419 unsigned I = 0; 420 LLT GCDTy = getGCDType(LLTy, PartLLT); 421 422 // We are both splitting a vector, and bitcasting its element types. Cast 423 // the source pieces into the appropriate number of pieces with the result 424 // element type. 425 for (Register SrcReg : CastRegs) 426 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 427 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 428 } 429 430 return; 431 } 432 433 assert(LLTy.isVector() && !PartLLT.isVector()); 434 435 LLT DstEltTy = LLTy.getElementType(); 436 437 // Pointer information was discarded. We'll need to coerce some register types 438 // to avoid violating type constraints. 439 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 440 441 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 442 443 if (DstEltTy == PartLLT) { 444 // Vector was trivially scalarized. 445 446 if (RealDstEltTy.isPointer()) { 447 for (Register Reg : Regs) 448 MRI.setType(Reg, RealDstEltTy); 449 } 450 451 B.buildBuildVector(OrigRegs[0], Regs); 452 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 453 // Deal with vector with 64-bit elements decomposed to 32-bit 454 // registers. Need to create intermediate 64-bit elements. 455 SmallVector<Register, 8> EltMerges; 456 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 457 458 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 459 460 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 461 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 462 // Fix the type in case this is really a vector of pointers. 463 MRI.setType(Merge.getReg(0), RealDstEltTy); 464 EltMerges.push_back(Merge.getReg(0)); 465 Regs = Regs.drop_front(PartsPerElt); 466 } 467 468 B.buildBuildVector(OrigRegs[0], EltMerges); 469 } else { 470 // Vector was split, and elements promoted to a wider type. 471 // FIXME: Should handle floating point promotions. 472 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 473 auto BV = B.buildBuildVector(BVType, Regs); 474 B.buildTrunc(OrigRegs[0], BV); 475 } 476 } 477 478 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 479 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 480 /// contain the type of scalar value extension if necessary. 481 /// 482 /// This is used for outgoing values (vregs to physregs) 483 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 484 Register SrcReg, LLT SrcTy, LLT PartTy, 485 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 486 // We could just insert a regular copy, but this is unreachable at the moment. 487 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 488 489 const unsigned PartSize = PartTy.getSizeInBits(); 490 491 if (PartTy.isVector() == SrcTy.isVector() && 492 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 493 assert(DstRegs.size() == 1); 494 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 495 return; 496 } 497 498 if (SrcTy.isVector() && !PartTy.isVector() && 499 PartSize > SrcTy.getElementType().getSizeInBits()) { 500 // Vector was scalarized, and the elements extended. 501 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 502 for (int i = 0, e = DstRegs.size(); i != e; ++i) 503 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 504 return; 505 } 506 507 if (SrcTy.isVector() && PartTy.isVector() && 508 PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() && 509 SrcTy.getNumElements() < PartTy.getNumElements()) { 510 // A coercion like: v2f32 -> v4f32. 511 Register DstReg = DstRegs.front(); 512 B.buildPadVectorWithUndefElements(DstReg, SrcReg); 513 return; 514 } 515 516 LLT GCDTy = getGCDType(SrcTy, PartTy); 517 if (GCDTy == PartTy) { 518 // If this already evenly divisible, we can create a simple unmerge. 519 B.buildUnmerge(DstRegs, SrcReg); 520 return; 521 } 522 523 MachineRegisterInfo &MRI = *B.getMRI(); 524 LLT DstTy = MRI.getType(DstRegs[0]); 525 LLT LCMTy = getCoverTy(SrcTy, PartTy); 526 527 if (PartTy.isVector() && LCMTy == PartTy) { 528 assert(DstRegs.size() == 1); 529 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 530 return; 531 } 532 533 const unsigned DstSize = DstTy.getSizeInBits(); 534 const unsigned SrcSize = SrcTy.getSizeInBits(); 535 unsigned CoveringSize = LCMTy.getSizeInBits(); 536 537 Register UnmergeSrc = SrcReg; 538 539 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 540 // For scalars, it's common to be able to use a simple extension. 541 if (SrcTy.isScalar() && DstTy.isScalar()) { 542 CoveringSize = alignTo(SrcSize, DstSize); 543 LLT CoverTy = LLT::scalar(CoveringSize); 544 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 545 } else { 546 // Widen to the common type. 547 // FIXME: This should respect the extend type 548 Register Undef = B.buildUndef(SrcTy).getReg(0); 549 SmallVector<Register, 8> MergeParts(1, SrcReg); 550 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 551 MergeParts.push_back(Undef); 552 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 553 } 554 } 555 556 if (LCMTy.isVector() && CoveringSize != SrcSize) 557 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 558 559 B.buildUnmerge(DstRegs, UnmergeSrc); 560 } 561 562 bool CallLowering::determineAndHandleAssignments( 563 ValueHandler &Handler, ValueAssigner &Assigner, 564 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 565 CallingConv::ID CallConv, bool IsVarArg, 566 ArrayRef<Register> ThisReturnRegs) const { 567 MachineFunction &MF = MIRBuilder.getMF(); 568 const Function &F = MF.getFunction(); 569 SmallVector<CCValAssign, 16> ArgLocs; 570 571 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 572 if (!determineAssignments(Assigner, Args, CCInfo)) 573 return false; 574 575 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 576 ThisReturnRegs); 577 } 578 579 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 580 if (Flags.isSExt()) 581 return TargetOpcode::G_SEXT; 582 if (Flags.isZExt()) 583 return TargetOpcode::G_ZEXT; 584 return TargetOpcode::G_ANYEXT; 585 } 586 587 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 588 SmallVectorImpl<ArgInfo> &Args, 589 CCState &CCInfo) const { 590 LLVMContext &Ctx = CCInfo.getContext(); 591 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 592 593 unsigned NumArgs = Args.size(); 594 for (unsigned i = 0; i != NumArgs; ++i) { 595 EVT CurVT = EVT::getEVT(Args[i].Ty); 596 597 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 598 599 // If we need to split the type over multiple regs, check it's a scenario 600 // we currently support. 601 unsigned NumParts = 602 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 603 604 if (NumParts == 1) { 605 // Try to use the register type if we couldn't assign the VT. 606 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 607 Args[i].Flags[0], CCInfo)) 608 return false; 609 continue; 610 } 611 612 // For incoming arguments (physregs to vregs), we could have values in 613 // physregs (or memlocs) which we want to extract and copy to vregs. 614 // During this, we might have to deal with the LLT being split across 615 // multiple regs, so we have to record this information for later. 616 // 617 // If we have outgoing args, then we have the opposite case. We have a 618 // vreg with an LLT which we want to assign to a physical location, and 619 // we might have to record that the value has to be split later. 620 621 // We're handling an incoming arg which is split over multiple regs. 622 // E.g. passing an s128 on AArch64. 623 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 624 Args[i].Flags.clear(); 625 626 for (unsigned Part = 0; Part < NumParts; ++Part) { 627 ISD::ArgFlagsTy Flags = OrigFlags; 628 if (Part == 0) { 629 Flags.setSplit(); 630 } else { 631 Flags.setOrigAlign(Align(1)); 632 if (Part == NumParts - 1) 633 Flags.setSplitEnd(); 634 } 635 636 Args[i].Flags.push_back(Flags); 637 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 638 Args[i].Flags[Part], CCInfo)) { 639 // Still couldn't assign this smaller part type for some reason. 640 return false; 641 } 642 } 643 } 644 645 return true; 646 } 647 648 bool CallLowering::handleAssignments(ValueHandler &Handler, 649 SmallVectorImpl<ArgInfo> &Args, 650 CCState &CCInfo, 651 SmallVectorImpl<CCValAssign> &ArgLocs, 652 MachineIRBuilder &MIRBuilder, 653 ArrayRef<Register> ThisReturnRegs) const { 654 MachineFunction &MF = MIRBuilder.getMF(); 655 MachineRegisterInfo &MRI = MF.getRegInfo(); 656 const Function &F = MF.getFunction(); 657 const DataLayout &DL = F.getParent()->getDataLayout(); 658 659 const unsigned NumArgs = Args.size(); 660 661 // Stores thunks for outgoing register assignments. This is used so we delay 662 // generating register copies until mem loc assignments are done. We do this 663 // so that if the target is using the delayed stack protector feature, we can 664 // find the split point of the block accurately. E.g. if we have: 665 // G_STORE %val, %memloc 666 // $x0 = COPY %foo 667 // $x1 = COPY %bar 668 // CALL func 669 // ... then the split point for the block will correctly be at, and including, 670 // the copy to $x0. If instead the G_STORE instruction immediately precedes 671 // the CALL, then we'd prematurely choose the CALL as the split point, thus 672 // generating a split block with a CALL that uses undefined physregs. 673 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 674 675 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 676 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 677 CCValAssign &VA = ArgLocs[j]; 678 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 679 680 if (VA.needsCustom()) { 681 std::function<void()> Thunk; 682 unsigned NumArgRegs = Handler.assignCustomValue( 683 Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk); 684 if (Thunk) 685 DelayedOutgoingRegAssignments.emplace_back(Thunk); 686 if (!NumArgRegs) 687 return false; 688 j += NumArgRegs; 689 continue; 690 } 691 692 const MVT ValVT = VA.getValVT(); 693 const MVT LocVT = VA.getLocVT(); 694 695 const LLT LocTy(LocVT); 696 const LLT ValTy(ValVT); 697 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 698 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 699 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 700 701 // Expected to be multiple regs for a single incoming arg. 702 // There should be Regs.size() ArgLocs per argument. 703 // This should be the same as getNumRegistersForCallingConv 704 const unsigned NumParts = Args[i].Flags.size(); 705 706 // Now split the registers into the assigned types. 707 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 708 709 if (NumParts != 1 || NewLLT != OrigTy) { 710 // If we can't directly assign the register, we need one or more 711 // intermediate values. 712 Args[i].Regs.resize(NumParts); 713 714 // For each split register, create and assign a vreg that will store 715 // the incoming component of the larger value. These will later be 716 // merged to form the final vreg. 717 for (unsigned Part = 0; Part < NumParts; ++Part) 718 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 719 } 720 721 assert((j + (NumParts - 1)) < ArgLocs.size() && 722 "Too many regs for number of args"); 723 724 // Coerce into outgoing value types before register assignment. 725 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 726 assert(Args[i].OrigRegs.size() == 1); 727 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 728 ValTy, extendOpFromFlags(Args[i].Flags[0])); 729 } 730 731 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 732 for (unsigned Part = 0; Part < NumParts; ++Part) { 733 Register ArgReg = Args[i].Regs[Part]; 734 // There should be Regs.size() ArgLocs per argument. 735 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 736 CCValAssign &VA = ArgLocs[j + Idx]; 737 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 738 739 if (VA.isMemLoc() && !Flags.isByVal()) { 740 // Individual pieces may have been spilled to the stack and others 741 // passed in registers. 742 743 // TODO: The memory size may be larger than the value we need to 744 // store. We may need to adjust the offset for big endian targets. 745 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 746 747 MachinePointerInfo MPO; 748 Register StackAddr = Handler.getStackAddress( 749 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 750 751 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 752 continue; 753 } 754 755 if (VA.isMemLoc() && Flags.isByVal()) { 756 assert(Args[i].Regs.size() == 1 && 757 "didn't expect split byval pointer"); 758 759 if (Handler.isIncomingArgumentHandler()) { 760 // We just need to copy the frame index value to the pointer. 761 MachinePointerInfo MPO; 762 Register StackAddr = Handler.getStackAddress( 763 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 764 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 765 } else { 766 // For outgoing byval arguments, insert the implicit copy byval 767 // implies, such that writes in the callee do not modify the caller's 768 // value. 769 uint64_t MemSize = Flags.getByValSize(); 770 int64_t Offset = VA.getLocMemOffset(); 771 772 MachinePointerInfo DstMPO; 773 Register StackAddr = 774 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 775 776 MachinePointerInfo SrcMPO(Args[i].OrigValue); 777 if (!Args[i].OrigValue) { 778 // We still need to accurately track the stack address space if we 779 // don't know the underlying value. 780 const LLT PtrTy = MRI.getType(StackAddr); 781 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 782 } 783 784 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 785 inferAlignFromPtrInfo(MF, DstMPO)); 786 787 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 788 inferAlignFromPtrInfo(MF, SrcMPO)); 789 790 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 791 DstMPO, DstAlign, SrcMPO, SrcAlign, 792 MemSize, VA); 793 } 794 continue; 795 } 796 797 assert(!VA.needsCustom() && "custom loc should have been handled already"); 798 799 if (i == 0 && !ThisReturnRegs.empty() && 800 Handler.isIncomingArgumentHandler() && 801 isTypeIsValidForThisReturn(ValVT)) { 802 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 803 continue; 804 } 805 806 if (Handler.isIncomingArgumentHandler()) 807 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 808 else { 809 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 810 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 811 }); 812 } 813 } 814 815 // Now that all pieces have been assigned, re-pack the register typed values 816 // into the original value typed registers. 817 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 818 // Merge the split registers into the expected larger result vregs of 819 // the original call. 820 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 821 LocTy, Args[i].Flags[0]); 822 } 823 824 j += NumParts - 1; 825 } 826 for (auto &Fn : DelayedOutgoingRegAssignments) 827 Fn(); 828 829 return true; 830 } 831 832 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 833 ArrayRef<Register> VRegs, Register DemoteReg, 834 int FI) const { 835 MachineFunction &MF = MIRBuilder.getMF(); 836 MachineRegisterInfo &MRI = MF.getRegInfo(); 837 const DataLayout &DL = MF.getDataLayout(); 838 839 SmallVector<EVT, 4> SplitVTs; 840 SmallVector<uint64_t, 4> Offsets; 841 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 842 843 assert(VRegs.size() == SplitVTs.size()); 844 845 unsigned NumValues = SplitVTs.size(); 846 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 847 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 848 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 849 850 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 851 852 for (unsigned I = 0; I < NumValues; ++I) { 853 Register Addr; 854 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 855 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 856 MRI.getType(VRegs[I]), 857 commonAlignment(BaseAlign, Offsets[I])); 858 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 859 } 860 } 861 862 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 863 ArrayRef<Register> VRegs, 864 Register DemoteReg) const { 865 MachineFunction &MF = MIRBuilder.getMF(); 866 MachineRegisterInfo &MRI = MF.getRegInfo(); 867 const DataLayout &DL = MF.getDataLayout(); 868 869 SmallVector<EVT, 4> SplitVTs; 870 SmallVector<uint64_t, 4> Offsets; 871 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 872 873 assert(VRegs.size() == SplitVTs.size()); 874 875 unsigned NumValues = SplitVTs.size(); 876 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 877 unsigned AS = DL.getAllocaAddrSpace(); 878 LLT OffsetLLTy = 879 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 880 881 MachinePointerInfo PtrInfo(AS); 882 883 for (unsigned I = 0; I < NumValues; ++I) { 884 Register Addr; 885 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 886 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 887 MRI.getType(VRegs[I]), 888 commonAlignment(BaseAlign, Offsets[I])); 889 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 890 } 891 } 892 893 void CallLowering::insertSRetIncomingArgument( 894 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 895 MachineRegisterInfo &MRI, const DataLayout &DL) const { 896 unsigned AS = DL.getAllocaAddrSpace(); 897 DemoteReg = MRI.createGenericVirtualRegister( 898 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 899 900 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 901 902 SmallVector<EVT, 1> ValueVTs; 903 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 904 905 // NOTE: Assume that a pointer won't get split into more than one VT. 906 assert(ValueVTs.size() == 1); 907 908 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 909 ArgInfo::NoArgIndex); 910 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 911 DemoteArg.Flags[0].setSRet(); 912 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 913 } 914 915 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 916 const CallBase &CB, 917 CallLoweringInfo &Info) const { 918 const DataLayout &DL = MIRBuilder.getDataLayout(); 919 Type *RetTy = CB.getType(); 920 unsigned AS = DL.getAllocaAddrSpace(); 921 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 922 923 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 924 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 925 926 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 927 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 928 ArgInfo::NoArgIndex); 929 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 930 DemoteArg.Flags[0].setSRet(); 931 932 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 933 Info.DemoteStackIndex = FI; 934 Info.DemoteRegister = DemoteReg; 935 } 936 937 bool CallLowering::checkReturn(CCState &CCInfo, 938 SmallVectorImpl<BaseArgInfo> &Outs, 939 CCAssignFn *Fn) const { 940 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 941 MVT VT = MVT::getVT(Outs[I].Ty); 942 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 943 return false; 944 } 945 return true; 946 } 947 948 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 949 AttributeList Attrs, 950 SmallVectorImpl<BaseArgInfo> &Outs, 951 const DataLayout &DL) const { 952 LLVMContext &Context = RetTy->getContext(); 953 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 954 955 SmallVector<EVT, 4> SplitVTs; 956 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 957 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 958 959 for (EVT VT : SplitVTs) { 960 unsigned NumParts = 961 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 962 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 963 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 964 965 for (unsigned I = 0; I < NumParts; ++I) { 966 Outs.emplace_back(PartTy, Flags); 967 } 968 } 969 } 970 971 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 972 const auto &F = MF.getFunction(); 973 Type *ReturnType = F.getReturnType(); 974 CallingConv::ID CallConv = F.getCallingConv(); 975 976 SmallVector<BaseArgInfo, 4> SplitArgs; 977 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 978 MF.getDataLayout()); 979 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 980 } 981 982 bool CallLowering::parametersInCSRMatch( 983 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 984 const SmallVectorImpl<CCValAssign> &OutLocs, 985 const SmallVectorImpl<ArgInfo> &OutArgs) const { 986 for (unsigned i = 0; i < OutLocs.size(); ++i) { 987 const auto &ArgLoc = OutLocs[i]; 988 // If it's not a register, it's fine. 989 if (!ArgLoc.isRegLoc()) 990 continue; 991 992 MCRegister PhysReg = ArgLoc.getLocReg(); 993 994 // Only look at callee-saved registers. 995 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 996 continue; 997 998 LLVM_DEBUG( 999 dbgs() 1000 << "... Call has an argument passed in a callee-saved register.\n"); 1001 1002 // Check if it was copied from. 1003 const ArgInfo &OutInfo = OutArgs[i]; 1004 1005 if (OutInfo.Regs.size() > 1) { 1006 LLVM_DEBUG( 1007 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 1008 return false; 1009 } 1010 1011 // Check if we copy the register, walking through copies from virtual 1012 // registers. Note that getDefIgnoringCopies does not ignore copies from 1013 // physical registers. 1014 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 1015 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 1016 LLVM_DEBUG( 1017 dbgs() 1018 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1019 return false; 1020 } 1021 1022 // Got a copy. Verify that it's the same as the register we want. 1023 Register CopyRHS = RegDef->getOperand(1).getReg(); 1024 if (CopyRHS != PhysReg) { 1025 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1026 "VReg, cannot tail call.\n"); 1027 return false; 1028 } 1029 } 1030 1031 return true; 1032 } 1033 1034 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1035 MachineFunction &MF, 1036 SmallVectorImpl<ArgInfo> &InArgs, 1037 ValueAssigner &CalleeAssigner, 1038 ValueAssigner &CallerAssigner) const { 1039 const Function &F = MF.getFunction(); 1040 CallingConv::ID CalleeCC = Info.CallConv; 1041 CallingConv::ID CallerCC = F.getCallingConv(); 1042 1043 if (CallerCC == CalleeCC) 1044 return true; 1045 1046 SmallVector<CCValAssign, 16> ArgLocs1; 1047 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1048 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1049 return false; 1050 1051 SmallVector<CCValAssign, 16> ArgLocs2; 1052 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1053 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1054 return false; 1055 1056 // We need the argument locations to match up exactly. If there's more in 1057 // one than the other, then we are done. 1058 if (ArgLocs1.size() != ArgLocs2.size()) 1059 return false; 1060 1061 // Make sure that each location is passed in exactly the same way. 1062 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1063 const CCValAssign &Loc1 = ArgLocs1[i]; 1064 const CCValAssign &Loc2 = ArgLocs2[i]; 1065 1066 // We need both of them to be the same. So if one is a register and one 1067 // isn't, we're done. 1068 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1069 return false; 1070 1071 if (Loc1.isRegLoc()) { 1072 // If they don't have the same register location, we're done. 1073 if (Loc1.getLocReg() != Loc2.getLocReg()) 1074 return false; 1075 1076 // They matched, so we can move to the next ArgLoc. 1077 continue; 1078 } 1079 1080 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1081 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1082 return false; 1083 } 1084 1085 return true; 1086 } 1087 1088 LLT CallLowering::ValueHandler::getStackValueStoreType( 1089 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1090 const MVT ValVT = VA.getValVT(); 1091 if (ValVT != MVT::iPTR) { 1092 LLT ValTy(ValVT); 1093 1094 // We lost the pointeriness going through CCValAssign, so try to restore it 1095 // based on the flags. 1096 if (Flags.isPointer()) { 1097 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1098 ValTy.getScalarSizeInBits()); 1099 if (ValVT.isVector()) 1100 return LLT::vector(ValTy.getElementCount(), PtrTy); 1101 return PtrTy; 1102 } 1103 1104 return ValTy; 1105 } 1106 1107 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1108 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1109 } 1110 1111 void CallLowering::ValueHandler::copyArgumentMemory( 1112 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1113 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1114 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1115 CCValAssign &VA) const { 1116 MachineFunction &MF = MIRBuilder.getMF(); 1117 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1118 SrcPtrInfo, 1119 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1120 SrcAlign); 1121 1122 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1123 DstPtrInfo, 1124 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1125 MemSize, DstAlign); 1126 1127 const LLT PtrTy = MRI.getType(DstPtr); 1128 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1129 1130 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1131 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1132 } 1133 1134 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1135 CCValAssign &VA, 1136 unsigned MaxSizeBits) { 1137 LLT LocTy{VA.getLocVT()}; 1138 LLT ValTy{VA.getValVT()}; 1139 1140 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1141 return ValReg; 1142 1143 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1144 if (MaxSizeBits <= ValTy.getSizeInBits()) 1145 return ValReg; 1146 LocTy = LLT::scalar(MaxSizeBits); 1147 } 1148 1149 const LLT ValRegTy = MRI.getType(ValReg); 1150 if (ValRegTy.isPointer()) { 1151 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1152 // we have to cast to do the extension. 1153 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1154 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1155 } 1156 1157 switch (VA.getLocInfo()) { 1158 default: break; 1159 case CCValAssign::Full: 1160 case CCValAssign::BCvt: 1161 // FIXME: bitconverting between vector types may or may not be a 1162 // nop in big-endian situations. 1163 return ValReg; 1164 case CCValAssign::AExt: { 1165 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1166 return MIB.getReg(0); 1167 } 1168 case CCValAssign::SExt: { 1169 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1170 MIRBuilder.buildSExt(NewReg, ValReg); 1171 return NewReg; 1172 } 1173 case CCValAssign::ZExt: { 1174 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1175 MIRBuilder.buildZExt(NewReg, ValReg); 1176 return NewReg; 1177 } 1178 } 1179 llvm_unreachable("unable to extend register"); 1180 } 1181 1182 void CallLowering::ValueAssigner::anchor() {} 1183 1184 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1185 Register SrcReg, 1186 LLT NarrowTy) { 1187 switch (VA.getLocInfo()) { 1188 case CCValAssign::LocInfo::ZExt: { 1189 return MIRBuilder 1190 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1191 NarrowTy.getScalarSizeInBits()) 1192 .getReg(0); 1193 } 1194 case CCValAssign::LocInfo::SExt: { 1195 return MIRBuilder 1196 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1197 NarrowTy.getScalarSizeInBits()) 1198 .getReg(0); 1199 break; 1200 } 1201 default: 1202 return SrcReg; 1203 } 1204 } 1205 1206 /// Check if we can use a basic COPY instruction between the two types. 1207 /// 1208 /// We're currently building on top of the infrastructure using MVT, which loses 1209 /// pointer information in the CCValAssign. We accept copies from physical 1210 /// registers that have been reported as integers if it's to an equivalent sized 1211 /// pointer LLT. 1212 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1213 if (SrcTy == DstTy) 1214 return true; 1215 1216 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1217 return false; 1218 1219 SrcTy = SrcTy.getScalarType(); 1220 DstTy = DstTy.getScalarType(); 1221 1222 return (SrcTy.isPointer() && DstTy.isScalar()) || 1223 (DstTy.isScalar() && SrcTy.isPointer()); 1224 } 1225 1226 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1227 Register PhysReg, 1228 CCValAssign VA) { 1229 const MVT LocVT = VA.getLocVT(); 1230 const LLT LocTy(LocVT); 1231 const LLT RegTy = MRI.getType(ValVReg); 1232 1233 if (isCopyCompatibleType(RegTy, LocTy)) { 1234 MIRBuilder.buildCopy(ValVReg, PhysReg); 1235 return; 1236 } 1237 1238 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1239 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1240 MIRBuilder.buildTrunc(ValVReg, Hint); 1241 } 1242