1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "call-lowering" 29 30 using namespace llvm; 31 32 void CallLowering::anchor() {} 33 34 /// Helper function which updates \p Flags when \p AttrFn returns true. 35 static void 36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 37 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 38 if (AttrFn(Attribute::SExt)) 39 Flags.setSExt(); 40 if (AttrFn(Attribute::ZExt)) 41 Flags.setZExt(); 42 if (AttrFn(Attribute::InReg)) 43 Flags.setInReg(); 44 if (AttrFn(Attribute::StructRet)) 45 Flags.setSRet(); 46 if (AttrFn(Attribute::Nest)) 47 Flags.setNest(); 48 if (AttrFn(Attribute::ByVal)) 49 Flags.setByVal(); 50 if (AttrFn(Attribute::Preallocated)) 51 Flags.setPreallocated(); 52 if (AttrFn(Attribute::InAlloca)) 53 Flags.setInAlloca(); 54 if (AttrFn(Attribute::Returned)) 55 Flags.setReturned(); 56 if (AttrFn(Attribute::SwiftSelf)) 57 Flags.setSwiftSelf(); 58 if (AttrFn(Attribute::SwiftAsync)) 59 Flags.setSwiftAsync(); 60 if (AttrFn(Attribute::SwiftError)) 61 Flags.setSwiftError(); 62 } 63 64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 65 unsigned ArgIdx) const { 66 ISD::ArgFlagsTy Flags; 67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 68 return Call.paramHasAttr(ArgIdx, Attr); 69 }); 70 return Flags; 71 } 72 73 ISD::ArgFlagsTy 74 CallLowering::getAttributesForReturn(const CallBase &Call) const { 75 ISD::ArgFlagsTy Flags; 76 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { 77 return Call.hasRetAttr(Attr); 78 }); 79 return Flags; 80 } 81 82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 83 const AttributeList &Attrs, 84 unsigned OpIdx) const { 85 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 86 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 87 }); 88 } 89 90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 91 ArrayRef<Register> ResRegs, 92 ArrayRef<ArrayRef<Register>> ArgRegs, 93 Register SwiftErrorVReg, 94 std::function<unsigned()> GetCalleeReg) const { 95 CallLoweringInfo Info; 96 const DataLayout &DL = MIRBuilder.getDataLayout(); 97 MachineFunction &MF = MIRBuilder.getMF(); 98 MachineRegisterInfo &MRI = MF.getRegInfo(); 99 bool CanBeTailCalled = CB.isTailCall() && 100 isInTailCallPosition(CB, MF.getTarget()) && 101 (MF.getFunction() 102 .getFnAttribute("disable-tail-calls") 103 .getValueAsString() != "true"); 104 105 CallingConv::ID CallConv = CB.getCallingConv(); 106 Type *RetTy = CB.getType(); 107 bool IsVarArg = CB.getFunctionType()->isVarArg(); 108 109 SmallVector<BaseArgInfo, 4> SplitArgs; 110 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 111 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 112 113 Info.IsConvergent = CB.isConvergent(); 114 115 if (!Info.CanLowerReturn) { 116 // Callee requires sret demotion. 117 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 118 119 // The sret demotion isn't compatible with tail-calls, since the sret 120 // argument points into the caller's stack frame. 121 CanBeTailCalled = false; 122 } 123 124 125 // First step is to marshall all the function's parameters into the correct 126 // physregs and memory locations. Gather the sequence of argument types that 127 // we'll pass to the assigner function. 128 unsigned i = 0; 129 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 130 for (const auto &Arg : CB.args()) { 131 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 132 i < NumFixedArgs}; 133 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 134 135 // If we have an explicit sret argument that is an Instruction, (i.e., it 136 // might point to function-local memory), we can't meaningfully tail-call. 137 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 138 CanBeTailCalled = false; 139 140 Info.OrigArgs.push_back(OrigArg); 141 ++i; 142 } 143 144 // Try looking through a bitcast from one function type to another. 145 // Commonly happens with calls to objc_msgSend(). 146 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 147 if (const Function *F = dyn_cast<Function>(CalleeV)) 148 Info.Callee = MachineOperand::CreateGA(F, 0); 149 else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) { 150 // IR IFuncs and Aliases can't be forward declared (only defined), so the 151 // callee must be in the same TU and therefore we can direct-call it without 152 // worrying about it being out of range. 153 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0); 154 } else 155 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 156 157 Register ReturnHintAlignReg; 158 Align ReturnHintAlign; 159 160 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; 161 162 if (!Info.OrigRet.Ty->isVoidTy()) { 163 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 164 165 if (MaybeAlign Alignment = CB.getRetAlign()) { 166 if (*Alignment > Align(1)) { 167 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 168 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 169 ReturnHintAlign = *Alignment; 170 } 171 } 172 } 173 174 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 175 if (Bundle && CB.isIndirectCall()) { 176 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 177 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 178 } 179 180 Info.CB = &CB; 181 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 182 Info.CallConv = CallConv; 183 Info.SwiftErrorVReg = SwiftErrorVReg; 184 Info.IsMustTailCall = CB.isMustTailCall(); 185 Info.IsTailCall = CanBeTailCalled; 186 Info.IsVarArg = IsVarArg; 187 if (!lowerCall(MIRBuilder, Info)) 188 return false; 189 190 if (ReturnHintAlignReg && !Info.IsTailCall) { 191 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 192 ReturnHintAlign); 193 } 194 195 return true; 196 } 197 198 template <typename FuncInfoTy> 199 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 200 const DataLayout &DL, 201 const FuncInfoTy &FuncInfo) const { 202 auto &Flags = Arg.Flags[0]; 203 const AttributeList &Attrs = FuncInfo.getAttributes(); 204 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 205 206 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 207 if (PtrTy) { 208 Flags.setPointer(); 209 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 210 } 211 212 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 213 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 214 assert(OpIdx >= AttributeList::FirstArgIndex); 215 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 216 217 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 218 if (!ElementTy) 219 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 220 if (!ElementTy) 221 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 222 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 223 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 224 225 // For ByVal, alignment should be passed from FE. BE will guess if 226 // this info is not there but there are cases it cannot get right. 227 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 228 MemAlign = *ParamAlign; 229 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 230 MemAlign = *ParamAlign; 231 else 232 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 233 } else if (OpIdx >= AttributeList::FirstArgIndex) { 234 if (auto ParamAlign = 235 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 236 MemAlign = *ParamAlign; 237 } 238 Flags.setMemAlign(MemAlign); 239 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 240 241 // Don't try to use the returned attribute if the argument is marked as 242 // swiftself, since it won't be passed in x0. 243 if (Flags.isSwiftSelf()) 244 Flags.setReturned(false); 245 } 246 247 template void 248 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 249 const DataLayout &DL, 250 const Function &FuncInfo) const; 251 252 template void 253 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 254 const DataLayout &DL, 255 const CallBase &FuncInfo) const; 256 257 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 258 SmallVectorImpl<ArgInfo> &SplitArgs, 259 const DataLayout &DL, 260 CallingConv::ID CallConv, 261 SmallVectorImpl<uint64_t> *Offsets) const { 262 LLVMContext &Ctx = OrigArg.Ty->getContext(); 263 264 SmallVector<EVT, 4> SplitVTs; 265 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 266 267 if (SplitVTs.size() == 0) 268 return; 269 270 if (SplitVTs.size() == 1) { 271 // No splitting to do, but we want to replace the original type (e.g. [1 x 272 // double] -> double). 273 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 274 OrigArg.OrigArgIndex, OrigArg.Flags[0], 275 OrigArg.IsFixed, OrigArg.OrigValue); 276 return; 277 } 278 279 // Create one ArgInfo for each virtual register in the original ArgInfo. 280 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 281 282 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 283 OrigArg.Ty, CallConv, false, DL); 284 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 285 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 286 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 287 OrigArg.Flags[0], OrigArg.IsFixed); 288 if (NeedsRegBlock) 289 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 290 } 291 292 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 293 } 294 295 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 296 static MachineInstrBuilder 297 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 298 ArrayRef<Register> SrcRegs) { 299 MachineRegisterInfo &MRI = *B.getMRI(); 300 LLT LLTy = MRI.getType(DstRegs[0]); 301 LLT PartLLT = MRI.getType(SrcRegs[0]); 302 303 // Deal with v3s16 split into v2s16 304 LLT LCMTy = getCoverTy(LLTy, PartLLT); 305 if (LCMTy == LLTy) { 306 // Common case where no padding is needed. 307 assert(DstRegs.size() == 1); 308 return B.buildConcatVectors(DstRegs[0], SrcRegs); 309 } 310 311 // We need to create an unmerge to the result registers, which may require 312 // widening the original value. 313 Register UnmergeSrcReg; 314 if (LCMTy != PartLLT) { 315 assert(DstRegs.size() == 1); 316 return B.buildDeleteTrailingVectorElements( 317 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); 318 } else { 319 // We don't need to widen anything if we're extracting a scalar which was 320 // promoted to a vector e.g. s8 -> v4s8 -> s8 321 assert(SrcRegs.size() == 1); 322 UnmergeSrcReg = SrcRegs[0]; 323 } 324 325 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 326 327 SmallVector<Register, 8> PadDstRegs(NumDst); 328 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 329 330 // Create the excess dead defs for the unmerge. 331 for (int I = DstRegs.size(); I != NumDst; ++I) 332 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 333 334 if (PadDstRegs.size() == 1) 335 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 336 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 337 } 338 339 /// Create a sequence of instructions to combine pieces split into register 340 /// typed values to the original IR value. \p OrigRegs contains the destination 341 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 342 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 343 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 344 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 345 const ISD::ArgFlagsTy Flags) { 346 MachineRegisterInfo &MRI = *B.getMRI(); 347 348 if (PartLLT == LLTy) { 349 // We should have avoided introducing a new virtual register, and just 350 // directly assigned here. 351 assert(OrigRegs[0] == Regs[0]); 352 return; 353 } 354 355 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 356 Regs.size() == 1) { 357 B.buildBitcast(OrigRegs[0], Regs[0]); 358 return; 359 } 360 361 // A vector PartLLT needs extending to LLTy's element size. 362 // E.g. <2 x s64> = G_SEXT <2 x s32>. 363 if (PartLLT.isVector() == LLTy.isVector() && 364 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 365 (!PartLLT.isVector() || 366 PartLLT.getElementCount() == LLTy.getElementCount()) && 367 OrigRegs.size() == 1 && Regs.size() == 1) { 368 Register SrcReg = Regs[0]; 369 370 LLT LocTy = MRI.getType(SrcReg); 371 372 if (Flags.isSExt()) { 373 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 374 .getReg(0); 375 } else if (Flags.isZExt()) { 376 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 377 .getReg(0); 378 } 379 380 // Sometimes pointers are passed zero extended. 381 LLT OrigTy = MRI.getType(OrigRegs[0]); 382 if (OrigTy.isPointer()) { 383 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 384 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 385 return; 386 } 387 388 B.buildTrunc(OrigRegs[0], SrcReg); 389 return; 390 } 391 392 if (!LLTy.isVector() && !PartLLT.isVector()) { 393 assert(OrigRegs.size() == 1); 394 LLT OrigTy = MRI.getType(OrigRegs[0]); 395 396 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); 397 if (SrcSize == OrigTy.getSizeInBits()) 398 B.buildMergeValues(OrigRegs[0], Regs); 399 else { 400 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); 401 B.buildTrunc(OrigRegs[0], Widened); 402 } 403 404 return; 405 } 406 407 if (PartLLT.isVector()) { 408 assert(OrigRegs.size() == 1); 409 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 410 411 // If PartLLT is a mismatched vector in both number of elements and element 412 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 413 // have the same elt type, i.e. v4s32. 414 // TODO: Extend this coersion to element multiples other than just 2. 415 if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) && 416 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 417 Regs.size() == 1) { 418 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 419 .changeElementCount(PartLLT.getElementCount() * 2); 420 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 421 PartLLT = NewTy; 422 } 423 424 if (LLTy.getScalarType() == PartLLT.getElementType()) { 425 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 426 } else { 427 unsigned I = 0; 428 LLT GCDTy = getGCDType(LLTy, PartLLT); 429 430 // We are both splitting a vector, and bitcasting its element types. Cast 431 // the source pieces into the appropriate number of pieces with the result 432 // element type. 433 for (Register SrcReg : CastRegs) 434 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 435 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 436 } 437 438 return; 439 } 440 441 assert(LLTy.isVector() && !PartLLT.isVector()); 442 443 LLT DstEltTy = LLTy.getElementType(); 444 445 // Pointer information was discarded. We'll need to coerce some register types 446 // to avoid violating type constraints. 447 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 448 449 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 450 451 if (DstEltTy == PartLLT) { 452 // Vector was trivially scalarized. 453 454 if (RealDstEltTy.isPointer()) { 455 for (Register Reg : Regs) 456 MRI.setType(Reg, RealDstEltTy); 457 } 458 459 B.buildBuildVector(OrigRegs[0], Regs); 460 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 461 // Deal with vector with 64-bit elements decomposed to 32-bit 462 // registers. Need to create intermediate 64-bit elements. 463 SmallVector<Register, 8> EltMerges; 464 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 465 466 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 467 468 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 469 auto Merge = 470 B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt)); 471 // Fix the type in case this is really a vector of pointers. 472 MRI.setType(Merge.getReg(0), RealDstEltTy); 473 EltMerges.push_back(Merge.getReg(0)); 474 Regs = Regs.drop_front(PartsPerElt); 475 } 476 477 B.buildBuildVector(OrigRegs[0], EltMerges); 478 } else { 479 // Vector was split, and elements promoted to a wider type. 480 // FIXME: Should handle floating point promotions. 481 unsigned NumElts = LLTy.getNumElements(); 482 LLT BVType = LLT::fixed_vector(NumElts, PartLLT); 483 484 Register BuildVec; 485 if (NumElts == Regs.size()) 486 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0); 487 else { 488 // Vector elements are packed in the inputs. 489 // e.g. we have a <4 x s16> but 2 x s32 in regs. 490 assert(NumElts > Regs.size()); 491 LLT SrcEltTy = MRI.getType(Regs[0]); 492 493 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType(); 494 495 // Input registers contain packed elements. 496 // Determine how many elements per reg. 497 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0); 498 unsigned EltPerReg = 499 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits()); 500 501 SmallVector<Register, 0> BVRegs; 502 BVRegs.reserve(Regs.size() * EltPerReg); 503 for (Register R : Regs) { 504 auto Unmerge = B.buildUnmerge(OriginalEltTy, R); 505 for (unsigned K = 0; K < EltPerReg; ++K) 506 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0)); 507 } 508 509 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces 510 // for a <3 x s16> vector. We should have less than EltPerReg extra items. 511 if (BVRegs.size() > NumElts) { 512 assert((BVRegs.size() - NumElts) < EltPerReg); 513 BVRegs.truncate(NumElts); 514 } 515 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0); 516 } 517 B.buildTrunc(OrigRegs[0], BuildVec); 518 } 519 } 520 521 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 522 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 523 /// contain the type of scalar value extension if necessary. 524 /// 525 /// This is used for outgoing values (vregs to physregs) 526 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 527 Register SrcReg, LLT SrcTy, LLT PartTy, 528 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 529 // We could just insert a regular copy, but this is unreachable at the moment. 530 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 531 532 const TypeSize PartSize = PartTy.getSizeInBits(); 533 534 if (PartTy.isVector() == SrcTy.isVector() && 535 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 536 assert(DstRegs.size() == 1); 537 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 538 return; 539 } 540 541 if (SrcTy.isVector() && !PartTy.isVector() && 542 TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) { 543 // Vector was scalarized, and the elements extended. 544 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 545 for (int i = 0, e = DstRegs.size(); i != e; ++i) 546 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 547 return; 548 } 549 550 if (SrcTy.isVector() && PartTy.isVector() && 551 PartTy.getSizeInBits() == SrcTy.getSizeInBits() && 552 ElementCount::isKnownLT(SrcTy.getElementCount(), 553 PartTy.getElementCount())) { 554 // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32 555 Register DstReg = DstRegs.front(); 556 B.buildPadVectorWithUndefElements(DstReg, SrcReg); 557 return; 558 } 559 560 LLT GCDTy = getGCDType(SrcTy, PartTy); 561 if (GCDTy == PartTy) { 562 // If this already evenly divisible, we can create a simple unmerge. 563 B.buildUnmerge(DstRegs, SrcReg); 564 return; 565 } 566 567 MachineRegisterInfo &MRI = *B.getMRI(); 568 LLT DstTy = MRI.getType(DstRegs[0]); 569 LLT LCMTy = getCoverTy(SrcTy, PartTy); 570 571 if (PartTy.isVector() && LCMTy == PartTy) { 572 assert(DstRegs.size() == 1); 573 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 574 return; 575 } 576 577 const unsigned DstSize = DstTy.getSizeInBits(); 578 const unsigned SrcSize = SrcTy.getSizeInBits(); 579 unsigned CoveringSize = LCMTy.getSizeInBits(); 580 581 Register UnmergeSrc = SrcReg; 582 583 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 584 // For scalars, it's common to be able to use a simple extension. 585 if (SrcTy.isScalar() && DstTy.isScalar()) { 586 CoveringSize = alignTo(SrcSize, DstSize); 587 LLT CoverTy = LLT::scalar(CoveringSize); 588 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 589 } else { 590 // Widen to the common type. 591 // FIXME: This should respect the extend type 592 Register Undef = B.buildUndef(SrcTy).getReg(0); 593 SmallVector<Register, 8> MergeParts(1, SrcReg); 594 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 595 MergeParts.push_back(Undef); 596 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); 597 } 598 } 599 600 if (LCMTy.isVector() && CoveringSize != SrcSize) 601 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 602 603 B.buildUnmerge(DstRegs, UnmergeSrc); 604 } 605 606 bool CallLowering::determineAndHandleAssignments( 607 ValueHandler &Handler, ValueAssigner &Assigner, 608 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 609 CallingConv::ID CallConv, bool IsVarArg, 610 ArrayRef<Register> ThisReturnRegs) const { 611 MachineFunction &MF = MIRBuilder.getMF(); 612 const Function &F = MF.getFunction(); 613 SmallVector<CCValAssign, 16> ArgLocs; 614 615 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 616 if (!determineAssignments(Assigner, Args, CCInfo)) 617 return false; 618 619 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 620 ThisReturnRegs); 621 } 622 623 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 624 if (Flags.isSExt()) 625 return TargetOpcode::G_SEXT; 626 if (Flags.isZExt()) 627 return TargetOpcode::G_ZEXT; 628 return TargetOpcode::G_ANYEXT; 629 } 630 631 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 632 SmallVectorImpl<ArgInfo> &Args, 633 CCState &CCInfo) const { 634 LLVMContext &Ctx = CCInfo.getContext(); 635 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 636 637 unsigned NumArgs = Args.size(); 638 for (unsigned i = 0; i != NumArgs; ++i) { 639 EVT CurVT = EVT::getEVT(Args[i].Ty); 640 641 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 642 643 // If we need to split the type over multiple regs, check it's a scenario 644 // we currently support. 645 unsigned NumParts = 646 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 647 648 if (NumParts == 1) { 649 // Try to use the register type if we couldn't assign the VT. 650 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 651 Args[i].Flags[0], CCInfo)) 652 return false; 653 continue; 654 } 655 656 // For incoming arguments (physregs to vregs), we could have values in 657 // physregs (or memlocs) which we want to extract and copy to vregs. 658 // During this, we might have to deal with the LLT being split across 659 // multiple regs, so we have to record this information for later. 660 // 661 // If we have outgoing args, then we have the opposite case. We have a 662 // vreg with an LLT which we want to assign to a physical location, and 663 // we might have to record that the value has to be split later. 664 665 // We're handling an incoming arg which is split over multiple regs. 666 // E.g. passing an s128 on AArch64. 667 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 668 Args[i].Flags.clear(); 669 670 for (unsigned Part = 0; Part < NumParts; ++Part) { 671 ISD::ArgFlagsTy Flags = OrigFlags; 672 if (Part == 0) { 673 Flags.setSplit(); 674 } else { 675 Flags.setOrigAlign(Align(1)); 676 if (Part == NumParts - 1) 677 Flags.setSplitEnd(); 678 } 679 680 Args[i].Flags.push_back(Flags); 681 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 682 Args[i].Flags[Part], CCInfo)) { 683 // Still couldn't assign this smaller part type for some reason. 684 return false; 685 } 686 } 687 } 688 689 return true; 690 } 691 692 bool CallLowering::handleAssignments(ValueHandler &Handler, 693 SmallVectorImpl<ArgInfo> &Args, 694 CCState &CCInfo, 695 SmallVectorImpl<CCValAssign> &ArgLocs, 696 MachineIRBuilder &MIRBuilder, 697 ArrayRef<Register> ThisReturnRegs) const { 698 MachineFunction &MF = MIRBuilder.getMF(); 699 MachineRegisterInfo &MRI = MF.getRegInfo(); 700 const Function &F = MF.getFunction(); 701 const DataLayout &DL = F.getParent()->getDataLayout(); 702 703 const unsigned NumArgs = Args.size(); 704 705 // Stores thunks for outgoing register assignments. This is used so we delay 706 // generating register copies until mem loc assignments are done. We do this 707 // so that if the target is using the delayed stack protector feature, we can 708 // find the split point of the block accurately. E.g. if we have: 709 // G_STORE %val, %memloc 710 // $x0 = COPY %foo 711 // $x1 = COPY %bar 712 // CALL func 713 // ... then the split point for the block will correctly be at, and including, 714 // the copy to $x0. If instead the G_STORE instruction immediately precedes 715 // the CALL, then we'd prematurely choose the CALL as the split point, thus 716 // generating a split block with a CALL that uses undefined physregs. 717 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 718 719 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 720 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 721 CCValAssign &VA = ArgLocs[j]; 722 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 723 724 if (VA.needsCustom()) { 725 std::function<void()> Thunk; 726 unsigned NumArgRegs = Handler.assignCustomValue( 727 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); 728 if (Thunk) 729 DelayedOutgoingRegAssignments.emplace_back(Thunk); 730 if (!NumArgRegs) 731 return false; 732 j += (NumArgRegs - 1); 733 continue; 734 } 735 736 const MVT ValVT = VA.getValVT(); 737 const MVT LocVT = VA.getLocVT(); 738 739 const LLT LocTy(LocVT); 740 const LLT ValTy(ValVT); 741 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 742 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 743 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 744 745 // Expected to be multiple regs for a single incoming arg. 746 // There should be Regs.size() ArgLocs per argument. 747 // This should be the same as getNumRegistersForCallingConv 748 const unsigned NumParts = Args[i].Flags.size(); 749 750 // Now split the registers into the assigned types. 751 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 752 753 if (NumParts != 1 || NewLLT != OrigTy) { 754 // If we can't directly assign the register, we need one or more 755 // intermediate values. 756 Args[i].Regs.resize(NumParts); 757 758 // For each split register, create and assign a vreg that will store 759 // the incoming component of the larger value. These will later be 760 // merged to form the final vreg. 761 for (unsigned Part = 0; Part < NumParts; ++Part) 762 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 763 } 764 765 assert((j + (NumParts - 1)) < ArgLocs.size() && 766 "Too many regs for number of args"); 767 768 // Coerce into outgoing value types before register assignment. 769 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 770 assert(Args[i].OrigRegs.size() == 1); 771 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 772 ValTy, extendOpFromFlags(Args[i].Flags[0])); 773 } 774 775 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 776 for (unsigned Part = 0; Part < NumParts; ++Part) { 777 Register ArgReg = Args[i].Regs[Part]; 778 // There should be Regs.size() ArgLocs per argument. 779 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 780 CCValAssign &VA = ArgLocs[j + Idx]; 781 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 782 783 if (VA.isMemLoc() && !Flags.isByVal()) { 784 // Individual pieces may have been spilled to the stack and others 785 // passed in registers. 786 787 // TODO: The memory size may be larger than the value we need to 788 // store. We may need to adjust the offset for big endian targets. 789 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 790 791 MachinePointerInfo MPO; 792 Register StackAddr = Handler.getStackAddress( 793 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 794 795 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 796 continue; 797 } 798 799 if (VA.isMemLoc() && Flags.isByVal()) { 800 assert(Args[i].Regs.size() == 1 && 801 "didn't expect split byval pointer"); 802 803 if (Handler.isIncomingArgumentHandler()) { 804 // We just need to copy the frame index value to the pointer. 805 MachinePointerInfo MPO; 806 Register StackAddr = Handler.getStackAddress( 807 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 808 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 809 } else { 810 // For outgoing byval arguments, insert the implicit copy byval 811 // implies, such that writes in the callee do not modify the caller's 812 // value. 813 uint64_t MemSize = Flags.getByValSize(); 814 int64_t Offset = VA.getLocMemOffset(); 815 816 MachinePointerInfo DstMPO; 817 Register StackAddr = 818 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 819 820 MachinePointerInfo SrcMPO(Args[i].OrigValue); 821 if (!Args[i].OrigValue) { 822 // We still need to accurately track the stack address space if we 823 // don't know the underlying value. 824 const LLT PtrTy = MRI.getType(StackAddr); 825 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 826 } 827 828 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 829 inferAlignFromPtrInfo(MF, DstMPO)); 830 831 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 832 inferAlignFromPtrInfo(MF, SrcMPO)); 833 834 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 835 DstMPO, DstAlign, SrcMPO, SrcAlign, 836 MemSize, VA); 837 } 838 continue; 839 } 840 841 assert(!VA.needsCustom() && "custom loc should have been handled already"); 842 843 if (i == 0 && !ThisReturnRegs.empty() && 844 Handler.isIncomingArgumentHandler() && 845 isTypeIsValidForThisReturn(ValVT)) { 846 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 847 continue; 848 } 849 850 if (Handler.isIncomingArgumentHandler()) 851 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 852 else { 853 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 854 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 855 }); 856 } 857 } 858 859 // Now that all pieces have been assigned, re-pack the register typed values 860 // into the original value typed registers. 861 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 862 // Merge the split registers into the expected larger result vregs of 863 // the original call. 864 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 865 LocTy, Args[i].Flags[0]); 866 } 867 868 j += NumParts - 1; 869 } 870 for (auto &Fn : DelayedOutgoingRegAssignments) 871 Fn(); 872 873 return true; 874 } 875 876 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 877 ArrayRef<Register> VRegs, Register DemoteReg, 878 int FI) const { 879 MachineFunction &MF = MIRBuilder.getMF(); 880 MachineRegisterInfo &MRI = MF.getRegInfo(); 881 const DataLayout &DL = MF.getDataLayout(); 882 883 SmallVector<EVT, 4> SplitVTs; 884 SmallVector<uint64_t, 4> Offsets; 885 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 886 887 assert(VRegs.size() == SplitVTs.size()); 888 889 unsigned NumValues = SplitVTs.size(); 890 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 891 Type *RetPtrTy = 892 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); 893 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); 894 895 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 896 897 for (unsigned I = 0; I < NumValues; ++I) { 898 Register Addr; 899 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 900 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 901 MRI.getType(VRegs[I]), 902 commonAlignment(BaseAlign, Offsets[I])); 903 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 904 } 905 } 906 907 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 908 ArrayRef<Register> VRegs, 909 Register DemoteReg) const { 910 MachineFunction &MF = MIRBuilder.getMF(); 911 MachineRegisterInfo &MRI = MF.getRegInfo(); 912 const DataLayout &DL = MF.getDataLayout(); 913 914 SmallVector<EVT, 4> SplitVTs; 915 SmallVector<uint64_t, 4> Offsets; 916 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 917 918 assert(VRegs.size() == SplitVTs.size()); 919 920 unsigned NumValues = SplitVTs.size(); 921 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 922 unsigned AS = DL.getAllocaAddrSpace(); 923 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL); 924 925 MachinePointerInfo PtrInfo(AS); 926 927 for (unsigned I = 0; I < NumValues; ++I) { 928 Register Addr; 929 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 930 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 931 MRI.getType(VRegs[I]), 932 commonAlignment(BaseAlign, Offsets[I])); 933 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 934 } 935 } 936 937 void CallLowering::insertSRetIncomingArgument( 938 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 939 MachineRegisterInfo &MRI, const DataLayout &DL) const { 940 unsigned AS = DL.getAllocaAddrSpace(); 941 DemoteReg = MRI.createGenericVirtualRegister( 942 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 943 944 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 945 946 SmallVector<EVT, 1> ValueVTs; 947 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 948 949 // NOTE: Assume that a pointer won't get split into more than one VT. 950 assert(ValueVTs.size() == 1); 951 952 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 953 ArgInfo::NoArgIndex); 954 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 955 DemoteArg.Flags[0].setSRet(); 956 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 957 } 958 959 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 960 const CallBase &CB, 961 CallLoweringInfo &Info) const { 962 const DataLayout &DL = MIRBuilder.getDataLayout(); 963 Type *RetTy = CB.getType(); 964 unsigned AS = DL.getAllocaAddrSpace(); 965 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 966 967 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 968 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 969 970 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 971 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 972 ArgInfo::NoArgIndex); 973 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 974 DemoteArg.Flags[0].setSRet(); 975 976 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 977 Info.DemoteStackIndex = FI; 978 Info.DemoteRegister = DemoteReg; 979 } 980 981 bool CallLowering::checkReturn(CCState &CCInfo, 982 SmallVectorImpl<BaseArgInfo> &Outs, 983 CCAssignFn *Fn) const { 984 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 985 MVT VT = MVT::getVT(Outs[I].Ty); 986 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 987 return false; 988 } 989 return true; 990 } 991 992 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 993 AttributeList Attrs, 994 SmallVectorImpl<BaseArgInfo> &Outs, 995 const DataLayout &DL) const { 996 LLVMContext &Context = RetTy->getContext(); 997 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 998 999 SmallVector<EVT, 4> SplitVTs; 1000 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 1001 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 1002 1003 for (EVT VT : SplitVTs) { 1004 unsigned NumParts = 1005 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 1006 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 1007 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 1008 1009 for (unsigned I = 0; I < NumParts; ++I) { 1010 Outs.emplace_back(PartTy, Flags); 1011 } 1012 } 1013 } 1014 1015 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 1016 const auto &F = MF.getFunction(); 1017 Type *ReturnType = F.getReturnType(); 1018 CallingConv::ID CallConv = F.getCallingConv(); 1019 1020 SmallVector<BaseArgInfo, 4> SplitArgs; 1021 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 1022 MF.getDataLayout()); 1023 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 1024 } 1025 1026 bool CallLowering::parametersInCSRMatch( 1027 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 1028 const SmallVectorImpl<CCValAssign> &OutLocs, 1029 const SmallVectorImpl<ArgInfo> &OutArgs) const { 1030 for (unsigned i = 0; i < OutLocs.size(); ++i) { 1031 const auto &ArgLoc = OutLocs[i]; 1032 // If it's not a register, it's fine. 1033 if (!ArgLoc.isRegLoc()) 1034 continue; 1035 1036 MCRegister PhysReg = ArgLoc.getLocReg(); 1037 1038 // Only look at callee-saved registers. 1039 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 1040 continue; 1041 1042 LLVM_DEBUG( 1043 dbgs() 1044 << "... Call has an argument passed in a callee-saved register.\n"); 1045 1046 // Check if it was copied from. 1047 const ArgInfo &OutInfo = OutArgs[i]; 1048 1049 if (OutInfo.Regs.size() > 1) { 1050 LLVM_DEBUG( 1051 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 1052 return false; 1053 } 1054 1055 // Check if we copy the register, walking through copies from virtual 1056 // registers. Note that getDefIgnoringCopies does not ignore copies from 1057 // physical registers. 1058 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 1059 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 1060 LLVM_DEBUG( 1061 dbgs() 1062 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1063 return false; 1064 } 1065 1066 // Got a copy. Verify that it's the same as the register we want. 1067 Register CopyRHS = RegDef->getOperand(1).getReg(); 1068 if (CopyRHS != PhysReg) { 1069 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1070 "VReg, cannot tail call.\n"); 1071 return false; 1072 } 1073 } 1074 1075 return true; 1076 } 1077 1078 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1079 MachineFunction &MF, 1080 SmallVectorImpl<ArgInfo> &InArgs, 1081 ValueAssigner &CalleeAssigner, 1082 ValueAssigner &CallerAssigner) const { 1083 const Function &F = MF.getFunction(); 1084 CallingConv::ID CalleeCC = Info.CallConv; 1085 CallingConv::ID CallerCC = F.getCallingConv(); 1086 1087 if (CallerCC == CalleeCC) 1088 return true; 1089 1090 SmallVector<CCValAssign, 16> ArgLocs1; 1091 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1092 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1093 return false; 1094 1095 SmallVector<CCValAssign, 16> ArgLocs2; 1096 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1097 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1098 return false; 1099 1100 // We need the argument locations to match up exactly. If there's more in 1101 // one than the other, then we are done. 1102 if (ArgLocs1.size() != ArgLocs2.size()) 1103 return false; 1104 1105 // Make sure that each location is passed in exactly the same way. 1106 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1107 const CCValAssign &Loc1 = ArgLocs1[i]; 1108 const CCValAssign &Loc2 = ArgLocs2[i]; 1109 1110 // We need both of them to be the same. So if one is a register and one 1111 // isn't, we're done. 1112 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1113 return false; 1114 1115 if (Loc1.isRegLoc()) { 1116 // If they don't have the same register location, we're done. 1117 if (Loc1.getLocReg() != Loc2.getLocReg()) 1118 return false; 1119 1120 // They matched, so we can move to the next ArgLoc. 1121 continue; 1122 } 1123 1124 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1125 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1126 return false; 1127 } 1128 1129 return true; 1130 } 1131 1132 LLT CallLowering::ValueHandler::getStackValueStoreType( 1133 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1134 const MVT ValVT = VA.getValVT(); 1135 if (ValVT != MVT::iPTR) { 1136 LLT ValTy(ValVT); 1137 1138 // We lost the pointeriness going through CCValAssign, so try to restore it 1139 // based on the flags. 1140 if (Flags.isPointer()) { 1141 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1142 ValTy.getScalarSizeInBits()); 1143 if (ValVT.isVector()) 1144 return LLT::vector(ValTy.getElementCount(), PtrTy); 1145 return PtrTy; 1146 } 1147 1148 return ValTy; 1149 } 1150 1151 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1152 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1153 } 1154 1155 void CallLowering::ValueHandler::copyArgumentMemory( 1156 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1157 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1158 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1159 CCValAssign &VA) const { 1160 MachineFunction &MF = MIRBuilder.getMF(); 1161 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1162 SrcPtrInfo, 1163 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1164 SrcAlign); 1165 1166 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1167 DstPtrInfo, 1168 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1169 MemSize, DstAlign); 1170 1171 const LLT PtrTy = MRI.getType(DstPtr); 1172 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1173 1174 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1175 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1176 } 1177 1178 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1179 const CCValAssign &VA, 1180 unsigned MaxSizeBits) { 1181 LLT LocTy{VA.getLocVT()}; 1182 LLT ValTy{VA.getValVT()}; 1183 1184 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1185 return ValReg; 1186 1187 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1188 if (MaxSizeBits <= ValTy.getSizeInBits()) 1189 return ValReg; 1190 LocTy = LLT::scalar(MaxSizeBits); 1191 } 1192 1193 const LLT ValRegTy = MRI.getType(ValReg); 1194 if (ValRegTy.isPointer()) { 1195 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1196 // we have to cast to do the extension. 1197 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1198 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1199 } 1200 1201 switch (VA.getLocInfo()) { 1202 default: break; 1203 case CCValAssign::Full: 1204 case CCValAssign::BCvt: 1205 // FIXME: bitconverting between vector types may or may not be a 1206 // nop in big-endian situations. 1207 return ValReg; 1208 case CCValAssign::AExt: { 1209 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1210 return MIB.getReg(0); 1211 } 1212 case CCValAssign::SExt: { 1213 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1214 MIRBuilder.buildSExt(NewReg, ValReg); 1215 return NewReg; 1216 } 1217 case CCValAssign::ZExt: { 1218 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1219 MIRBuilder.buildZExt(NewReg, ValReg); 1220 return NewReg; 1221 } 1222 } 1223 llvm_unreachable("unable to extend register"); 1224 } 1225 1226 void CallLowering::ValueAssigner::anchor() {} 1227 1228 Register CallLowering::IncomingValueHandler::buildExtensionHint( 1229 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { 1230 switch (VA.getLocInfo()) { 1231 case CCValAssign::LocInfo::ZExt: { 1232 return MIRBuilder 1233 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1234 NarrowTy.getScalarSizeInBits()) 1235 .getReg(0); 1236 } 1237 case CCValAssign::LocInfo::SExt: { 1238 return MIRBuilder 1239 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1240 NarrowTy.getScalarSizeInBits()) 1241 .getReg(0); 1242 break; 1243 } 1244 default: 1245 return SrcReg; 1246 } 1247 } 1248 1249 /// Check if we can use a basic COPY instruction between the two types. 1250 /// 1251 /// We're currently building on top of the infrastructure using MVT, which loses 1252 /// pointer information in the CCValAssign. We accept copies from physical 1253 /// registers that have been reported as integers if it's to an equivalent sized 1254 /// pointer LLT. 1255 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1256 if (SrcTy == DstTy) 1257 return true; 1258 1259 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1260 return false; 1261 1262 SrcTy = SrcTy.getScalarType(); 1263 DstTy = DstTy.getScalarType(); 1264 1265 return (SrcTy.isPointer() && DstTy.isScalar()) || 1266 (DstTy.isPointer() && SrcTy.isScalar()); 1267 } 1268 1269 void CallLowering::IncomingValueHandler::assignValueToReg( 1270 Register ValVReg, Register PhysReg, const CCValAssign &VA) { 1271 const MVT LocVT = VA.getLocVT(); 1272 const LLT LocTy(LocVT); 1273 const LLT RegTy = MRI.getType(ValVReg); 1274 1275 if (isCopyCompatibleType(RegTy, LocTy)) { 1276 MIRBuilder.buildCopy(ValVReg, PhysReg); 1277 return; 1278 } 1279 1280 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1281 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1282 MIRBuilder.buildTrunc(ValVReg, Hint); 1283 } 1284