xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision ad0acf9ef6ff219795159663dbf59116fef416db)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   if (AttrFn(Attribute::SExt))
39     Flags.setSExt();
40   if (AttrFn(Attribute::ZExt))
41     Flags.setZExt();
42   if (AttrFn(Attribute::InReg))
43     Flags.setInReg();
44   if (AttrFn(Attribute::StructRet))
45     Flags.setSRet();
46   if (AttrFn(Attribute::Nest))
47     Flags.setNest();
48   if (AttrFn(Attribute::ByVal))
49     Flags.setByVal();
50   if (AttrFn(Attribute::Preallocated))
51     Flags.setPreallocated();
52   if (AttrFn(Attribute::InAlloca))
53     Flags.setInAlloca();
54   if (AttrFn(Attribute::Returned))
55     Flags.setReturned();
56   if (AttrFn(Attribute::SwiftSelf))
57     Flags.setSwiftSelf();
58   if (AttrFn(Attribute::SwiftAsync))
59     Flags.setSwiftAsync();
60   if (AttrFn(Attribute::SwiftError))
61     Flags.setSwiftError();
62 }
63 
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65                                                      unsigned ArgIdx) const {
66   ISD::ArgFlagsTy Flags;
67   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68     return Call.paramHasAttr(ArgIdx, Attr);
69   });
70   return Flags;
71 }
72 
73 ISD::ArgFlagsTy
74 CallLowering::getAttributesForReturn(const CallBase &Call) const {
75   ISD::ArgFlagsTy Flags;
76   addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
77     return Call.hasRetAttr(Attr);
78   });
79   return Flags;
80 }
81 
82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
83                                              const AttributeList &Attrs,
84                                              unsigned OpIdx) const {
85   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
86     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
87   });
88 }
89 
90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
91                              ArrayRef<Register> ResRegs,
92                              ArrayRef<ArrayRef<Register>> ArgRegs,
93                              Register SwiftErrorVReg,
94                              std::function<unsigned()> GetCalleeReg) const {
95   CallLoweringInfo Info;
96   const DataLayout &DL = MIRBuilder.getDataLayout();
97   MachineFunction &MF = MIRBuilder.getMF();
98   MachineRegisterInfo &MRI = MF.getRegInfo();
99   bool CanBeTailCalled = CB.isTailCall() &&
100                          isInTailCallPosition(CB, MF.getTarget()) &&
101                          (MF.getFunction()
102                               .getFnAttribute("disable-tail-calls")
103                               .getValueAsString() != "true");
104 
105   CallingConv::ID CallConv = CB.getCallingConv();
106   Type *RetTy = CB.getType();
107   bool IsVarArg = CB.getFunctionType()->isVarArg();
108 
109   SmallVector<BaseArgInfo, 4> SplitArgs;
110   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
111   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
112 
113   Info.IsConvergent = CB.isConvergent();
114 
115   if (!Info.CanLowerReturn) {
116     // Callee requires sret demotion.
117     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
118 
119     // The sret demotion isn't compatible with tail-calls, since the sret
120     // argument points into the caller's stack frame.
121     CanBeTailCalled = false;
122   }
123 
124 
125   // First step is to marshall all the function's parameters into the correct
126   // physregs and memory locations. Gather the sequence of argument types that
127   // we'll pass to the assigner function.
128   unsigned i = 0;
129   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
130   for (const auto &Arg : CB.args()) {
131     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
132                     i < NumFixedArgs};
133     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
134 
135     // If we have an explicit sret argument that is an Instruction, (i.e., it
136     // might point to function-local memory), we can't meaningfully tail-call.
137     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
138       CanBeTailCalled = false;
139 
140     Info.OrigArgs.push_back(OrigArg);
141     ++i;
142   }
143 
144   // Try looking through a bitcast from one function type to another.
145   // Commonly happens with calls to objc_msgSend().
146   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
147   if (const Function *F = dyn_cast<Function>(CalleeV))
148     Info.Callee = MachineOperand::CreateGA(F, 0);
149   else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
150     // IR IFuncs and Aliases can't be forward declared (only defined), so the
151     // callee must be in the same TU and therefore we can direct-call it without
152     // worrying about it being out of range.
153     Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
154   } else
155     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
156 
157   Register ReturnHintAlignReg;
158   Align ReturnHintAlign;
159 
160   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
161 
162   if (!Info.OrigRet.Ty->isVoidTy()) {
163     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
164 
165     if (MaybeAlign Alignment = CB.getRetAlign()) {
166       if (*Alignment > Align(1)) {
167         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
168         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
169         ReturnHintAlign = *Alignment;
170       }
171     }
172   }
173 
174   auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
175   if (Bundle && CB.isIndirectCall()) {
176     Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
177     assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
178   }
179 
180   Info.CB = &CB;
181   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
182   Info.CallConv = CallConv;
183   Info.SwiftErrorVReg = SwiftErrorVReg;
184   Info.IsMustTailCall = CB.isMustTailCall();
185   Info.IsTailCall = CanBeTailCalled;
186   Info.IsVarArg = IsVarArg;
187   if (!lowerCall(MIRBuilder, Info))
188     return false;
189 
190   if (ReturnHintAlignReg && !Info.IsTailCall) {
191     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
192                                 ReturnHintAlign);
193   }
194 
195   return true;
196 }
197 
198 template <typename FuncInfoTy>
199 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
200                                const DataLayout &DL,
201                                const FuncInfoTy &FuncInfo) const {
202   auto &Flags = Arg.Flags[0];
203   const AttributeList &Attrs = FuncInfo.getAttributes();
204   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
205 
206   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
207   if (PtrTy) {
208     Flags.setPointer();
209     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
210   }
211 
212   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
213   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
214     assert(OpIdx >= AttributeList::FirstArgIndex);
215     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
216 
217     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
218     if (!ElementTy)
219       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
220     if (!ElementTy)
221       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
222     assert(ElementTy && "Must have byval, inalloca or preallocated type");
223     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
224 
225     // For ByVal, alignment should be passed from FE.  BE will guess if
226     // this info is not there but there are cases it cannot get right.
227     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
228       MemAlign = *ParamAlign;
229     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
230       MemAlign = *ParamAlign;
231     else
232       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
233   } else if (OpIdx >= AttributeList::FirstArgIndex) {
234     if (auto ParamAlign =
235             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
236       MemAlign = *ParamAlign;
237   }
238   Flags.setMemAlign(MemAlign);
239   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
240 
241   // Don't try to use the returned attribute if the argument is marked as
242   // swiftself, since it won't be passed in x0.
243   if (Flags.isSwiftSelf())
244     Flags.setReturned(false);
245 }
246 
247 template void
248 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
249                                     const DataLayout &DL,
250                                     const Function &FuncInfo) const;
251 
252 template void
253 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
254                                     const DataLayout &DL,
255                                     const CallBase &FuncInfo) const;
256 
257 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
258                                      SmallVectorImpl<ArgInfo> &SplitArgs,
259                                      const DataLayout &DL,
260                                      CallingConv::ID CallConv,
261                                      SmallVectorImpl<uint64_t> *Offsets) const {
262   LLVMContext &Ctx = OrigArg.Ty->getContext();
263 
264   SmallVector<EVT, 4> SplitVTs;
265   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
266 
267   if (SplitVTs.size() == 0)
268     return;
269 
270   if (SplitVTs.size() == 1) {
271     // No splitting to do, but we want to replace the original type (e.g. [1 x
272     // double] -> double).
273     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
274                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
275                            OrigArg.IsFixed, OrigArg.OrigValue);
276     return;
277   }
278 
279   // Create one ArgInfo for each virtual register in the original ArgInfo.
280   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
281 
282   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
283       OrigArg.Ty, CallConv, false, DL);
284   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
285     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
286     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
287                            OrigArg.Flags[0], OrigArg.IsFixed);
288     if (NeedsRegBlock)
289       SplitArgs.back().Flags[0].setInConsecutiveRegs();
290   }
291 
292   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
293 }
294 
295 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
296 static MachineInstrBuilder
297 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
298                             ArrayRef<Register> SrcRegs) {
299   MachineRegisterInfo &MRI = *B.getMRI();
300   LLT LLTy = MRI.getType(DstRegs[0]);
301   LLT PartLLT = MRI.getType(SrcRegs[0]);
302 
303   // Deal with v3s16 split into v2s16
304   LLT LCMTy = getCoverTy(LLTy, PartLLT);
305   if (LCMTy == LLTy) {
306     // Common case where no padding is needed.
307     assert(DstRegs.size() == 1);
308     return B.buildConcatVectors(DstRegs[0], SrcRegs);
309   }
310 
311   // We need to create an unmerge to the result registers, which may require
312   // widening the original value.
313   Register UnmergeSrcReg;
314   if (LCMTy != PartLLT) {
315     assert(DstRegs.size() == 1);
316     return B.buildDeleteTrailingVectorElements(
317         DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
318   } else {
319     // We don't need to widen anything if we're extracting a scalar which was
320     // promoted to a vector e.g. s8 -> v4s8 -> s8
321     assert(SrcRegs.size() == 1);
322     UnmergeSrcReg = SrcRegs[0];
323   }
324 
325   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
326 
327   SmallVector<Register, 8> PadDstRegs(NumDst);
328   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
329 
330   // Create the excess dead defs for the unmerge.
331   for (int I = DstRegs.size(); I != NumDst; ++I)
332     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
333 
334   if (PadDstRegs.size() == 1)
335     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
336   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
337 }
338 
339 /// Create a sequence of instructions to combine pieces split into register
340 /// typed values to the original IR value. \p OrigRegs contains the destination
341 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
342 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
343 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
344                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
345                               const ISD::ArgFlagsTy Flags) {
346   MachineRegisterInfo &MRI = *B.getMRI();
347 
348   if (PartLLT == LLTy) {
349     // We should have avoided introducing a new virtual register, and just
350     // directly assigned here.
351     assert(OrigRegs[0] == Regs[0]);
352     return;
353   }
354 
355   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
356       Regs.size() == 1) {
357     B.buildBitcast(OrigRegs[0], Regs[0]);
358     return;
359   }
360 
361   // A vector PartLLT needs extending to LLTy's element size.
362   // E.g. <2 x s64> = G_SEXT <2 x s32>.
363   if (PartLLT.isVector() == LLTy.isVector() &&
364       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
365       (!PartLLT.isVector() ||
366        PartLLT.getElementCount() == LLTy.getElementCount()) &&
367       OrigRegs.size() == 1 && Regs.size() == 1) {
368     Register SrcReg = Regs[0];
369 
370     LLT LocTy = MRI.getType(SrcReg);
371 
372     if (Flags.isSExt()) {
373       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
374                    .getReg(0);
375     } else if (Flags.isZExt()) {
376       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
377                    .getReg(0);
378     }
379 
380     // Sometimes pointers are passed zero extended.
381     LLT OrigTy = MRI.getType(OrigRegs[0]);
382     if (OrigTy.isPointer()) {
383       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
384       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
385       return;
386     }
387 
388     B.buildTrunc(OrigRegs[0], SrcReg);
389     return;
390   }
391 
392   if (!LLTy.isVector() && !PartLLT.isVector()) {
393     assert(OrigRegs.size() == 1);
394     LLT OrigTy = MRI.getType(OrigRegs[0]);
395 
396     unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
397     if (SrcSize == OrigTy.getSizeInBits())
398       B.buildMergeValues(OrigRegs[0], Regs);
399     else {
400       auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
401       B.buildTrunc(OrigRegs[0], Widened);
402     }
403 
404     return;
405   }
406 
407   if (PartLLT.isVector()) {
408     assert(OrigRegs.size() == 1);
409     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
410 
411     // If PartLLT is a mismatched vector in both number of elements and element
412     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
413     // have the same elt type, i.e. v4s32.
414     // TODO: Extend this coersion to element multiples other than just 2.
415     if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
416         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
417         Regs.size() == 1) {
418       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
419                       .changeElementCount(PartLLT.getElementCount() * 2);
420       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
421       PartLLT = NewTy;
422     }
423 
424     if (LLTy.getScalarType() == PartLLT.getElementType()) {
425       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
426     } else {
427       unsigned I = 0;
428       LLT GCDTy = getGCDType(LLTy, PartLLT);
429 
430       // We are both splitting a vector, and bitcasting its element types. Cast
431       // the source pieces into the appropriate number of pieces with the result
432       // element type.
433       for (Register SrcReg : CastRegs)
434         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
435       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
436     }
437 
438     return;
439   }
440 
441   assert(LLTy.isVector() && !PartLLT.isVector());
442 
443   LLT DstEltTy = LLTy.getElementType();
444 
445   // Pointer information was discarded. We'll need to coerce some register types
446   // to avoid violating type constraints.
447   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
448 
449   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
450 
451   if (DstEltTy == PartLLT) {
452     // Vector was trivially scalarized.
453 
454     if (RealDstEltTy.isPointer()) {
455       for (Register Reg : Regs)
456         MRI.setType(Reg, RealDstEltTy);
457     }
458 
459     B.buildBuildVector(OrigRegs[0], Regs);
460   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
461     // Deal with vector with 64-bit elements decomposed to 32-bit
462     // registers. Need to create intermediate 64-bit elements.
463     SmallVector<Register, 8> EltMerges;
464     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
465 
466     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
467 
468     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
469       auto Merge =
470           B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt));
471       // Fix the type in case this is really a vector of pointers.
472       MRI.setType(Merge.getReg(0), RealDstEltTy);
473       EltMerges.push_back(Merge.getReg(0));
474       Regs = Regs.drop_front(PartsPerElt);
475     }
476 
477     B.buildBuildVector(OrigRegs[0], EltMerges);
478   } else {
479     // Vector was split, and elements promoted to a wider type.
480     // FIXME: Should handle floating point promotions.
481     unsigned NumElts = LLTy.getNumElements();
482     LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
483 
484     Register BuildVec;
485     if (NumElts == Regs.size())
486       BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
487     else {
488       // Vector elements are packed in the inputs.
489       // e.g. we have a <4 x s16> but 2 x s32 in regs.
490       assert(NumElts > Regs.size());
491       LLT SrcEltTy = MRI.getType(Regs[0]);
492 
493       LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
494 
495       // Input registers contain packed elements.
496       // Determine how many elements per reg.
497       assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
498       unsigned EltPerReg =
499           (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
500 
501       SmallVector<Register, 0> BVRegs;
502       BVRegs.reserve(Regs.size() * EltPerReg);
503       for (Register R : Regs) {
504         auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
505         for (unsigned K = 0; K < EltPerReg; ++K)
506           BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
507       }
508 
509       // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
510       // for a <3 x s16> vector. We should have less than EltPerReg extra items.
511       if (BVRegs.size() > NumElts) {
512         assert((BVRegs.size() - NumElts) < EltPerReg);
513         BVRegs.truncate(NumElts);
514       }
515       BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
516     }
517     B.buildTrunc(OrigRegs[0], BuildVec);
518   }
519 }
520 
521 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
522 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
523 /// contain the type of scalar value extension if necessary.
524 ///
525 /// This is used for outgoing values (vregs to physregs)
526 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
527                             Register SrcReg, LLT SrcTy, LLT PartTy,
528                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
529   // We could just insert a regular copy, but this is unreachable at the moment.
530   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
531 
532   const TypeSize PartSize = PartTy.getSizeInBits();
533 
534   if (PartTy.isVector() == SrcTy.isVector() &&
535       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
536     assert(DstRegs.size() == 1);
537     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
538     return;
539   }
540 
541   if (SrcTy.isVector() && !PartTy.isVector() &&
542       TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
543     // Vector was scalarized, and the elements extended.
544     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
545     for (int i = 0, e = DstRegs.size(); i != e; ++i)
546       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
547     return;
548   }
549 
550   if (SrcTy.isVector() && PartTy.isVector() &&
551       PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
552       ElementCount::isKnownLT(SrcTy.getElementCount(),
553                               PartTy.getElementCount())) {
554     // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
555     Register DstReg = DstRegs.front();
556     B.buildPadVectorWithUndefElements(DstReg, SrcReg);
557     return;
558   }
559 
560   LLT GCDTy = getGCDType(SrcTy, PartTy);
561   if (GCDTy == PartTy) {
562     // If this already evenly divisible, we can create a simple unmerge.
563     B.buildUnmerge(DstRegs, SrcReg);
564     return;
565   }
566 
567   MachineRegisterInfo &MRI = *B.getMRI();
568   LLT DstTy = MRI.getType(DstRegs[0]);
569   LLT LCMTy = getCoverTy(SrcTy, PartTy);
570 
571   if (PartTy.isVector() && LCMTy == PartTy) {
572     assert(DstRegs.size() == 1);
573     B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
574     return;
575   }
576 
577   const unsigned DstSize = DstTy.getSizeInBits();
578   const unsigned SrcSize = SrcTy.getSizeInBits();
579   unsigned CoveringSize = LCMTy.getSizeInBits();
580 
581   Register UnmergeSrc = SrcReg;
582 
583   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
584     // For scalars, it's common to be able to use a simple extension.
585     if (SrcTy.isScalar() && DstTy.isScalar()) {
586       CoveringSize = alignTo(SrcSize, DstSize);
587       LLT CoverTy = LLT::scalar(CoveringSize);
588       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
589     } else {
590       // Widen to the common type.
591       // FIXME: This should respect the extend type
592       Register Undef = B.buildUndef(SrcTy).getReg(0);
593       SmallVector<Register, 8> MergeParts(1, SrcReg);
594       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
595         MergeParts.push_back(Undef);
596       UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
597     }
598   }
599 
600   if (LCMTy.isVector() && CoveringSize != SrcSize)
601     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
602 
603   B.buildUnmerge(DstRegs, UnmergeSrc);
604 }
605 
606 bool CallLowering::determineAndHandleAssignments(
607     ValueHandler &Handler, ValueAssigner &Assigner,
608     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
609     CallingConv::ID CallConv, bool IsVarArg,
610     ArrayRef<Register> ThisReturnRegs) const {
611   MachineFunction &MF = MIRBuilder.getMF();
612   const Function &F = MF.getFunction();
613   SmallVector<CCValAssign, 16> ArgLocs;
614 
615   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
616   if (!determineAssignments(Assigner, Args, CCInfo))
617     return false;
618 
619   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
620                            ThisReturnRegs);
621 }
622 
623 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
624   if (Flags.isSExt())
625     return TargetOpcode::G_SEXT;
626   if (Flags.isZExt())
627     return TargetOpcode::G_ZEXT;
628   return TargetOpcode::G_ANYEXT;
629 }
630 
631 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
632                                         SmallVectorImpl<ArgInfo> &Args,
633                                         CCState &CCInfo) const {
634   LLVMContext &Ctx = CCInfo.getContext();
635   const CallingConv::ID CallConv = CCInfo.getCallingConv();
636 
637   unsigned NumArgs = Args.size();
638   for (unsigned i = 0; i != NumArgs; ++i) {
639     EVT CurVT = EVT::getEVT(Args[i].Ty);
640 
641     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
642 
643     // If we need to split the type over multiple regs, check it's a scenario
644     // we currently support.
645     unsigned NumParts =
646         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
647 
648     if (NumParts == 1) {
649       // Try to use the register type if we couldn't assign the VT.
650       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
651                              Args[i].Flags[0], CCInfo))
652         return false;
653       continue;
654     }
655 
656     // For incoming arguments (physregs to vregs), we could have values in
657     // physregs (or memlocs) which we want to extract and copy to vregs.
658     // During this, we might have to deal with the LLT being split across
659     // multiple regs, so we have to record this information for later.
660     //
661     // If we have outgoing args, then we have the opposite case. We have a
662     // vreg with an LLT which we want to assign to a physical location, and
663     // we might have to record that the value has to be split later.
664 
665     // We're handling an incoming arg which is split over multiple regs.
666     // E.g. passing an s128 on AArch64.
667     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
668     Args[i].Flags.clear();
669 
670     for (unsigned Part = 0; Part < NumParts; ++Part) {
671       ISD::ArgFlagsTy Flags = OrigFlags;
672       if (Part == 0) {
673         Flags.setSplit();
674       } else {
675         Flags.setOrigAlign(Align(1));
676         if (Part == NumParts - 1)
677           Flags.setSplitEnd();
678       }
679 
680       Args[i].Flags.push_back(Flags);
681       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
682                              Args[i].Flags[Part], CCInfo)) {
683         // Still couldn't assign this smaller part type for some reason.
684         return false;
685       }
686     }
687   }
688 
689   return true;
690 }
691 
692 bool CallLowering::handleAssignments(ValueHandler &Handler,
693                                      SmallVectorImpl<ArgInfo> &Args,
694                                      CCState &CCInfo,
695                                      SmallVectorImpl<CCValAssign> &ArgLocs,
696                                      MachineIRBuilder &MIRBuilder,
697                                      ArrayRef<Register> ThisReturnRegs) const {
698   MachineFunction &MF = MIRBuilder.getMF();
699   MachineRegisterInfo &MRI = MF.getRegInfo();
700   const Function &F = MF.getFunction();
701   const DataLayout &DL = F.getParent()->getDataLayout();
702 
703   const unsigned NumArgs = Args.size();
704 
705   // Stores thunks for outgoing register assignments. This is used so we delay
706   // generating register copies until mem loc assignments are done. We do this
707   // so that if the target is using the delayed stack protector feature, we can
708   // find the split point of the block accurately. E.g. if we have:
709   // G_STORE %val, %memloc
710   // $x0 = COPY %foo
711   // $x1 = COPY %bar
712   // CALL func
713   // ... then the split point for the block will correctly be at, and including,
714   // the copy to $x0. If instead the G_STORE instruction immediately precedes
715   // the CALL, then we'd prematurely choose the CALL as the split point, thus
716   // generating a split block with a CALL that uses undefined physregs.
717   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
718 
719   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
720     assert(j < ArgLocs.size() && "Skipped too many arg locs");
721     CCValAssign &VA = ArgLocs[j];
722     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
723 
724     if (VA.needsCustom()) {
725       std::function<void()> Thunk;
726       unsigned NumArgRegs = Handler.assignCustomValue(
727           Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
728       if (Thunk)
729         DelayedOutgoingRegAssignments.emplace_back(Thunk);
730       if (!NumArgRegs)
731         return false;
732       j += (NumArgRegs - 1);
733       continue;
734     }
735 
736     const MVT ValVT = VA.getValVT();
737     const MVT LocVT = VA.getLocVT();
738 
739     const LLT LocTy(LocVT);
740     const LLT ValTy(ValVT);
741     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
742     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
743     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
744 
745     // Expected to be multiple regs for a single incoming arg.
746     // There should be Regs.size() ArgLocs per argument.
747     // This should be the same as getNumRegistersForCallingConv
748     const unsigned NumParts = Args[i].Flags.size();
749 
750     // Now split the registers into the assigned types.
751     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
752 
753     if (NumParts != 1 || NewLLT != OrigTy) {
754       // If we can't directly assign the register, we need one or more
755       // intermediate values.
756       Args[i].Regs.resize(NumParts);
757 
758       // For each split register, create and assign a vreg that will store
759       // the incoming component of the larger value. These will later be
760       // merged to form the final vreg.
761       for (unsigned Part = 0; Part < NumParts; ++Part)
762         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
763     }
764 
765     assert((j + (NumParts - 1)) < ArgLocs.size() &&
766            "Too many regs for number of args");
767 
768     // Coerce into outgoing value types before register assignment.
769     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
770       assert(Args[i].OrigRegs.size() == 1);
771       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
772                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
773     }
774 
775     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
776     for (unsigned Part = 0; Part < NumParts; ++Part) {
777       Register ArgReg = Args[i].Regs[Part];
778       // There should be Regs.size() ArgLocs per argument.
779       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
780       CCValAssign &VA = ArgLocs[j + Idx];
781       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
782 
783       if (VA.isMemLoc() && !Flags.isByVal()) {
784         // Individual pieces may have been spilled to the stack and others
785         // passed in registers.
786 
787         // TODO: The memory size may be larger than the value we need to
788         // store. We may need to adjust the offset for big endian targets.
789         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
790 
791         MachinePointerInfo MPO;
792         Register StackAddr = Handler.getStackAddress(
793             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
794 
795         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
796         continue;
797       }
798 
799       if (VA.isMemLoc() && Flags.isByVal()) {
800         assert(Args[i].Regs.size() == 1 &&
801                "didn't expect split byval pointer");
802 
803         if (Handler.isIncomingArgumentHandler()) {
804           // We just need to copy the frame index value to the pointer.
805           MachinePointerInfo MPO;
806           Register StackAddr = Handler.getStackAddress(
807               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
808           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
809         } else {
810           // For outgoing byval arguments, insert the implicit copy byval
811           // implies, such that writes in the callee do not modify the caller's
812           // value.
813           uint64_t MemSize = Flags.getByValSize();
814           int64_t Offset = VA.getLocMemOffset();
815 
816           MachinePointerInfo DstMPO;
817           Register StackAddr =
818               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
819 
820           MachinePointerInfo SrcMPO(Args[i].OrigValue);
821           if (!Args[i].OrigValue) {
822             // We still need to accurately track the stack address space if we
823             // don't know the underlying value.
824             const LLT PtrTy = MRI.getType(StackAddr);
825             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
826           }
827 
828           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
829                                     inferAlignFromPtrInfo(MF, DstMPO));
830 
831           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
832                                     inferAlignFromPtrInfo(MF, SrcMPO));
833 
834           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
835                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
836                                      MemSize, VA);
837         }
838         continue;
839       }
840 
841       assert(!VA.needsCustom() && "custom loc should have been handled already");
842 
843       if (i == 0 && !ThisReturnRegs.empty() &&
844           Handler.isIncomingArgumentHandler() &&
845           isTypeIsValidForThisReturn(ValVT)) {
846         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
847         continue;
848       }
849 
850       if (Handler.isIncomingArgumentHandler())
851         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
852       else {
853         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
854           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
855         });
856       }
857     }
858 
859     // Now that all pieces have been assigned, re-pack the register typed values
860     // into the original value typed registers.
861     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
862       // Merge the split registers into the expected larger result vregs of
863       // the original call.
864       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
865                         LocTy, Args[i].Flags[0]);
866     }
867 
868     j += NumParts - 1;
869   }
870   for (auto &Fn : DelayedOutgoingRegAssignments)
871     Fn();
872 
873   return true;
874 }
875 
876 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
877                                    ArrayRef<Register> VRegs, Register DemoteReg,
878                                    int FI) const {
879   MachineFunction &MF = MIRBuilder.getMF();
880   MachineRegisterInfo &MRI = MF.getRegInfo();
881   const DataLayout &DL = MF.getDataLayout();
882 
883   SmallVector<EVT, 4> SplitVTs;
884   SmallVector<uint64_t, 4> Offsets;
885   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
886 
887   assert(VRegs.size() == SplitVTs.size());
888 
889   unsigned NumValues = SplitVTs.size();
890   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
891   Type *RetPtrTy =
892       PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
893   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
894 
895   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
896 
897   for (unsigned I = 0; I < NumValues; ++I) {
898     Register Addr;
899     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
900     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
901                                         MRI.getType(VRegs[I]),
902                                         commonAlignment(BaseAlign, Offsets[I]));
903     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
904   }
905 }
906 
907 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
908                                     ArrayRef<Register> VRegs,
909                                     Register DemoteReg) const {
910   MachineFunction &MF = MIRBuilder.getMF();
911   MachineRegisterInfo &MRI = MF.getRegInfo();
912   const DataLayout &DL = MF.getDataLayout();
913 
914   SmallVector<EVT, 4> SplitVTs;
915   SmallVector<uint64_t, 4> Offsets;
916   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
917 
918   assert(VRegs.size() == SplitVTs.size());
919 
920   unsigned NumValues = SplitVTs.size();
921   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
922   unsigned AS = DL.getAllocaAddrSpace();
923   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
924 
925   MachinePointerInfo PtrInfo(AS);
926 
927   for (unsigned I = 0; I < NumValues; ++I) {
928     Register Addr;
929     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
930     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
931                                         MRI.getType(VRegs[I]),
932                                         commonAlignment(BaseAlign, Offsets[I]));
933     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
934   }
935 }
936 
937 void CallLowering::insertSRetIncomingArgument(
938     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
939     MachineRegisterInfo &MRI, const DataLayout &DL) const {
940   unsigned AS = DL.getAllocaAddrSpace();
941   DemoteReg = MRI.createGenericVirtualRegister(
942       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
943 
944   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
945 
946   SmallVector<EVT, 1> ValueVTs;
947   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
948 
949   // NOTE: Assume that a pointer won't get split into more than one VT.
950   assert(ValueVTs.size() == 1);
951 
952   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
953                     ArgInfo::NoArgIndex);
954   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
955   DemoteArg.Flags[0].setSRet();
956   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
957 }
958 
959 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
960                                               const CallBase &CB,
961                                               CallLoweringInfo &Info) const {
962   const DataLayout &DL = MIRBuilder.getDataLayout();
963   Type *RetTy = CB.getType();
964   unsigned AS = DL.getAllocaAddrSpace();
965   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
966 
967   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
968       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
969 
970   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
971   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
972                     ArgInfo::NoArgIndex);
973   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
974   DemoteArg.Flags[0].setSRet();
975 
976   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
977   Info.DemoteStackIndex = FI;
978   Info.DemoteRegister = DemoteReg;
979 }
980 
981 bool CallLowering::checkReturn(CCState &CCInfo,
982                                SmallVectorImpl<BaseArgInfo> &Outs,
983                                CCAssignFn *Fn) const {
984   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
985     MVT VT = MVT::getVT(Outs[I].Ty);
986     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
987       return false;
988   }
989   return true;
990 }
991 
992 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
993                                  AttributeList Attrs,
994                                  SmallVectorImpl<BaseArgInfo> &Outs,
995                                  const DataLayout &DL) const {
996   LLVMContext &Context = RetTy->getContext();
997   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
998 
999   SmallVector<EVT, 4> SplitVTs;
1000   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1001   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1002 
1003   for (EVT VT : SplitVTs) {
1004     unsigned NumParts =
1005         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1006     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1007     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1008 
1009     for (unsigned I = 0; I < NumParts; ++I) {
1010       Outs.emplace_back(PartTy, Flags);
1011     }
1012   }
1013 }
1014 
1015 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
1016   const auto &F = MF.getFunction();
1017   Type *ReturnType = F.getReturnType();
1018   CallingConv::ID CallConv = F.getCallingConv();
1019 
1020   SmallVector<BaseArgInfo, 4> SplitArgs;
1021   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1022                 MF.getDataLayout());
1023   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1024 }
1025 
1026 bool CallLowering::parametersInCSRMatch(
1027     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1028     const SmallVectorImpl<CCValAssign> &OutLocs,
1029     const SmallVectorImpl<ArgInfo> &OutArgs) const {
1030   for (unsigned i = 0; i < OutLocs.size(); ++i) {
1031     const auto &ArgLoc = OutLocs[i];
1032     // If it's not a register, it's fine.
1033     if (!ArgLoc.isRegLoc())
1034       continue;
1035 
1036     MCRegister PhysReg = ArgLoc.getLocReg();
1037 
1038     // Only look at callee-saved registers.
1039     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1040       continue;
1041 
1042     LLVM_DEBUG(
1043         dbgs()
1044         << "... Call has an argument passed in a callee-saved register.\n");
1045 
1046     // Check if it was copied from.
1047     const ArgInfo &OutInfo = OutArgs[i];
1048 
1049     if (OutInfo.Regs.size() > 1) {
1050       LLVM_DEBUG(
1051           dbgs() << "... Cannot handle arguments in multiple registers.\n");
1052       return false;
1053     }
1054 
1055     // Check if we copy the register, walking through copies from virtual
1056     // registers. Note that getDefIgnoringCopies does not ignore copies from
1057     // physical registers.
1058     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1059     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1060       LLVM_DEBUG(
1061           dbgs()
1062           << "... Parameter was not copied into a VReg, cannot tail call.\n");
1063       return false;
1064     }
1065 
1066     // Got a copy. Verify that it's the same as the register we want.
1067     Register CopyRHS = RegDef->getOperand(1).getReg();
1068     if (CopyRHS != PhysReg) {
1069       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1070                            "VReg, cannot tail call.\n");
1071       return false;
1072     }
1073   }
1074 
1075   return true;
1076 }
1077 
1078 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1079                                      MachineFunction &MF,
1080                                      SmallVectorImpl<ArgInfo> &InArgs,
1081                                      ValueAssigner &CalleeAssigner,
1082                                      ValueAssigner &CallerAssigner) const {
1083   const Function &F = MF.getFunction();
1084   CallingConv::ID CalleeCC = Info.CallConv;
1085   CallingConv::ID CallerCC = F.getCallingConv();
1086 
1087   if (CallerCC == CalleeCC)
1088     return true;
1089 
1090   SmallVector<CCValAssign, 16> ArgLocs1;
1091   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1092   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1093     return false;
1094 
1095   SmallVector<CCValAssign, 16> ArgLocs2;
1096   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1097   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1098     return false;
1099 
1100   // We need the argument locations to match up exactly. If there's more in
1101   // one than the other, then we are done.
1102   if (ArgLocs1.size() != ArgLocs2.size())
1103     return false;
1104 
1105   // Make sure that each location is passed in exactly the same way.
1106   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1107     const CCValAssign &Loc1 = ArgLocs1[i];
1108     const CCValAssign &Loc2 = ArgLocs2[i];
1109 
1110     // We need both of them to be the same. So if one is a register and one
1111     // isn't, we're done.
1112     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1113       return false;
1114 
1115     if (Loc1.isRegLoc()) {
1116       // If they don't have the same register location, we're done.
1117       if (Loc1.getLocReg() != Loc2.getLocReg())
1118         return false;
1119 
1120       // They matched, so we can move to the next ArgLoc.
1121       continue;
1122     }
1123 
1124     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1125     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1126       return false;
1127   }
1128 
1129   return true;
1130 }
1131 
1132 LLT CallLowering::ValueHandler::getStackValueStoreType(
1133     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1134   const MVT ValVT = VA.getValVT();
1135   if (ValVT != MVT::iPTR) {
1136     LLT ValTy(ValVT);
1137 
1138     // We lost the pointeriness going through CCValAssign, so try to restore it
1139     // based on the flags.
1140     if (Flags.isPointer()) {
1141       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1142                                ValTy.getScalarSizeInBits());
1143       if (ValVT.isVector())
1144         return LLT::vector(ValTy.getElementCount(), PtrTy);
1145       return PtrTy;
1146     }
1147 
1148     return ValTy;
1149   }
1150 
1151   unsigned AddrSpace = Flags.getPointerAddrSpace();
1152   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1153 }
1154 
1155 void CallLowering::ValueHandler::copyArgumentMemory(
1156     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1157     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1158     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1159     CCValAssign &VA) const {
1160   MachineFunction &MF = MIRBuilder.getMF();
1161   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1162       SrcPtrInfo,
1163       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1164       SrcAlign);
1165 
1166   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1167       DstPtrInfo,
1168       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1169       MemSize, DstAlign);
1170 
1171   const LLT PtrTy = MRI.getType(DstPtr);
1172   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1173 
1174   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1175   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1176 }
1177 
1178 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1179                                                     const CCValAssign &VA,
1180                                                     unsigned MaxSizeBits) {
1181   LLT LocTy{VA.getLocVT()};
1182   LLT ValTy{VA.getValVT()};
1183 
1184   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1185     return ValReg;
1186 
1187   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1188     if (MaxSizeBits <= ValTy.getSizeInBits())
1189       return ValReg;
1190     LocTy = LLT::scalar(MaxSizeBits);
1191   }
1192 
1193   const LLT ValRegTy = MRI.getType(ValReg);
1194   if (ValRegTy.isPointer()) {
1195     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1196     // we have to cast to do the extension.
1197     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1198     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1199   }
1200 
1201   switch (VA.getLocInfo()) {
1202   default: break;
1203   case CCValAssign::Full:
1204   case CCValAssign::BCvt:
1205     // FIXME: bitconverting between vector types may or may not be a
1206     // nop in big-endian situations.
1207     return ValReg;
1208   case CCValAssign::AExt: {
1209     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1210     return MIB.getReg(0);
1211   }
1212   case CCValAssign::SExt: {
1213     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1214     MIRBuilder.buildSExt(NewReg, ValReg);
1215     return NewReg;
1216   }
1217   case CCValAssign::ZExt: {
1218     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1219     MIRBuilder.buildZExt(NewReg, ValReg);
1220     return NewReg;
1221   }
1222   }
1223   llvm_unreachable("unable to extend register");
1224 }
1225 
1226 void CallLowering::ValueAssigner::anchor() {}
1227 
1228 Register CallLowering::IncomingValueHandler::buildExtensionHint(
1229     const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1230   switch (VA.getLocInfo()) {
1231   case CCValAssign::LocInfo::ZExt: {
1232     return MIRBuilder
1233         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1234                          NarrowTy.getScalarSizeInBits())
1235         .getReg(0);
1236   }
1237   case CCValAssign::LocInfo::SExt: {
1238     return MIRBuilder
1239         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1240                          NarrowTy.getScalarSizeInBits())
1241         .getReg(0);
1242     break;
1243   }
1244   default:
1245     return SrcReg;
1246   }
1247 }
1248 
1249 /// Check if we can use a basic COPY instruction between the two types.
1250 ///
1251 /// We're currently building on top of the infrastructure using MVT, which loses
1252 /// pointer information in the CCValAssign. We accept copies from physical
1253 /// registers that have been reported as integers if it's to an equivalent sized
1254 /// pointer LLT.
1255 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1256   if (SrcTy == DstTy)
1257     return true;
1258 
1259   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1260     return false;
1261 
1262   SrcTy = SrcTy.getScalarType();
1263   DstTy = DstTy.getScalarType();
1264 
1265   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1266          (DstTy.isPointer() && SrcTy.isScalar());
1267 }
1268 
1269 void CallLowering::IncomingValueHandler::assignValueToReg(
1270     Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1271   const MVT LocVT = VA.getLocVT();
1272   const LLT LocTy(LocVT);
1273   const LLT RegTy = MRI.getType(ValVReg);
1274 
1275   if (isCopyCompatibleType(RegTy, LocTy)) {
1276     MIRBuilder.buildCopy(ValVReg, PhysReg);
1277     return;
1278   }
1279 
1280   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1281   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1282   MIRBuilder.buildTrunc(ValVReg, Hint);
1283 }
1284