xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision a7bbcc4690215bebb5aa5eee75c712e5a23fd09e)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   if (AttrFn(Attribute::SExt))
39     Flags.setSExt();
40   if (AttrFn(Attribute::ZExt))
41     Flags.setZExt();
42   if (AttrFn(Attribute::InReg))
43     Flags.setInReg();
44   if (AttrFn(Attribute::StructRet))
45     Flags.setSRet();
46   if (AttrFn(Attribute::Nest))
47     Flags.setNest();
48   if (AttrFn(Attribute::ByVal))
49     Flags.setByVal();
50   if (AttrFn(Attribute::Preallocated))
51     Flags.setPreallocated();
52   if (AttrFn(Attribute::InAlloca))
53     Flags.setInAlloca();
54   if (AttrFn(Attribute::Returned))
55     Flags.setReturned();
56   if (AttrFn(Attribute::SwiftSelf))
57     Flags.setSwiftSelf();
58   if (AttrFn(Attribute::SwiftAsync))
59     Flags.setSwiftAsync();
60   if (AttrFn(Attribute::SwiftError))
61     Flags.setSwiftError();
62 }
63 
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65                                                      unsigned ArgIdx) const {
66   ISD::ArgFlagsTy Flags;
67   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68     return Call.paramHasAttr(ArgIdx, Attr);
69   });
70   return Flags;
71 }
72 
73 ISD::ArgFlagsTy
74 CallLowering::getAttributesForReturn(const CallBase &Call) const {
75   ISD::ArgFlagsTy Flags;
76   addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
77     return Call.hasRetAttr(Attr);
78   });
79   return Flags;
80 }
81 
82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
83                                              const AttributeList &Attrs,
84                                              unsigned OpIdx) const {
85   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
86     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
87   });
88 }
89 
90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
91                              ArrayRef<Register> ResRegs,
92                              ArrayRef<ArrayRef<Register>> ArgRegs,
93                              Register SwiftErrorVReg,
94                              std::function<unsigned()> GetCalleeReg) const {
95   CallLoweringInfo Info;
96   const DataLayout &DL = MIRBuilder.getDataLayout();
97   MachineFunction &MF = MIRBuilder.getMF();
98   MachineRegisterInfo &MRI = MF.getRegInfo();
99   bool CanBeTailCalled = CB.isTailCall() &&
100                          isInTailCallPosition(CB, MF.getTarget()) &&
101                          (MF.getFunction()
102                               .getFnAttribute("disable-tail-calls")
103                               .getValueAsString() != "true");
104 
105   CallingConv::ID CallConv = CB.getCallingConv();
106   Type *RetTy = CB.getType();
107   bool IsVarArg = CB.getFunctionType()->isVarArg();
108 
109   SmallVector<BaseArgInfo, 4> SplitArgs;
110   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
111   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
112 
113   Info.IsConvergent = CB.isConvergent();
114 
115   if (!Info.CanLowerReturn) {
116     // Callee requires sret demotion.
117     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
118 
119     // The sret demotion isn't compatible with tail-calls, since the sret
120     // argument points into the caller's stack frame.
121     CanBeTailCalled = false;
122   }
123 
124 
125   // First step is to marshall all the function's parameters into the correct
126   // physregs and memory locations. Gather the sequence of argument types that
127   // we'll pass to the assigner function.
128   unsigned i = 0;
129   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
130   for (const auto &Arg : CB.args()) {
131     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
132                     i < NumFixedArgs};
133     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
134 
135     // If we have an explicit sret argument that is an Instruction, (i.e., it
136     // might point to function-local memory), we can't meaningfully tail-call.
137     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
138       CanBeTailCalled = false;
139 
140     Info.OrigArgs.push_back(OrigArg);
141     ++i;
142   }
143 
144   // Try looking through a bitcast from one function type to another.
145   // Commonly happens with calls to objc_msgSend().
146   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
147   if (const Function *F = dyn_cast<Function>(CalleeV))
148     Info.Callee = MachineOperand::CreateGA(F, 0);
149   else
150     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
151 
152   Register ReturnHintAlignReg;
153   Align ReturnHintAlign;
154 
155   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
156 
157   if (!Info.OrigRet.Ty->isVoidTy()) {
158     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
159 
160     if (MaybeAlign Alignment = CB.getRetAlign()) {
161       if (*Alignment > Align(1)) {
162         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
163         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
164         ReturnHintAlign = *Alignment;
165       }
166     }
167   }
168 
169   auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
170   if (Bundle && CB.isIndirectCall()) {
171     Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
172     assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
173   }
174 
175   Info.CB = &CB;
176   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
177   Info.CallConv = CallConv;
178   Info.SwiftErrorVReg = SwiftErrorVReg;
179   Info.IsMustTailCall = CB.isMustTailCall();
180   Info.IsTailCall = CanBeTailCalled;
181   Info.IsVarArg = IsVarArg;
182   if (!lowerCall(MIRBuilder, Info))
183     return false;
184 
185   if (ReturnHintAlignReg && !Info.IsTailCall) {
186     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
187                                 ReturnHintAlign);
188   }
189 
190   return true;
191 }
192 
193 template <typename FuncInfoTy>
194 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
195                                const DataLayout &DL,
196                                const FuncInfoTy &FuncInfo) const {
197   auto &Flags = Arg.Flags[0];
198   const AttributeList &Attrs = FuncInfo.getAttributes();
199   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
200 
201   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
202   if (PtrTy) {
203     Flags.setPointer();
204     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
205   }
206 
207   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
208   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
209     assert(OpIdx >= AttributeList::FirstArgIndex);
210     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
211 
212     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
213     if (!ElementTy)
214       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
215     if (!ElementTy)
216       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
217     assert(ElementTy && "Must have byval, inalloca or preallocated type");
218     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
219 
220     // For ByVal, alignment should be passed from FE.  BE will guess if
221     // this info is not there but there are cases it cannot get right.
222     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
223       MemAlign = *ParamAlign;
224     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
225       MemAlign = *ParamAlign;
226     else
227       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
228   } else if (OpIdx >= AttributeList::FirstArgIndex) {
229     if (auto ParamAlign =
230             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
231       MemAlign = *ParamAlign;
232   }
233   Flags.setMemAlign(MemAlign);
234   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
235 
236   // Don't try to use the returned attribute if the argument is marked as
237   // swiftself, since it won't be passed in x0.
238   if (Flags.isSwiftSelf())
239     Flags.setReturned(false);
240 }
241 
242 template void
243 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
244                                     const DataLayout &DL,
245                                     const Function &FuncInfo) const;
246 
247 template void
248 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
249                                     const DataLayout &DL,
250                                     const CallBase &FuncInfo) const;
251 
252 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
253                                      SmallVectorImpl<ArgInfo> &SplitArgs,
254                                      const DataLayout &DL,
255                                      CallingConv::ID CallConv,
256                                      SmallVectorImpl<uint64_t> *Offsets) const {
257   LLVMContext &Ctx = OrigArg.Ty->getContext();
258 
259   SmallVector<EVT, 4> SplitVTs;
260   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
261 
262   if (SplitVTs.size() == 0)
263     return;
264 
265   if (SplitVTs.size() == 1) {
266     // No splitting to do, but we want to replace the original type (e.g. [1 x
267     // double] -> double).
268     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
269                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
270                            OrigArg.IsFixed, OrigArg.OrigValue);
271     return;
272   }
273 
274   // Create one ArgInfo for each virtual register in the original ArgInfo.
275   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
276 
277   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
278       OrigArg.Ty, CallConv, false, DL);
279   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
280     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
281     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
282                            OrigArg.Flags[0], OrigArg.IsFixed);
283     if (NeedsRegBlock)
284       SplitArgs.back().Flags[0].setInConsecutiveRegs();
285   }
286 
287   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
288 }
289 
290 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
291 static MachineInstrBuilder
292 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
293                             ArrayRef<Register> SrcRegs) {
294   MachineRegisterInfo &MRI = *B.getMRI();
295   LLT LLTy = MRI.getType(DstRegs[0]);
296   LLT PartLLT = MRI.getType(SrcRegs[0]);
297 
298   // Deal with v3s16 split into v2s16
299   LLT LCMTy = getCoverTy(LLTy, PartLLT);
300   if (LCMTy == LLTy) {
301     // Common case where no padding is needed.
302     assert(DstRegs.size() == 1);
303     return B.buildConcatVectors(DstRegs[0], SrcRegs);
304   }
305 
306   // We need to create an unmerge to the result registers, which may require
307   // widening the original value.
308   Register UnmergeSrcReg;
309   if (LCMTy != PartLLT) {
310     assert(DstRegs.size() == 1);
311     return B.buildDeleteTrailingVectorElements(
312         DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
313   } else {
314     // We don't need to widen anything if we're extracting a scalar which was
315     // promoted to a vector e.g. s8 -> v4s8 -> s8
316     assert(SrcRegs.size() == 1);
317     UnmergeSrcReg = SrcRegs[0];
318   }
319 
320   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
321 
322   SmallVector<Register, 8> PadDstRegs(NumDst);
323   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
324 
325   // Create the excess dead defs for the unmerge.
326   for (int I = DstRegs.size(); I != NumDst; ++I)
327     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
328 
329   if (PadDstRegs.size() == 1)
330     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
331   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
332 }
333 
334 /// Create a sequence of instructions to combine pieces split into register
335 /// typed values to the original IR value. \p OrigRegs contains the destination
336 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
337 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
338 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
339                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
340                               const ISD::ArgFlagsTy Flags) {
341   MachineRegisterInfo &MRI = *B.getMRI();
342 
343   if (PartLLT == LLTy) {
344     // We should have avoided introducing a new virtual register, and just
345     // directly assigned here.
346     assert(OrigRegs[0] == Regs[0]);
347     return;
348   }
349 
350   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
351       Regs.size() == 1) {
352     B.buildBitcast(OrigRegs[0], Regs[0]);
353     return;
354   }
355 
356   // A vector PartLLT needs extending to LLTy's element size.
357   // E.g. <2 x s64> = G_SEXT <2 x s32>.
358   if (PartLLT.isVector() == LLTy.isVector() &&
359       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
360       (!PartLLT.isVector() ||
361        PartLLT.getElementCount() == LLTy.getElementCount()) &&
362       OrigRegs.size() == 1 && Regs.size() == 1) {
363     Register SrcReg = Regs[0];
364 
365     LLT LocTy = MRI.getType(SrcReg);
366 
367     if (Flags.isSExt()) {
368       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
369                    .getReg(0);
370     } else if (Flags.isZExt()) {
371       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
372                    .getReg(0);
373     }
374 
375     // Sometimes pointers are passed zero extended.
376     LLT OrigTy = MRI.getType(OrigRegs[0]);
377     if (OrigTy.isPointer()) {
378       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
379       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
380       return;
381     }
382 
383     B.buildTrunc(OrigRegs[0], SrcReg);
384     return;
385   }
386 
387   if (!LLTy.isVector() && !PartLLT.isVector()) {
388     assert(OrigRegs.size() == 1);
389     LLT OrigTy = MRI.getType(OrigRegs[0]);
390 
391     unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
392     if (SrcSize == OrigTy.getSizeInBits())
393       B.buildMergeValues(OrigRegs[0], Regs);
394     else {
395       auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
396       B.buildTrunc(OrigRegs[0], Widened);
397     }
398 
399     return;
400   }
401 
402   if (PartLLT.isVector()) {
403     assert(OrigRegs.size() == 1);
404     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
405 
406     // If PartLLT is a mismatched vector in both number of elements and element
407     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
408     // have the same elt type, i.e. v4s32.
409     // TODO: Extend this coersion to element multiples other than just 2.
410     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
411         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
412         Regs.size() == 1) {
413       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
414                       .changeElementCount(PartLLT.getElementCount() * 2);
415       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
416       PartLLT = NewTy;
417     }
418 
419     if (LLTy.getScalarType() == PartLLT.getElementType()) {
420       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
421     } else {
422       unsigned I = 0;
423       LLT GCDTy = getGCDType(LLTy, PartLLT);
424 
425       // We are both splitting a vector, and bitcasting its element types. Cast
426       // the source pieces into the appropriate number of pieces with the result
427       // element type.
428       for (Register SrcReg : CastRegs)
429         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
430       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
431     }
432 
433     return;
434   }
435 
436   assert(LLTy.isVector() && !PartLLT.isVector());
437 
438   LLT DstEltTy = LLTy.getElementType();
439 
440   // Pointer information was discarded. We'll need to coerce some register types
441   // to avoid violating type constraints.
442   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
443 
444   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
445 
446   if (DstEltTy == PartLLT) {
447     // Vector was trivially scalarized.
448 
449     if (RealDstEltTy.isPointer()) {
450       for (Register Reg : Regs)
451         MRI.setType(Reg, RealDstEltTy);
452     }
453 
454     B.buildBuildVector(OrigRegs[0], Regs);
455   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
456     // Deal with vector with 64-bit elements decomposed to 32-bit
457     // registers. Need to create intermediate 64-bit elements.
458     SmallVector<Register, 8> EltMerges;
459     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
460 
461     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
462 
463     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
464       auto Merge =
465           B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt));
466       // Fix the type in case this is really a vector of pointers.
467       MRI.setType(Merge.getReg(0), RealDstEltTy);
468       EltMerges.push_back(Merge.getReg(0));
469       Regs = Regs.drop_front(PartsPerElt);
470     }
471 
472     B.buildBuildVector(OrigRegs[0], EltMerges);
473   } else {
474     // Vector was split, and elements promoted to a wider type.
475     // FIXME: Should handle floating point promotions.
476     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
477     auto BV = B.buildBuildVector(BVType, Regs);
478     B.buildTrunc(OrigRegs[0], BV);
479   }
480 }
481 
482 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
483 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
484 /// contain the type of scalar value extension if necessary.
485 ///
486 /// This is used for outgoing values (vregs to physregs)
487 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
488                             Register SrcReg, LLT SrcTy, LLT PartTy,
489                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
490   // We could just insert a regular copy, but this is unreachable at the moment.
491   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
492 
493   const unsigned PartSize = PartTy.getSizeInBits();
494 
495   if (PartTy.isVector() == SrcTy.isVector() &&
496       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
497     assert(DstRegs.size() == 1);
498     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
499     return;
500   }
501 
502   if (SrcTy.isVector() && !PartTy.isVector() &&
503       PartSize > SrcTy.getElementType().getSizeInBits()) {
504     // Vector was scalarized, and the elements extended.
505     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
506     for (int i = 0, e = DstRegs.size(); i != e; ++i)
507       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
508     return;
509   }
510 
511   if (SrcTy.isVector() && PartTy.isVector() &&
512       PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() &&
513       SrcTy.getNumElements() < PartTy.getNumElements()) {
514     // A coercion like: v2f32 -> v4f32.
515     Register DstReg = DstRegs.front();
516     B.buildPadVectorWithUndefElements(DstReg, SrcReg);
517     return;
518   }
519 
520   LLT GCDTy = getGCDType(SrcTy, PartTy);
521   if (GCDTy == PartTy) {
522     // If this already evenly divisible, we can create a simple unmerge.
523     B.buildUnmerge(DstRegs, SrcReg);
524     return;
525   }
526 
527   MachineRegisterInfo &MRI = *B.getMRI();
528   LLT DstTy = MRI.getType(DstRegs[0]);
529   LLT LCMTy = getCoverTy(SrcTy, PartTy);
530 
531   if (PartTy.isVector() && LCMTy == PartTy) {
532     assert(DstRegs.size() == 1);
533     B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
534     return;
535   }
536 
537   const unsigned DstSize = DstTy.getSizeInBits();
538   const unsigned SrcSize = SrcTy.getSizeInBits();
539   unsigned CoveringSize = LCMTy.getSizeInBits();
540 
541   Register UnmergeSrc = SrcReg;
542 
543   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
544     // For scalars, it's common to be able to use a simple extension.
545     if (SrcTy.isScalar() && DstTy.isScalar()) {
546       CoveringSize = alignTo(SrcSize, DstSize);
547       LLT CoverTy = LLT::scalar(CoveringSize);
548       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
549     } else {
550       // Widen to the common type.
551       // FIXME: This should respect the extend type
552       Register Undef = B.buildUndef(SrcTy).getReg(0);
553       SmallVector<Register, 8> MergeParts(1, SrcReg);
554       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
555         MergeParts.push_back(Undef);
556       UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
557     }
558   }
559 
560   if (LCMTy.isVector() && CoveringSize != SrcSize)
561     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
562 
563   B.buildUnmerge(DstRegs, UnmergeSrc);
564 }
565 
566 bool CallLowering::determineAndHandleAssignments(
567     ValueHandler &Handler, ValueAssigner &Assigner,
568     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
569     CallingConv::ID CallConv, bool IsVarArg,
570     ArrayRef<Register> ThisReturnRegs) const {
571   MachineFunction &MF = MIRBuilder.getMF();
572   const Function &F = MF.getFunction();
573   SmallVector<CCValAssign, 16> ArgLocs;
574 
575   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
576   if (!determineAssignments(Assigner, Args, CCInfo))
577     return false;
578 
579   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
580                            ThisReturnRegs);
581 }
582 
583 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
584   if (Flags.isSExt())
585     return TargetOpcode::G_SEXT;
586   if (Flags.isZExt())
587     return TargetOpcode::G_ZEXT;
588   return TargetOpcode::G_ANYEXT;
589 }
590 
591 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
592                                         SmallVectorImpl<ArgInfo> &Args,
593                                         CCState &CCInfo) const {
594   LLVMContext &Ctx = CCInfo.getContext();
595   const CallingConv::ID CallConv = CCInfo.getCallingConv();
596 
597   unsigned NumArgs = Args.size();
598   for (unsigned i = 0; i != NumArgs; ++i) {
599     EVT CurVT = EVT::getEVT(Args[i].Ty);
600 
601     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
602 
603     // If we need to split the type over multiple regs, check it's a scenario
604     // we currently support.
605     unsigned NumParts =
606         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
607 
608     if (NumParts == 1) {
609       // Try to use the register type if we couldn't assign the VT.
610       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
611                              Args[i].Flags[0], CCInfo))
612         return false;
613       continue;
614     }
615 
616     // For incoming arguments (physregs to vregs), we could have values in
617     // physregs (or memlocs) which we want to extract and copy to vregs.
618     // During this, we might have to deal with the LLT being split across
619     // multiple regs, so we have to record this information for later.
620     //
621     // If we have outgoing args, then we have the opposite case. We have a
622     // vreg with an LLT which we want to assign to a physical location, and
623     // we might have to record that the value has to be split later.
624 
625     // We're handling an incoming arg which is split over multiple regs.
626     // E.g. passing an s128 on AArch64.
627     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
628     Args[i].Flags.clear();
629 
630     for (unsigned Part = 0; Part < NumParts; ++Part) {
631       ISD::ArgFlagsTy Flags = OrigFlags;
632       if (Part == 0) {
633         Flags.setSplit();
634       } else {
635         Flags.setOrigAlign(Align(1));
636         if (Part == NumParts - 1)
637           Flags.setSplitEnd();
638       }
639 
640       Args[i].Flags.push_back(Flags);
641       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
642                              Args[i].Flags[Part], CCInfo)) {
643         // Still couldn't assign this smaller part type for some reason.
644         return false;
645       }
646     }
647   }
648 
649   return true;
650 }
651 
652 bool CallLowering::handleAssignments(ValueHandler &Handler,
653                                      SmallVectorImpl<ArgInfo> &Args,
654                                      CCState &CCInfo,
655                                      SmallVectorImpl<CCValAssign> &ArgLocs,
656                                      MachineIRBuilder &MIRBuilder,
657                                      ArrayRef<Register> ThisReturnRegs) const {
658   MachineFunction &MF = MIRBuilder.getMF();
659   MachineRegisterInfo &MRI = MF.getRegInfo();
660   const Function &F = MF.getFunction();
661   const DataLayout &DL = F.getParent()->getDataLayout();
662 
663   const unsigned NumArgs = Args.size();
664 
665   // Stores thunks for outgoing register assignments. This is used so we delay
666   // generating register copies until mem loc assignments are done. We do this
667   // so that if the target is using the delayed stack protector feature, we can
668   // find the split point of the block accurately. E.g. if we have:
669   // G_STORE %val, %memloc
670   // $x0 = COPY %foo
671   // $x1 = COPY %bar
672   // CALL func
673   // ... then the split point for the block will correctly be at, and including,
674   // the copy to $x0. If instead the G_STORE instruction immediately precedes
675   // the CALL, then we'd prematurely choose the CALL as the split point, thus
676   // generating a split block with a CALL that uses undefined physregs.
677   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
678 
679   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
680     assert(j < ArgLocs.size() && "Skipped too many arg locs");
681     CCValAssign &VA = ArgLocs[j];
682     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
683 
684     if (VA.needsCustom()) {
685       std::function<void()> Thunk;
686       unsigned NumArgRegs = Handler.assignCustomValue(
687           Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
688       if (Thunk)
689         DelayedOutgoingRegAssignments.emplace_back(Thunk);
690       if (!NumArgRegs)
691         return false;
692       j += NumArgRegs;
693       continue;
694     }
695 
696     const MVT ValVT = VA.getValVT();
697     const MVT LocVT = VA.getLocVT();
698 
699     const LLT LocTy(LocVT);
700     const LLT ValTy(ValVT);
701     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
702     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
703     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
704 
705     // Expected to be multiple regs for a single incoming arg.
706     // There should be Regs.size() ArgLocs per argument.
707     // This should be the same as getNumRegistersForCallingConv
708     const unsigned NumParts = Args[i].Flags.size();
709 
710     // Now split the registers into the assigned types.
711     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
712 
713     if (NumParts != 1 || NewLLT != OrigTy) {
714       // If we can't directly assign the register, we need one or more
715       // intermediate values.
716       Args[i].Regs.resize(NumParts);
717 
718       // For each split register, create and assign a vreg that will store
719       // the incoming component of the larger value. These will later be
720       // merged to form the final vreg.
721       for (unsigned Part = 0; Part < NumParts; ++Part)
722         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
723     }
724 
725     assert((j + (NumParts - 1)) < ArgLocs.size() &&
726            "Too many regs for number of args");
727 
728     // Coerce into outgoing value types before register assignment.
729     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
730       assert(Args[i].OrigRegs.size() == 1);
731       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
732                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
733     }
734 
735     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
736     for (unsigned Part = 0; Part < NumParts; ++Part) {
737       Register ArgReg = Args[i].Regs[Part];
738       // There should be Regs.size() ArgLocs per argument.
739       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
740       CCValAssign &VA = ArgLocs[j + Idx];
741       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
742 
743       if (VA.isMemLoc() && !Flags.isByVal()) {
744         // Individual pieces may have been spilled to the stack and others
745         // passed in registers.
746 
747         // TODO: The memory size may be larger than the value we need to
748         // store. We may need to adjust the offset for big endian targets.
749         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
750 
751         MachinePointerInfo MPO;
752         Register StackAddr = Handler.getStackAddress(
753             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
754 
755         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
756         continue;
757       }
758 
759       if (VA.isMemLoc() && Flags.isByVal()) {
760         assert(Args[i].Regs.size() == 1 &&
761                "didn't expect split byval pointer");
762 
763         if (Handler.isIncomingArgumentHandler()) {
764           // We just need to copy the frame index value to the pointer.
765           MachinePointerInfo MPO;
766           Register StackAddr = Handler.getStackAddress(
767               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
768           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
769         } else {
770           // For outgoing byval arguments, insert the implicit copy byval
771           // implies, such that writes in the callee do not modify the caller's
772           // value.
773           uint64_t MemSize = Flags.getByValSize();
774           int64_t Offset = VA.getLocMemOffset();
775 
776           MachinePointerInfo DstMPO;
777           Register StackAddr =
778               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
779 
780           MachinePointerInfo SrcMPO(Args[i].OrigValue);
781           if (!Args[i].OrigValue) {
782             // We still need to accurately track the stack address space if we
783             // don't know the underlying value.
784             const LLT PtrTy = MRI.getType(StackAddr);
785             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
786           }
787 
788           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
789                                     inferAlignFromPtrInfo(MF, DstMPO));
790 
791           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
792                                     inferAlignFromPtrInfo(MF, SrcMPO));
793 
794           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
795                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
796                                      MemSize, VA);
797         }
798         continue;
799       }
800 
801       assert(!VA.needsCustom() && "custom loc should have been handled already");
802 
803       if (i == 0 && !ThisReturnRegs.empty() &&
804           Handler.isIncomingArgumentHandler() &&
805           isTypeIsValidForThisReturn(ValVT)) {
806         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
807         continue;
808       }
809 
810       if (Handler.isIncomingArgumentHandler())
811         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
812       else {
813         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
814           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
815         });
816       }
817     }
818 
819     // Now that all pieces have been assigned, re-pack the register typed values
820     // into the original value typed registers.
821     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
822       // Merge the split registers into the expected larger result vregs of
823       // the original call.
824       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
825                         LocTy, Args[i].Flags[0]);
826     }
827 
828     j += NumParts - 1;
829   }
830   for (auto &Fn : DelayedOutgoingRegAssignments)
831     Fn();
832 
833   return true;
834 }
835 
836 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
837                                    ArrayRef<Register> VRegs, Register DemoteReg,
838                                    int FI) const {
839   MachineFunction &MF = MIRBuilder.getMF();
840   MachineRegisterInfo &MRI = MF.getRegInfo();
841   const DataLayout &DL = MF.getDataLayout();
842 
843   SmallVector<EVT, 4> SplitVTs;
844   SmallVector<uint64_t, 4> Offsets;
845   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
846 
847   assert(VRegs.size() == SplitVTs.size());
848 
849   unsigned NumValues = SplitVTs.size();
850   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
851   Type *RetPtrTy =
852       PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
853   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
854 
855   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
856 
857   for (unsigned I = 0; I < NumValues; ++I) {
858     Register Addr;
859     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
860     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
861                                         MRI.getType(VRegs[I]),
862                                         commonAlignment(BaseAlign, Offsets[I]));
863     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
864   }
865 }
866 
867 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
868                                     ArrayRef<Register> VRegs,
869                                     Register DemoteReg) const {
870   MachineFunction &MF = MIRBuilder.getMF();
871   MachineRegisterInfo &MRI = MF.getRegInfo();
872   const DataLayout &DL = MF.getDataLayout();
873 
874   SmallVector<EVT, 4> SplitVTs;
875   SmallVector<uint64_t, 4> Offsets;
876   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
877 
878   assert(VRegs.size() == SplitVTs.size());
879 
880   unsigned NumValues = SplitVTs.size();
881   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
882   unsigned AS = DL.getAllocaAddrSpace();
883   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
884 
885   MachinePointerInfo PtrInfo(AS);
886 
887   for (unsigned I = 0; I < NumValues; ++I) {
888     Register Addr;
889     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
890     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
891                                         MRI.getType(VRegs[I]),
892                                         commonAlignment(BaseAlign, Offsets[I]));
893     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
894   }
895 }
896 
897 void CallLowering::insertSRetIncomingArgument(
898     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
899     MachineRegisterInfo &MRI, const DataLayout &DL) const {
900   unsigned AS = DL.getAllocaAddrSpace();
901   DemoteReg = MRI.createGenericVirtualRegister(
902       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
903 
904   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
905 
906   SmallVector<EVT, 1> ValueVTs;
907   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
908 
909   // NOTE: Assume that a pointer won't get split into more than one VT.
910   assert(ValueVTs.size() == 1);
911 
912   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
913                     ArgInfo::NoArgIndex);
914   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
915   DemoteArg.Flags[0].setSRet();
916   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
917 }
918 
919 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
920                                               const CallBase &CB,
921                                               CallLoweringInfo &Info) const {
922   const DataLayout &DL = MIRBuilder.getDataLayout();
923   Type *RetTy = CB.getType();
924   unsigned AS = DL.getAllocaAddrSpace();
925   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
926 
927   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
928       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
929 
930   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
931   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
932                     ArgInfo::NoArgIndex);
933   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
934   DemoteArg.Flags[0].setSRet();
935 
936   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
937   Info.DemoteStackIndex = FI;
938   Info.DemoteRegister = DemoteReg;
939 }
940 
941 bool CallLowering::checkReturn(CCState &CCInfo,
942                                SmallVectorImpl<BaseArgInfo> &Outs,
943                                CCAssignFn *Fn) const {
944   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
945     MVT VT = MVT::getVT(Outs[I].Ty);
946     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
947       return false;
948   }
949   return true;
950 }
951 
952 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
953                                  AttributeList Attrs,
954                                  SmallVectorImpl<BaseArgInfo> &Outs,
955                                  const DataLayout &DL) const {
956   LLVMContext &Context = RetTy->getContext();
957   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
958 
959   SmallVector<EVT, 4> SplitVTs;
960   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
961   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
962 
963   for (EVT VT : SplitVTs) {
964     unsigned NumParts =
965         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
966     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
967     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
968 
969     for (unsigned I = 0; I < NumParts; ++I) {
970       Outs.emplace_back(PartTy, Flags);
971     }
972   }
973 }
974 
975 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
976   const auto &F = MF.getFunction();
977   Type *ReturnType = F.getReturnType();
978   CallingConv::ID CallConv = F.getCallingConv();
979 
980   SmallVector<BaseArgInfo, 4> SplitArgs;
981   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
982                 MF.getDataLayout());
983   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
984 }
985 
986 bool CallLowering::parametersInCSRMatch(
987     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
988     const SmallVectorImpl<CCValAssign> &OutLocs,
989     const SmallVectorImpl<ArgInfo> &OutArgs) const {
990   for (unsigned i = 0; i < OutLocs.size(); ++i) {
991     const auto &ArgLoc = OutLocs[i];
992     // If it's not a register, it's fine.
993     if (!ArgLoc.isRegLoc())
994       continue;
995 
996     MCRegister PhysReg = ArgLoc.getLocReg();
997 
998     // Only look at callee-saved registers.
999     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1000       continue;
1001 
1002     LLVM_DEBUG(
1003         dbgs()
1004         << "... Call has an argument passed in a callee-saved register.\n");
1005 
1006     // Check if it was copied from.
1007     const ArgInfo &OutInfo = OutArgs[i];
1008 
1009     if (OutInfo.Regs.size() > 1) {
1010       LLVM_DEBUG(
1011           dbgs() << "... Cannot handle arguments in multiple registers.\n");
1012       return false;
1013     }
1014 
1015     // Check if we copy the register, walking through copies from virtual
1016     // registers. Note that getDefIgnoringCopies does not ignore copies from
1017     // physical registers.
1018     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1019     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1020       LLVM_DEBUG(
1021           dbgs()
1022           << "... Parameter was not copied into a VReg, cannot tail call.\n");
1023       return false;
1024     }
1025 
1026     // Got a copy. Verify that it's the same as the register we want.
1027     Register CopyRHS = RegDef->getOperand(1).getReg();
1028     if (CopyRHS != PhysReg) {
1029       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1030                            "VReg, cannot tail call.\n");
1031       return false;
1032     }
1033   }
1034 
1035   return true;
1036 }
1037 
1038 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1039                                      MachineFunction &MF,
1040                                      SmallVectorImpl<ArgInfo> &InArgs,
1041                                      ValueAssigner &CalleeAssigner,
1042                                      ValueAssigner &CallerAssigner) const {
1043   const Function &F = MF.getFunction();
1044   CallingConv::ID CalleeCC = Info.CallConv;
1045   CallingConv::ID CallerCC = F.getCallingConv();
1046 
1047   if (CallerCC == CalleeCC)
1048     return true;
1049 
1050   SmallVector<CCValAssign, 16> ArgLocs1;
1051   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1052   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1053     return false;
1054 
1055   SmallVector<CCValAssign, 16> ArgLocs2;
1056   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1057   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1058     return false;
1059 
1060   // We need the argument locations to match up exactly. If there's more in
1061   // one than the other, then we are done.
1062   if (ArgLocs1.size() != ArgLocs2.size())
1063     return false;
1064 
1065   // Make sure that each location is passed in exactly the same way.
1066   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1067     const CCValAssign &Loc1 = ArgLocs1[i];
1068     const CCValAssign &Loc2 = ArgLocs2[i];
1069 
1070     // We need both of them to be the same. So if one is a register and one
1071     // isn't, we're done.
1072     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1073       return false;
1074 
1075     if (Loc1.isRegLoc()) {
1076       // If they don't have the same register location, we're done.
1077       if (Loc1.getLocReg() != Loc2.getLocReg())
1078         return false;
1079 
1080       // They matched, so we can move to the next ArgLoc.
1081       continue;
1082     }
1083 
1084     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1085     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1086       return false;
1087   }
1088 
1089   return true;
1090 }
1091 
1092 LLT CallLowering::ValueHandler::getStackValueStoreType(
1093     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1094   const MVT ValVT = VA.getValVT();
1095   if (ValVT != MVT::iPTR) {
1096     LLT ValTy(ValVT);
1097 
1098     // We lost the pointeriness going through CCValAssign, so try to restore it
1099     // based on the flags.
1100     if (Flags.isPointer()) {
1101       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1102                                ValTy.getScalarSizeInBits());
1103       if (ValVT.isVector())
1104         return LLT::vector(ValTy.getElementCount(), PtrTy);
1105       return PtrTy;
1106     }
1107 
1108     return ValTy;
1109   }
1110 
1111   unsigned AddrSpace = Flags.getPointerAddrSpace();
1112   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1113 }
1114 
1115 void CallLowering::ValueHandler::copyArgumentMemory(
1116     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1117     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1118     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1119     CCValAssign &VA) const {
1120   MachineFunction &MF = MIRBuilder.getMF();
1121   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1122       SrcPtrInfo,
1123       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1124       SrcAlign);
1125 
1126   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1127       DstPtrInfo,
1128       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1129       MemSize, DstAlign);
1130 
1131   const LLT PtrTy = MRI.getType(DstPtr);
1132   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1133 
1134   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1135   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1136 }
1137 
1138 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1139                                                     const CCValAssign &VA,
1140                                                     unsigned MaxSizeBits) {
1141   LLT LocTy{VA.getLocVT()};
1142   LLT ValTy{VA.getValVT()};
1143 
1144   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1145     return ValReg;
1146 
1147   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1148     if (MaxSizeBits <= ValTy.getSizeInBits())
1149       return ValReg;
1150     LocTy = LLT::scalar(MaxSizeBits);
1151   }
1152 
1153   const LLT ValRegTy = MRI.getType(ValReg);
1154   if (ValRegTy.isPointer()) {
1155     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1156     // we have to cast to do the extension.
1157     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1158     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1159   }
1160 
1161   switch (VA.getLocInfo()) {
1162   default: break;
1163   case CCValAssign::Full:
1164   case CCValAssign::BCvt:
1165     // FIXME: bitconverting between vector types may or may not be a
1166     // nop in big-endian situations.
1167     return ValReg;
1168   case CCValAssign::AExt: {
1169     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1170     return MIB.getReg(0);
1171   }
1172   case CCValAssign::SExt: {
1173     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1174     MIRBuilder.buildSExt(NewReg, ValReg);
1175     return NewReg;
1176   }
1177   case CCValAssign::ZExt: {
1178     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1179     MIRBuilder.buildZExt(NewReg, ValReg);
1180     return NewReg;
1181   }
1182   }
1183   llvm_unreachable("unable to extend register");
1184 }
1185 
1186 void CallLowering::ValueAssigner::anchor() {}
1187 
1188 Register CallLowering::IncomingValueHandler::buildExtensionHint(
1189     const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1190   switch (VA.getLocInfo()) {
1191   case CCValAssign::LocInfo::ZExt: {
1192     return MIRBuilder
1193         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1194                          NarrowTy.getScalarSizeInBits())
1195         .getReg(0);
1196   }
1197   case CCValAssign::LocInfo::SExt: {
1198     return MIRBuilder
1199         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1200                          NarrowTy.getScalarSizeInBits())
1201         .getReg(0);
1202     break;
1203   }
1204   default:
1205     return SrcReg;
1206   }
1207 }
1208 
1209 /// Check if we can use a basic COPY instruction between the two types.
1210 ///
1211 /// We're currently building on top of the infrastructure using MVT, which loses
1212 /// pointer information in the CCValAssign. We accept copies from physical
1213 /// registers that have been reported as integers if it's to an equivalent sized
1214 /// pointer LLT.
1215 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1216   if (SrcTy == DstTy)
1217     return true;
1218 
1219   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1220     return false;
1221 
1222   SrcTy = SrcTy.getScalarType();
1223   DstTy = DstTy.getScalarType();
1224 
1225   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1226          (DstTy.isPointer() && SrcTy.isScalar());
1227 }
1228 
1229 void CallLowering::IncomingValueHandler::assignValueToReg(
1230     Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1231   const MVT LocVT = VA.getLocVT();
1232   const LLT LocTy(LocVT);
1233   const LLT RegTy = MRI.getType(ValVReg);
1234 
1235   if (isCopyCompatibleType(RegTy, LocTy)) {
1236     MIRBuilder.buildCopy(ValVReg, PhysReg);
1237     return;
1238   }
1239 
1240   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1241   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1242   MIRBuilder.buildTrunc(ValVReg, Hint);
1243 }
1244