1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "call-lowering" 29 30 using namespace llvm; 31 32 void CallLowering::anchor() {} 33 34 /// Helper function which updates \p Flags when \p AttrFn returns true. 35 static void 36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 37 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 38 if (AttrFn(Attribute::SExt)) 39 Flags.setSExt(); 40 if (AttrFn(Attribute::ZExt)) 41 Flags.setZExt(); 42 if (AttrFn(Attribute::InReg)) 43 Flags.setInReg(); 44 if (AttrFn(Attribute::StructRet)) 45 Flags.setSRet(); 46 if (AttrFn(Attribute::Nest)) 47 Flags.setNest(); 48 if (AttrFn(Attribute::ByVal)) 49 Flags.setByVal(); 50 if (AttrFn(Attribute::Preallocated)) 51 Flags.setPreallocated(); 52 if (AttrFn(Attribute::InAlloca)) 53 Flags.setInAlloca(); 54 if (AttrFn(Attribute::Returned)) 55 Flags.setReturned(); 56 if (AttrFn(Attribute::SwiftSelf)) 57 Flags.setSwiftSelf(); 58 if (AttrFn(Attribute::SwiftAsync)) 59 Flags.setSwiftAsync(); 60 if (AttrFn(Attribute::SwiftError)) 61 Flags.setSwiftError(); 62 } 63 64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 65 unsigned ArgIdx) const { 66 ISD::ArgFlagsTy Flags; 67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 68 return Call.paramHasAttr(ArgIdx, Attr); 69 }); 70 return Flags; 71 } 72 73 ISD::ArgFlagsTy 74 CallLowering::getAttributesForReturn(const CallBase &Call) const { 75 ISD::ArgFlagsTy Flags; 76 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { 77 return Call.hasRetAttr(Attr); 78 }); 79 return Flags; 80 } 81 82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 83 const AttributeList &Attrs, 84 unsigned OpIdx) const { 85 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 86 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 87 }); 88 } 89 90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 91 ArrayRef<Register> ResRegs, 92 ArrayRef<ArrayRef<Register>> ArgRegs, 93 Register SwiftErrorVReg, 94 std::function<unsigned()> GetCalleeReg) const { 95 CallLoweringInfo Info; 96 const DataLayout &DL = MIRBuilder.getDataLayout(); 97 MachineFunction &MF = MIRBuilder.getMF(); 98 MachineRegisterInfo &MRI = MF.getRegInfo(); 99 bool CanBeTailCalled = CB.isTailCall() && 100 isInTailCallPosition(CB, MF.getTarget()) && 101 (MF.getFunction() 102 .getFnAttribute("disable-tail-calls") 103 .getValueAsString() != "true"); 104 105 CallingConv::ID CallConv = CB.getCallingConv(); 106 Type *RetTy = CB.getType(); 107 bool IsVarArg = CB.getFunctionType()->isVarArg(); 108 109 SmallVector<BaseArgInfo, 4> SplitArgs; 110 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 111 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 112 113 Info.IsConvergent = CB.isConvergent(); 114 115 if (!Info.CanLowerReturn) { 116 // Callee requires sret demotion. 117 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 118 119 // The sret demotion isn't compatible with tail-calls, since the sret 120 // argument points into the caller's stack frame. 121 CanBeTailCalled = false; 122 } 123 124 125 // First step is to marshall all the function's parameters into the correct 126 // physregs and memory locations. Gather the sequence of argument types that 127 // we'll pass to the assigner function. 128 unsigned i = 0; 129 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 130 for (const auto &Arg : CB.args()) { 131 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 132 i < NumFixedArgs}; 133 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 134 135 // If we have an explicit sret argument that is an Instruction, (i.e., it 136 // might point to function-local memory), we can't meaningfully tail-call. 137 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 138 CanBeTailCalled = false; 139 140 Info.OrigArgs.push_back(OrigArg); 141 ++i; 142 } 143 144 // Try looking through a bitcast from one function type to another. 145 // Commonly happens with calls to objc_msgSend(). 146 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 147 if (const Function *F = dyn_cast<Function>(CalleeV)) 148 Info.Callee = MachineOperand::CreateGA(F, 0); 149 else 150 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 151 152 Register ReturnHintAlignReg; 153 Align ReturnHintAlign; 154 155 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; 156 157 if (!Info.OrigRet.Ty->isVoidTy()) { 158 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 159 160 if (MaybeAlign Alignment = CB.getRetAlign()) { 161 if (*Alignment > Align(1)) { 162 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 163 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 164 ReturnHintAlign = *Alignment; 165 } 166 } 167 } 168 169 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 170 if (Bundle && CB.isIndirectCall()) { 171 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 172 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 173 } 174 175 Info.CB = &CB; 176 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 177 Info.CallConv = CallConv; 178 Info.SwiftErrorVReg = SwiftErrorVReg; 179 Info.IsMustTailCall = CB.isMustTailCall(); 180 Info.IsTailCall = CanBeTailCalled; 181 Info.IsVarArg = IsVarArg; 182 if (!lowerCall(MIRBuilder, Info)) 183 return false; 184 185 if (ReturnHintAlignReg && !Info.IsTailCall) { 186 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 187 ReturnHintAlign); 188 } 189 190 return true; 191 } 192 193 template <typename FuncInfoTy> 194 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 195 const DataLayout &DL, 196 const FuncInfoTy &FuncInfo) const { 197 auto &Flags = Arg.Flags[0]; 198 const AttributeList &Attrs = FuncInfo.getAttributes(); 199 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 200 201 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 202 if (PtrTy) { 203 Flags.setPointer(); 204 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 205 } 206 207 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 208 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 209 assert(OpIdx >= AttributeList::FirstArgIndex); 210 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 211 212 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 213 if (!ElementTy) 214 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 215 if (!ElementTy) 216 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 217 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 218 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 219 220 // For ByVal, alignment should be passed from FE. BE will guess if 221 // this info is not there but there are cases it cannot get right. 222 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 223 MemAlign = *ParamAlign; 224 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 225 MemAlign = *ParamAlign; 226 else 227 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 228 } else if (OpIdx >= AttributeList::FirstArgIndex) { 229 if (auto ParamAlign = 230 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 231 MemAlign = *ParamAlign; 232 } 233 Flags.setMemAlign(MemAlign); 234 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 235 236 // Don't try to use the returned attribute if the argument is marked as 237 // swiftself, since it won't be passed in x0. 238 if (Flags.isSwiftSelf()) 239 Flags.setReturned(false); 240 } 241 242 template void 243 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 244 const DataLayout &DL, 245 const Function &FuncInfo) const; 246 247 template void 248 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 249 const DataLayout &DL, 250 const CallBase &FuncInfo) const; 251 252 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 253 SmallVectorImpl<ArgInfo> &SplitArgs, 254 const DataLayout &DL, 255 CallingConv::ID CallConv, 256 SmallVectorImpl<uint64_t> *Offsets) const { 257 LLVMContext &Ctx = OrigArg.Ty->getContext(); 258 259 SmallVector<EVT, 4> SplitVTs; 260 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 261 262 if (SplitVTs.size() == 0) 263 return; 264 265 if (SplitVTs.size() == 1) { 266 // No splitting to do, but we want to replace the original type (e.g. [1 x 267 // double] -> double). 268 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 269 OrigArg.OrigArgIndex, OrigArg.Flags[0], 270 OrigArg.IsFixed, OrigArg.OrigValue); 271 return; 272 } 273 274 // Create one ArgInfo for each virtual register in the original ArgInfo. 275 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 276 277 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 278 OrigArg.Ty, CallConv, false, DL); 279 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 280 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 281 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 282 OrigArg.Flags[0], OrigArg.IsFixed); 283 if (NeedsRegBlock) 284 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 285 } 286 287 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 288 } 289 290 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 291 static MachineInstrBuilder 292 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 293 ArrayRef<Register> SrcRegs) { 294 MachineRegisterInfo &MRI = *B.getMRI(); 295 LLT LLTy = MRI.getType(DstRegs[0]); 296 LLT PartLLT = MRI.getType(SrcRegs[0]); 297 298 // Deal with v3s16 split into v2s16 299 LLT LCMTy = getCoverTy(LLTy, PartLLT); 300 if (LCMTy == LLTy) { 301 // Common case where no padding is needed. 302 assert(DstRegs.size() == 1); 303 return B.buildConcatVectors(DstRegs[0], SrcRegs); 304 } 305 306 // We need to create an unmerge to the result registers, which may require 307 // widening the original value. 308 Register UnmergeSrcReg; 309 if (LCMTy != PartLLT) { 310 assert(DstRegs.size() == 1); 311 return B.buildDeleteTrailingVectorElements( 312 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); 313 } else { 314 // We don't need to widen anything if we're extracting a scalar which was 315 // promoted to a vector e.g. s8 -> v4s8 -> s8 316 assert(SrcRegs.size() == 1); 317 UnmergeSrcReg = SrcRegs[0]; 318 } 319 320 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 321 322 SmallVector<Register, 8> PadDstRegs(NumDst); 323 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 324 325 // Create the excess dead defs for the unmerge. 326 for (int I = DstRegs.size(); I != NumDst; ++I) 327 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 328 329 if (PadDstRegs.size() == 1) 330 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 331 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 332 } 333 334 /// Create a sequence of instructions to combine pieces split into register 335 /// typed values to the original IR value. \p OrigRegs contains the destination 336 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 337 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 338 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 339 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 340 const ISD::ArgFlagsTy Flags) { 341 MachineRegisterInfo &MRI = *B.getMRI(); 342 343 if (PartLLT == LLTy) { 344 // We should have avoided introducing a new virtual register, and just 345 // directly assigned here. 346 assert(OrigRegs[0] == Regs[0]); 347 return; 348 } 349 350 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 351 Regs.size() == 1) { 352 B.buildBitcast(OrigRegs[0], Regs[0]); 353 return; 354 } 355 356 // A vector PartLLT needs extending to LLTy's element size. 357 // E.g. <2 x s64> = G_SEXT <2 x s32>. 358 if (PartLLT.isVector() == LLTy.isVector() && 359 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 360 (!PartLLT.isVector() || 361 PartLLT.getElementCount() == LLTy.getElementCount()) && 362 OrigRegs.size() == 1 && Regs.size() == 1) { 363 Register SrcReg = Regs[0]; 364 365 LLT LocTy = MRI.getType(SrcReg); 366 367 if (Flags.isSExt()) { 368 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 369 .getReg(0); 370 } else if (Flags.isZExt()) { 371 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 372 .getReg(0); 373 } 374 375 // Sometimes pointers are passed zero extended. 376 LLT OrigTy = MRI.getType(OrigRegs[0]); 377 if (OrigTy.isPointer()) { 378 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 379 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 380 return; 381 } 382 383 B.buildTrunc(OrigRegs[0], SrcReg); 384 return; 385 } 386 387 if (!LLTy.isVector() && !PartLLT.isVector()) { 388 assert(OrigRegs.size() == 1); 389 LLT OrigTy = MRI.getType(OrigRegs[0]); 390 391 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); 392 if (SrcSize == OrigTy.getSizeInBits()) 393 B.buildMergeValues(OrigRegs[0], Regs); 394 else { 395 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); 396 B.buildTrunc(OrigRegs[0], Widened); 397 } 398 399 return; 400 } 401 402 if (PartLLT.isVector()) { 403 assert(OrigRegs.size() == 1); 404 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 405 406 // If PartLLT is a mismatched vector in both number of elements and element 407 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 408 // have the same elt type, i.e. v4s32. 409 // TODO: Extend this coersion to element multiples other than just 2. 410 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 411 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 412 Regs.size() == 1) { 413 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 414 .changeElementCount(PartLLT.getElementCount() * 2); 415 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 416 PartLLT = NewTy; 417 } 418 419 if (LLTy.getScalarType() == PartLLT.getElementType()) { 420 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 421 } else { 422 unsigned I = 0; 423 LLT GCDTy = getGCDType(LLTy, PartLLT); 424 425 // We are both splitting a vector, and bitcasting its element types. Cast 426 // the source pieces into the appropriate number of pieces with the result 427 // element type. 428 for (Register SrcReg : CastRegs) 429 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 430 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 431 } 432 433 return; 434 } 435 436 assert(LLTy.isVector() && !PartLLT.isVector()); 437 438 LLT DstEltTy = LLTy.getElementType(); 439 440 // Pointer information was discarded. We'll need to coerce some register types 441 // to avoid violating type constraints. 442 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 443 444 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 445 446 if (DstEltTy == PartLLT) { 447 // Vector was trivially scalarized. 448 449 if (RealDstEltTy.isPointer()) { 450 for (Register Reg : Regs) 451 MRI.setType(Reg, RealDstEltTy); 452 } 453 454 B.buildBuildVector(OrigRegs[0], Regs); 455 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 456 // Deal with vector with 64-bit elements decomposed to 32-bit 457 // registers. Need to create intermediate 64-bit elements. 458 SmallVector<Register, 8> EltMerges; 459 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 460 461 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 462 463 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 464 auto Merge = 465 B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt)); 466 // Fix the type in case this is really a vector of pointers. 467 MRI.setType(Merge.getReg(0), RealDstEltTy); 468 EltMerges.push_back(Merge.getReg(0)); 469 Regs = Regs.drop_front(PartsPerElt); 470 } 471 472 B.buildBuildVector(OrigRegs[0], EltMerges); 473 } else { 474 // Vector was split, and elements promoted to a wider type. 475 // FIXME: Should handle floating point promotions. 476 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 477 auto BV = B.buildBuildVector(BVType, Regs); 478 B.buildTrunc(OrigRegs[0], BV); 479 } 480 } 481 482 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 483 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 484 /// contain the type of scalar value extension if necessary. 485 /// 486 /// This is used for outgoing values (vregs to physregs) 487 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 488 Register SrcReg, LLT SrcTy, LLT PartTy, 489 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 490 // We could just insert a regular copy, but this is unreachable at the moment. 491 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 492 493 const unsigned PartSize = PartTy.getSizeInBits(); 494 495 if (PartTy.isVector() == SrcTy.isVector() && 496 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 497 assert(DstRegs.size() == 1); 498 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 499 return; 500 } 501 502 if (SrcTy.isVector() && !PartTy.isVector() && 503 PartSize > SrcTy.getElementType().getSizeInBits()) { 504 // Vector was scalarized, and the elements extended. 505 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 506 for (int i = 0, e = DstRegs.size(); i != e; ++i) 507 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 508 return; 509 } 510 511 if (SrcTy.isVector() && PartTy.isVector() && 512 PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() && 513 SrcTy.getNumElements() < PartTy.getNumElements()) { 514 // A coercion like: v2f32 -> v4f32. 515 Register DstReg = DstRegs.front(); 516 B.buildPadVectorWithUndefElements(DstReg, SrcReg); 517 return; 518 } 519 520 LLT GCDTy = getGCDType(SrcTy, PartTy); 521 if (GCDTy == PartTy) { 522 // If this already evenly divisible, we can create a simple unmerge. 523 B.buildUnmerge(DstRegs, SrcReg); 524 return; 525 } 526 527 MachineRegisterInfo &MRI = *B.getMRI(); 528 LLT DstTy = MRI.getType(DstRegs[0]); 529 LLT LCMTy = getCoverTy(SrcTy, PartTy); 530 531 if (PartTy.isVector() && LCMTy == PartTy) { 532 assert(DstRegs.size() == 1); 533 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 534 return; 535 } 536 537 const unsigned DstSize = DstTy.getSizeInBits(); 538 const unsigned SrcSize = SrcTy.getSizeInBits(); 539 unsigned CoveringSize = LCMTy.getSizeInBits(); 540 541 Register UnmergeSrc = SrcReg; 542 543 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 544 // For scalars, it's common to be able to use a simple extension. 545 if (SrcTy.isScalar() && DstTy.isScalar()) { 546 CoveringSize = alignTo(SrcSize, DstSize); 547 LLT CoverTy = LLT::scalar(CoveringSize); 548 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 549 } else { 550 // Widen to the common type. 551 // FIXME: This should respect the extend type 552 Register Undef = B.buildUndef(SrcTy).getReg(0); 553 SmallVector<Register, 8> MergeParts(1, SrcReg); 554 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 555 MergeParts.push_back(Undef); 556 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); 557 } 558 } 559 560 if (LCMTy.isVector() && CoveringSize != SrcSize) 561 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 562 563 B.buildUnmerge(DstRegs, UnmergeSrc); 564 } 565 566 bool CallLowering::determineAndHandleAssignments( 567 ValueHandler &Handler, ValueAssigner &Assigner, 568 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 569 CallingConv::ID CallConv, bool IsVarArg, 570 ArrayRef<Register> ThisReturnRegs) const { 571 MachineFunction &MF = MIRBuilder.getMF(); 572 const Function &F = MF.getFunction(); 573 SmallVector<CCValAssign, 16> ArgLocs; 574 575 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 576 if (!determineAssignments(Assigner, Args, CCInfo)) 577 return false; 578 579 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 580 ThisReturnRegs); 581 } 582 583 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 584 if (Flags.isSExt()) 585 return TargetOpcode::G_SEXT; 586 if (Flags.isZExt()) 587 return TargetOpcode::G_ZEXT; 588 return TargetOpcode::G_ANYEXT; 589 } 590 591 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 592 SmallVectorImpl<ArgInfo> &Args, 593 CCState &CCInfo) const { 594 LLVMContext &Ctx = CCInfo.getContext(); 595 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 596 597 unsigned NumArgs = Args.size(); 598 for (unsigned i = 0; i != NumArgs; ++i) { 599 EVT CurVT = EVT::getEVT(Args[i].Ty); 600 601 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 602 603 // If we need to split the type over multiple regs, check it's a scenario 604 // we currently support. 605 unsigned NumParts = 606 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 607 608 if (NumParts == 1) { 609 // Try to use the register type if we couldn't assign the VT. 610 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 611 Args[i].Flags[0], CCInfo)) 612 return false; 613 continue; 614 } 615 616 // For incoming arguments (physregs to vregs), we could have values in 617 // physregs (or memlocs) which we want to extract and copy to vregs. 618 // During this, we might have to deal with the LLT being split across 619 // multiple regs, so we have to record this information for later. 620 // 621 // If we have outgoing args, then we have the opposite case. We have a 622 // vreg with an LLT which we want to assign to a physical location, and 623 // we might have to record that the value has to be split later. 624 625 // We're handling an incoming arg which is split over multiple regs. 626 // E.g. passing an s128 on AArch64. 627 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 628 Args[i].Flags.clear(); 629 630 for (unsigned Part = 0; Part < NumParts; ++Part) { 631 ISD::ArgFlagsTy Flags = OrigFlags; 632 if (Part == 0) { 633 Flags.setSplit(); 634 } else { 635 Flags.setOrigAlign(Align(1)); 636 if (Part == NumParts - 1) 637 Flags.setSplitEnd(); 638 } 639 640 Args[i].Flags.push_back(Flags); 641 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 642 Args[i].Flags[Part], CCInfo)) { 643 // Still couldn't assign this smaller part type for some reason. 644 return false; 645 } 646 } 647 } 648 649 return true; 650 } 651 652 bool CallLowering::handleAssignments(ValueHandler &Handler, 653 SmallVectorImpl<ArgInfo> &Args, 654 CCState &CCInfo, 655 SmallVectorImpl<CCValAssign> &ArgLocs, 656 MachineIRBuilder &MIRBuilder, 657 ArrayRef<Register> ThisReturnRegs) const { 658 MachineFunction &MF = MIRBuilder.getMF(); 659 MachineRegisterInfo &MRI = MF.getRegInfo(); 660 const Function &F = MF.getFunction(); 661 const DataLayout &DL = F.getParent()->getDataLayout(); 662 663 const unsigned NumArgs = Args.size(); 664 665 // Stores thunks for outgoing register assignments. This is used so we delay 666 // generating register copies until mem loc assignments are done. We do this 667 // so that if the target is using the delayed stack protector feature, we can 668 // find the split point of the block accurately. E.g. if we have: 669 // G_STORE %val, %memloc 670 // $x0 = COPY %foo 671 // $x1 = COPY %bar 672 // CALL func 673 // ... then the split point for the block will correctly be at, and including, 674 // the copy to $x0. If instead the G_STORE instruction immediately precedes 675 // the CALL, then we'd prematurely choose the CALL as the split point, thus 676 // generating a split block with a CALL that uses undefined physregs. 677 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 678 679 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 680 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 681 CCValAssign &VA = ArgLocs[j]; 682 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 683 684 if (VA.needsCustom()) { 685 std::function<void()> Thunk; 686 unsigned NumArgRegs = Handler.assignCustomValue( 687 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); 688 if (Thunk) 689 DelayedOutgoingRegAssignments.emplace_back(Thunk); 690 if (!NumArgRegs) 691 return false; 692 j += NumArgRegs; 693 continue; 694 } 695 696 const MVT ValVT = VA.getValVT(); 697 const MVT LocVT = VA.getLocVT(); 698 699 const LLT LocTy(LocVT); 700 const LLT ValTy(ValVT); 701 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 702 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 703 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 704 705 // Expected to be multiple regs for a single incoming arg. 706 // There should be Regs.size() ArgLocs per argument. 707 // This should be the same as getNumRegistersForCallingConv 708 const unsigned NumParts = Args[i].Flags.size(); 709 710 // Now split the registers into the assigned types. 711 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 712 713 if (NumParts != 1 || NewLLT != OrigTy) { 714 // If we can't directly assign the register, we need one or more 715 // intermediate values. 716 Args[i].Regs.resize(NumParts); 717 718 // For each split register, create and assign a vreg that will store 719 // the incoming component of the larger value. These will later be 720 // merged to form the final vreg. 721 for (unsigned Part = 0; Part < NumParts; ++Part) 722 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 723 } 724 725 assert((j + (NumParts - 1)) < ArgLocs.size() && 726 "Too many regs for number of args"); 727 728 // Coerce into outgoing value types before register assignment. 729 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 730 assert(Args[i].OrigRegs.size() == 1); 731 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 732 ValTy, extendOpFromFlags(Args[i].Flags[0])); 733 } 734 735 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 736 for (unsigned Part = 0; Part < NumParts; ++Part) { 737 Register ArgReg = Args[i].Regs[Part]; 738 // There should be Regs.size() ArgLocs per argument. 739 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 740 CCValAssign &VA = ArgLocs[j + Idx]; 741 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 742 743 if (VA.isMemLoc() && !Flags.isByVal()) { 744 // Individual pieces may have been spilled to the stack and others 745 // passed in registers. 746 747 // TODO: The memory size may be larger than the value we need to 748 // store. We may need to adjust the offset for big endian targets. 749 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 750 751 MachinePointerInfo MPO; 752 Register StackAddr = Handler.getStackAddress( 753 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 754 755 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 756 continue; 757 } 758 759 if (VA.isMemLoc() && Flags.isByVal()) { 760 assert(Args[i].Regs.size() == 1 && 761 "didn't expect split byval pointer"); 762 763 if (Handler.isIncomingArgumentHandler()) { 764 // We just need to copy the frame index value to the pointer. 765 MachinePointerInfo MPO; 766 Register StackAddr = Handler.getStackAddress( 767 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 768 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 769 } else { 770 // For outgoing byval arguments, insert the implicit copy byval 771 // implies, such that writes in the callee do not modify the caller's 772 // value. 773 uint64_t MemSize = Flags.getByValSize(); 774 int64_t Offset = VA.getLocMemOffset(); 775 776 MachinePointerInfo DstMPO; 777 Register StackAddr = 778 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 779 780 MachinePointerInfo SrcMPO(Args[i].OrigValue); 781 if (!Args[i].OrigValue) { 782 // We still need to accurately track the stack address space if we 783 // don't know the underlying value. 784 const LLT PtrTy = MRI.getType(StackAddr); 785 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 786 } 787 788 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 789 inferAlignFromPtrInfo(MF, DstMPO)); 790 791 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 792 inferAlignFromPtrInfo(MF, SrcMPO)); 793 794 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 795 DstMPO, DstAlign, SrcMPO, SrcAlign, 796 MemSize, VA); 797 } 798 continue; 799 } 800 801 assert(!VA.needsCustom() && "custom loc should have been handled already"); 802 803 if (i == 0 && !ThisReturnRegs.empty() && 804 Handler.isIncomingArgumentHandler() && 805 isTypeIsValidForThisReturn(ValVT)) { 806 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 807 continue; 808 } 809 810 if (Handler.isIncomingArgumentHandler()) 811 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 812 else { 813 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 814 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 815 }); 816 } 817 } 818 819 // Now that all pieces have been assigned, re-pack the register typed values 820 // into the original value typed registers. 821 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 822 // Merge the split registers into the expected larger result vregs of 823 // the original call. 824 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 825 LocTy, Args[i].Flags[0]); 826 } 827 828 j += NumParts - 1; 829 } 830 for (auto &Fn : DelayedOutgoingRegAssignments) 831 Fn(); 832 833 return true; 834 } 835 836 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 837 ArrayRef<Register> VRegs, Register DemoteReg, 838 int FI) const { 839 MachineFunction &MF = MIRBuilder.getMF(); 840 MachineRegisterInfo &MRI = MF.getRegInfo(); 841 const DataLayout &DL = MF.getDataLayout(); 842 843 SmallVector<EVT, 4> SplitVTs; 844 SmallVector<uint64_t, 4> Offsets; 845 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 846 847 assert(VRegs.size() == SplitVTs.size()); 848 849 unsigned NumValues = SplitVTs.size(); 850 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 851 Type *RetPtrTy = 852 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); 853 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); 854 855 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 856 857 for (unsigned I = 0; I < NumValues; ++I) { 858 Register Addr; 859 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 860 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 861 MRI.getType(VRegs[I]), 862 commonAlignment(BaseAlign, Offsets[I])); 863 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 864 } 865 } 866 867 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 868 ArrayRef<Register> VRegs, 869 Register DemoteReg) const { 870 MachineFunction &MF = MIRBuilder.getMF(); 871 MachineRegisterInfo &MRI = MF.getRegInfo(); 872 const DataLayout &DL = MF.getDataLayout(); 873 874 SmallVector<EVT, 4> SplitVTs; 875 SmallVector<uint64_t, 4> Offsets; 876 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 877 878 assert(VRegs.size() == SplitVTs.size()); 879 880 unsigned NumValues = SplitVTs.size(); 881 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 882 unsigned AS = DL.getAllocaAddrSpace(); 883 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL); 884 885 MachinePointerInfo PtrInfo(AS); 886 887 for (unsigned I = 0; I < NumValues; ++I) { 888 Register Addr; 889 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 890 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 891 MRI.getType(VRegs[I]), 892 commonAlignment(BaseAlign, Offsets[I])); 893 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 894 } 895 } 896 897 void CallLowering::insertSRetIncomingArgument( 898 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 899 MachineRegisterInfo &MRI, const DataLayout &DL) const { 900 unsigned AS = DL.getAllocaAddrSpace(); 901 DemoteReg = MRI.createGenericVirtualRegister( 902 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 903 904 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 905 906 SmallVector<EVT, 1> ValueVTs; 907 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 908 909 // NOTE: Assume that a pointer won't get split into more than one VT. 910 assert(ValueVTs.size() == 1); 911 912 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 913 ArgInfo::NoArgIndex); 914 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 915 DemoteArg.Flags[0].setSRet(); 916 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 917 } 918 919 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 920 const CallBase &CB, 921 CallLoweringInfo &Info) const { 922 const DataLayout &DL = MIRBuilder.getDataLayout(); 923 Type *RetTy = CB.getType(); 924 unsigned AS = DL.getAllocaAddrSpace(); 925 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 926 927 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 928 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 929 930 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 931 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 932 ArgInfo::NoArgIndex); 933 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 934 DemoteArg.Flags[0].setSRet(); 935 936 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 937 Info.DemoteStackIndex = FI; 938 Info.DemoteRegister = DemoteReg; 939 } 940 941 bool CallLowering::checkReturn(CCState &CCInfo, 942 SmallVectorImpl<BaseArgInfo> &Outs, 943 CCAssignFn *Fn) const { 944 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 945 MVT VT = MVT::getVT(Outs[I].Ty); 946 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 947 return false; 948 } 949 return true; 950 } 951 952 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 953 AttributeList Attrs, 954 SmallVectorImpl<BaseArgInfo> &Outs, 955 const DataLayout &DL) const { 956 LLVMContext &Context = RetTy->getContext(); 957 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 958 959 SmallVector<EVT, 4> SplitVTs; 960 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 961 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 962 963 for (EVT VT : SplitVTs) { 964 unsigned NumParts = 965 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 966 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 967 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 968 969 for (unsigned I = 0; I < NumParts; ++I) { 970 Outs.emplace_back(PartTy, Flags); 971 } 972 } 973 } 974 975 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 976 const auto &F = MF.getFunction(); 977 Type *ReturnType = F.getReturnType(); 978 CallingConv::ID CallConv = F.getCallingConv(); 979 980 SmallVector<BaseArgInfo, 4> SplitArgs; 981 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 982 MF.getDataLayout()); 983 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 984 } 985 986 bool CallLowering::parametersInCSRMatch( 987 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 988 const SmallVectorImpl<CCValAssign> &OutLocs, 989 const SmallVectorImpl<ArgInfo> &OutArgs) const { 990 for (unsigned i = 0; i < OutLocs.size(); ++i) { 991 const auto &ArgLoc = OutLocs[i]; 992 // If it's not a register, it's fine. 993 if (!ArgLoc.isRegLoc()) 994 continue; 995 996 MCRegister PhysReg = ArgLoc.getLocReg(); 997 998 // Only look at callee-saved registers. 999 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 1000 continue; 1001 1002 LLVM_DEBUG( 1003 dbgs() 1004 << "... Call has an argument passed in a callee-saved register.\n"); 1005 1006 // Check if it was copied from. 1007 const ArgInfo &OutInfo = OutArgs[i]; 1008 1009 if (OutInfo.Regs.size() > 1) { 1010 LLVM_DEBUG( 1011 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 1012 return false; 1013 } 1014 1015 // Check if we copy the register, walking through copies from virtual 1016 // registers. Note that getDefIgnoringCopies does not ignore copies from 1017 // physical registers. 1018 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 1019 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 1020 LLVM_DEBUG( 1021 dbgs() 1022 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1023 return false; 1024 } 1025 1026 // Got a copy. Verify that it's the same as the register we want. 1027 Register CopyRHS = RegDef->getOperand(1).getReg(); 1028 if (CopyRHS != PhysReg) { 1029 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1030 "VReg, cannot tail call.\n"); 1031 return false; 1032 } 1033 } 1034 1035 return true; 1036 } 1037 1038 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1039 MachineFunction &MF, 1040 SmallVectorImpl<ArgInfo> &InArgs, 1041 ValueAssigner &CalleeAssigner, 1042 ValueAssigner &CallerAssigner) const { 1043 const Function &F = MF.getFunction(); 1044 CallingConv::ID CalleeCC = Info.CallConv; 1045 CallingConv::ID CallerCC = F.getCallingConv(); 1046 1047 if (CallerCC == CalleeCC) 1048 return true; 1049 1050 SmallVector<CCValAssign, 16> ArgLocs1; 1051 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1052 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1053 return false; 1054 1055 SmallVector<CCValAssign, 16> ArgLocs2; 1056 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1057 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1058 return false; 1059 1060 // We need the argument locations to match up exactly. If there's more in 1061 // one than the other, then we are done. 1062 if (ArgLocs1.size() != ArgLocs2.size()) 1063 return false; 1064 1065 // Make sure that each location is passed in exactly the same way. 1066 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1067 const CCValAssign &Loc1 = ArgLocs1[i]; 1068 const CCValAssign &Loc2 = ArgLocs2[i]; 1069 1070 // We need both of them to be the same. So if one is a register and one 1071 // isn't, we're done. 1072 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1073 return false; 1074 1075 if (Loc1.isRegLoc()) { 1076 // If they don't have the same register location, we're done. 1077 if (Loc1.getLocReg() != Loc2.getLocReg()) 1078 return false; 1079 1080 // They matched, so we can move to the next ArgLoc. 1081 continue; 1082 } 1083 1084 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1085 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1086 return false; 1087 } 1088 1089 return true; 1090 } 1091 1092 LLT CallLowering::ValueHandler::getStackValueStoreType( 1093 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1094 const MVT ValVT = VA.getValVT(); 1095 if (ValVT != MVT::iPTR) { 1096 LLT ValTy(ValVT); 1097 1098 // We lost the pointeriness going through CCValAssign, so try to restore it 1099 // based on the flags. 1100 if (Flags.isPointer()) { 1101 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1102 ValTy.getScalarSizeInBits()); 1103 if (ValVT.isVector()) 1104 return LLT::vector(ValTy.getElementCount(), PtrTy); 1105 return PtrTy; 1106 } 1107 1108 return ValTy; 1109 } 1110 1111 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1112 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1113 } 1114 1115 void CallLowering::ValueHandler::copyArgumentMemory( 1116 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1117 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1118 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1119 CCValAssign &VA) const { 1120 MachineFunction &MF = MIRBuilder.getMF(); 1121 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1122 SrcPtrInfo, 1123 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1124 SrcAlign); 1125 1126 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1127 DstPtrInfo, 1128 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1129 MemSize, DstAlign); 1130 1131 const LLT PtrTy = MRI.getType(DstPtr); 1132 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1133 1134 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1135 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1136 } 1137 1138 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1139 const CCValAssign &VA, 1140 unsigned MaxSizeBits) { 1141 LLT LocTy{VA.getLocVT()}; 1142 LLT ValTy{VA.getValVT()}; 1143 1144 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1145 return ValReg; 1146 1147 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1148 if (MaxSizeBits <= ValTy.getSizeInBits()) 1149 return ValReg; 1150 LocTy = LLT::scalar(MaxSizeBits); 1151 } 1152 1153 const LLT ValRegTy = MRI.getType(ValReg); 1154 if (ValRegTy.isPointer()) { 1155 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1156 // we have to cast to do the extension. 1157 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1158 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1159 } 1160 1161 switch (VA.getLocInfo()) { 1162 default: break; 1163 case CCValAssign::Full: 1164 case CCValAssign::BCvt: 1165 // FIXME: bitconverting between vector types may or may not be a 1166 // nop in big-endian situations. 1167 return ValReg; 1168 case CCValAssign::AExt: { 1169 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1170 return MIB.getReg(0); 1171 } 1172 case CCValAssign::SExt: { 1173 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1174 MIRBuilder.buildSExt(NewReg, ValReg); 1175 return NewReg; 1176 } 1177 case CCValAssign::ZExt: { 1178 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1179 MIRBuilder.buildZExt(NewReg, ValReg); 1180 return NewReg; 1181 } 1182 } 1183 llvm_unreachable("unable to extend register"); 1184 } 1185 1186 void CallLowering::ValueAssigner::anchor() {} 1187 1188 Register CallLowering::IncomingValueHandler::buildExtensionHint( 1189 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { 1190 switch (VA.getLocInfo()) { 1191 case CCValAssign::LocInfo::ZExt: { 1192 return MIRBuilder 1193 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1194 NarrowTy.getScalarSizeInBits()) 1195 .getReg(0); 1196 } 1197 case CCValAssign::LocInfo::SExt: { 1198 return MIRBuilder 1199 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1200 NarrowTy.getScalarSizeInBits()) 1201 .getReg(0); 1202 break; 1203 } 1204 default: 1205 return SrcReg; 1206 } 1207 } 1208 1209 /// Check if we can use a basic COPY instruction between the two types. 1210 /// 1211 /// We're currently building on top of the infrastructure using MVT, which loses 1212 /// pointer information in the CCValAssign. We accept copies from physical 1213 /// registers that have been reported as integers if it's to an equivalent sized 1214 /// pointer LLT. 1215 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1216 if (SrcTy == DstTy) 1217 return true; 1218 1219 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1220 return false; 1221 1222 SrcTy = SrcTy.getScalarType(); 1223 DstTy = DstTy.getScalarType(); 1224 1225 return (SrcTy.isPointer() && DstTy.isScalar()) || 1226 (DstTy.isPointer() && SrcTy.isScalar()); 1227 } 1228 1229 void CallLowering::IncomingValueHandler::assignValueToReg( 1230 Register ValVReg, Register PhysReg, const CCValAssign &VA) { 1231 const MVT LocVT = VA.getLocVT(); 1232 const LLT LocTy(LocVT); 1233 const LLT RegTy = MRI.getType(ValVReg); 1234 1235 if (isCopyCompatibleType(RegTy, LocTy)) { 1236 MIRBuilder.buildCopy(ValVReg, PhysReg); 1237 return; 1238 } 1239 1240 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1241 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1242 MIRBuilder.buildTrunc(ValVReg, Hint); 1243 } 1244