1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 #define DEBUG_TYPE "call-lowering" 30 31 using namespace llvm; 32 33 void CallLowering::anchor() {} 34 35 /// Helper function which updates \p Flags when \p AttrFn returns true. 36 static void 37 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 38 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 39 if (AttrFn(Attribute::SExt)) 40 Flags.setSExt(); 41 if (AttrFn(Attribute::ZExt)) 42 Flags.setZExt(); 43 if (AttrFn(Attribute::InReg)) 44 Flags.setInReg(); 45 if (AttrFn(Attribute::StructRet)) 46 Flags.setSRet(); 47 if (AttrFn(Attribute::Nest)) 48 Flags.setNest(); 49 if (AttrFn(Attribute::ByVal)) 50 Flags.setByVal(); 51 if (AttrFn(Attribute::Preallocated)) 52 Flags.setPreallocated(); 53 if (AttrFn(Attribute::InAlloca)) 54 Flags.setInAlloca(); 55 if (AttrFn(Attribute::Returned)) 56 Flags.setReturned(); 57 if (AttrFn(Attribute::SwiftSelf)) 58 Flags.setSwiftSelf(); 59 if (AttrFn(Attribute::SwiftAsync)) 60 Flags.setSwiftAsync(); 61 if (AttrFn(Attribute::SwiftError)) 62 Flags.setSwiftError(); 63 } 64 65 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 66 unsigned ArgIdx) const { 67 ISD::ArgFlagsTy Flags; 68 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 69 return Call.paramHasAttr(ArgIdx, Attr); 70 }); 71 return Flags; 72 } 73 74 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 75 const AttributeList &Attrs, 76 unsigned OpIdx) const { 77 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 78 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 79 }); 80 } 81 82 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 83 ArrayRef<Register> ResRegs, 84 ArrayRef<ArrayRef<Register>> ArgRegs, 85 Register SwiftErrorVReg, 86 std::function<unsigned()> GetCalleeReg) const { 87 CallLoweringInfo Info; 88 const DataLayout &DL = MIRBuilder.getDataLayout(); 89 MachineFunction &MF = MIRBuilder.getMF(); 90 MachineRegisterInfo &MRI = MF.getRegInfo(); 91 bool CanBeTailCalled = CB.isTailCall() && 92 isInTailCallPosition(CB, MF.getTarget()) && 93 (MF.getFunction() 94 .getFnAttribute("disable-tail-calls") 95 .getValueAsString() != "true"); 96 97 CallingConv::ID CallConv = CB.getCallingConv(); 98 Type *RetTy = CB.getType(); 99 bool IsVarArg = CB.getFunctionType()->isVarArg(); 100 101 SmallVector<BaseArgInfo, 4> SplitArgs; 102 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 103 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 104 105 if (!Info.CanLowerReturn) { 106 // Callee requires sret demotion. 107 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 108 109 // The sret demotion isn't compatible with tail-calls, since the sret 110 // argument points into the caller's stack frame. 111 CanBeTailCalled = false; 112 } 113 114 115 // First step is to marshall all the function's parameters into the correct 116 // physregs and memory locations. Gather the sequence of argument types that 117 // we'll pass to the assigner function. 118 unsigned i = 0; 119 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 120 for (auto &Arg : CB.args()) { 121 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 122 i < NumFixedArgs}; 123 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 124 125 // If we have an explicit sret argument that is an Instruction, (i.e., it 126 // might point to function-local memory), we can't meaningfully tail-call. 127 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 128 CanBeTailCalled = false; 129 130 Info.OrigArgs.push_back(OrigArg); 131 ++i; 132 } 133 134 // Try looking through a bitcast from one function type to another. 135 // Commonly happens with calls to objc_msgSend(). 136 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 137 if (const Function *F = dyn_cast<Function>(CalleeV)) 138 Info.Callee = MachineOperand::CreateGA(F, 0); 139 else 140 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 141 142 Register ReturnHintAlignReg; 143 Align ReturnHintAlign; 144 145 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 146 147 if (!Info.OrigRet.Ty->isVoidTy()) { 148 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 149 150 if (MaybeAlign Alignment = CB.getRetAlign()) { 151 if (*Alignment > Align(1)) { 152 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 153 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 154 ReturnHintAlign = *Alignment; 155 } 156 } 157 } 158 159 Info.CB = &CB; 160 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 161 Info.CallConv = CallConv; 162 Info.SwiftErrorVReg = SwiftErrorVReg; 163 Info.IsMustTailCall = CB.isMustTailCall(); 164 Info.IsTailCall = CanBeTailCalled; 165 Info.IsVarArg = IsVarArg; 166 if (!lowerCall(MIRBuilder, Info)) 167 return false; 168 169 if (ReturnHintAlignReg && !Info.IsTailCall) { 170 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 171 ReturnHintAlign); 172 } 173 174 return true; 175 } 176 177 template <typename FuncInfoTy> 178 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 179 const DataLayout &DL, 180 const FuncInfoTy &FuncInfo) const { 181 auto &Flags = Arg.Flags[0]; 182 const AttributeList &Attrs = FuncInfo.getAttributes(); 183 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 184 185 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 186 if (PtrTy) { 187 Flags.setPointer(); 188 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 189 } 190 191 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 192 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 193 assert(OpIdx >= AttributeList::FirstArgIndex); 194 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 195 196 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 197 if (!ElementTy) 198 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 199 if (!ElementTy) 200 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 201 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 202 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 203 204 // For ByVal, alignment should be passed from FE. BE will guess if 205 // this info is not there but there are cases it cannot get right. 206 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 207 MemAlign = *ParamAlign; 208 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 209 MemAlign = *ParamAlign; 210 else 211 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 212 } else if (OpIdx >= AttributeList::FirstArgIndex) { 213 if (auto ParamAlign = 214 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 215 MemAlign = *ParamAlign; 216 } 217 Flags.setMemAlign(MemAlign); 218 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 219 220 // Don't try to use the returned attribute if the argument is marked as 221 // swiftself, since it won't be passed in x0. 222 if (Flags.isSwiftSelf()) 223 Flags.setReturned(false); 224 } 225 226 template void 227 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 228 const DataLayout &DL, 229 const Function &FuncInfo) const; 230 231 template void 232 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 233 const DataLayout &DL, 234 const CallBase &FuncInfo) const; 235 236 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 237 SmallVectorImpl<ArgInfo> &SplitArgs, 238 const DataLayout &DL, 239 CallingConv::ID CallConv, 240 SmallVectorImpl<uint64_t> *Offsets) const { 241 LLVMContext &Ctx = OrigArg.Ty->getContext(); 242 243 SmallVector<EVT, 4> SplitVTs; 244 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 245 246 if (SplitVTs.size() == 0) 247 return; 248 249 if (SplitVTs.size() == 1) { 250 // No splitting to do, but we want to replace the original type (e.g. [1 x 251 // double] -> double). 252 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 253 OrigArg.OrigArgIndex, OrigArg.Flags[0], 254 OrigArg.IsFixed, OrigArg.OrigValue); 255 return; 256 } 257 258 // Create one ArgInfo for each virtual register in the original ArgInfo. 259 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 260 261 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 262 OrigArg.Ty, CallConv, false, DL); 263 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 264 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 265 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 266 OrigArg.Flags[0], OrigArg.IsFixed); 267 if (NeedsRegBlock) 268 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 269 } 270 271 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 272 } 273 274 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 275 static MachineInstrBuilder 276 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 277 ArrayRef<Register> SrcRegs) { 278 MachineRegisterInfo &MRI = *B.getMRI(); 279 LLT LLTy = MRI.getType(DstRegs[0]); 280 LLT PartLLT = MRI.getType(SrcRegs[0]); 281 282 // Deal with v3s16 split into v2s16 283 LLT LCMTy = getCoverTy(LLTy, PartLLT); 284 if (LCMTy == LLTy) { 285 // Common case where no padding is needed. 286 assert(DstRegs.size() == 1); 287 return B.buildConcatVectors(DstRegs[0], SrcRegs); 288 } 289 290 // We need to create an unmerge to the result registers, which may require 291 // widening the original value. 292 Register UnmergeSrcReg; 293 if (LCMTy != PartLLT) { 294 assert(DstRegs.size() == 1); 295 return B.buildDeleteTrailingVectorElements(DstRegs[0], 296 B.buildMerge(LCMTy, SrcRegs)); 297 } else { 298 // We don't need to widen anything if we're extracting a scalar which was 299 // promoted to a vector e.g. s8 -> v4s8 -> s8 300 assert(SrcRegs.size() == 1); 301 UnmergeSrcReg = SrcRegs[0]; 302 } 303 304 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 305 306 SmallVector<Register, 8> PadDstRegs(NumDst); 307 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 308 309 // Create the excess dead defs for the unmerge. 310 for (int I = DstRegs.size(); I != NumDst; ++I) 311 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 312 313 if (PadDstRegs.size() == 1) 314 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 315 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 316 } 317 318 /// Create a sequence of instructions to combine pieces split into register 319 /// typed values to the original IR value. \p OrigRegs contains the destination 320 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 321 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 322 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 323 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 324 const ISD::ArgFlagsTy Flags) { 325 MachineRegisterInfo &MRI = *B.getMRI(); 326 327 if (PartLLT == LLTy) { 328 // We should have avoided introducing a new virtual register, and just 329 // directly assigned here. 330 assert(OrigRegs[0] == Regs[0]); 331 return; 332 } 333 334 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 335 Regs.size() == 1) { 336 B.buildBitcast(OrigRegs[0], Regs[0]); 337 return; 338 } 339 340 // A vector PartLLT needs extending to LLTy's element size. 341 // E.g. <2 x s64> = G_SEXT <2 x s32>. 342 if (PartLLT.isVector() == LLTy.isVector() && 343 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 344 (!PartLLT.isVector() || 345 PartLLT.getNumElements() == LLTy.getNumElements()) && 346 OrigRegs.size() == 1 && Regs.size() == 1) { 347 Register SrcReg = Regs[0]; 348 349 LLT LocTy = MRI.getType(SrcReg); 350 351 if (Flags.isSExt()) { 352 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 353 .getReg(0); 354 } else if (Flags.isZExt()) { 355 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 356 .getReg(0); 357 } 358 359 // Sometimes pointers are passed zero extended. 360 LLT OrigTy = MRI.getType(OrigRegs[0]); 361 if (OrigTy.isPointer()) { 362 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 363 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 364 return; 365 } 366 367 B.buildTrunc(OrigRegs[0], SrcReg); 368 return; 369 } 370 371 if (!LLTy.isVector() && !PartLLT.isVector()) { 372 assert(OrigRegs.size() == 1); 373 LLT OrigTy = MRI.getType(OrigRegs[0]); 374 375 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 376 if (SrcSize == OrigTy.getSizeInBits()) 377 B.buildMerge(OrigRegs[0], Regs); 378 else { 379 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 380 B.buildTrunc(OrigRegs[0], Widened); 381 } 382 383 return; 384 } 385 386 if (PartLLT.isVector()) { 387 assert(OrigRegs.size() == 1); 388 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 389 390 // If PartLLT is a mismatched vector in both number of elements and element 391 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 392 // have the same elt type, i.e. v4s32. 393 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 394 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 395 Regs.size() == 1) { 396 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 397 .changeElementCount(PartLLT.getElementCount() * 2); 398 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 399 PartLLT = NewTy; 400 } 401 402 if (LLTy.getScalarType() == PartLLT.getElementType()) { 403 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 404 } else { 405 unsigned I = 0; 406 LLT GCDTy = getGCDType(LLTy, PartLLT); 407 408 // We are both splitting a vector, and bitcasting its element types. Cast 409 // the source pieces into the appropriate number of pieces with the result 410 // element type. 411 for (Register SrcReg : CastRegs) 412 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 413 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 414 } 415 416 return; 417 } 418 419 assert(LLTy.isVector() && !PartLLT.isVector()); 420 421 LLT DstEltTy = LLTy.getElementType(); 422 423 // Pointer information was discarded. We'll need to coerce some register types 424 // to avoid violating type constraints. 425 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 426 427 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 428 429 if (DstEltTy == PartLLT) { 430 // Vector was trivially scalarized. 431 432 if (RealDstEltTy.isPointer()) { 433 for (Register Reg : Regs) 434 MRI.setType(Reg, RealDstEltTy); 435 } 436 437 B.buildBuildVector(OrigRegs[0], Regs); 438 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 439 // Deal with vector with 64-bit elements decomposed to 32-bit 440 // registers. Need to create intermediate 64-bit elements. 441 SmallVector<Register, 8> EltMerges; 442 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 443 444 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 445 446 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 447 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 448 // Fix the type in case this is really a vector of pointers. 449 MRI.setType(Merge.getReg(0), RealDstEltTy); 450 EltMerges.push_back(Merge.getReg(0)); 451 Regs = Regs.drop_front(PartsPerElt); 452 } 453 454 B.buildBuildVector(OrigRegs[0], EltMerges); 455 } else { 456 // Vector was split, and elements promoted to a wider type. 457 // FIXME: Should handle floating point promotions. 458 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 459 auto BV = B.buildBuildVector(BVType, Regs); 460 B.buildTrunc(OrigRegs[0], BV); 461 } 462 } 463 464 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 465 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 466 /// contain the type of scalar value extension if necessary. 467 /// 468 /// This is used for outgoing values (vregs to physregs) 469 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 470 Register SrcReg, LLT SrcTy, LLT PartTy, 471 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 472 // We could just insert a regular copy, but this is unreachable at the moment. 473 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 474 475 const unsigned PartSize = PartTy.getSizeInBits(); 476 477 if (PartTy.isVector() == SrcTy.isVector() && 478 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 479 assert(DstRegs.size() == 1); 480 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 481 return; 482 } 483 484 if (SrcTy.isVector() && !PartTy.isVector() && 485 PartSize > SrcTy.getElementType().getSizeInBits()) { 486 // Vector was scalarized, and the elements extended. 487 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 488 for (int i = 0, e = DstRegs.size(); i != e; ++i) 489 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 490 return; 491 } 492 493 LLT GCDTy = getGCDType(SrcTy, PartTy); 494 if (GCDTy == PartTy) { 495 // If this already evenly divisible, we can create a simple unmerge. 496 B.buildUnmerge(DstRegs, SrcReg); 497 return; 498 } 499 500 MachineRegisterInfo &MRI = *B.getMRI(); 501 LLT DstTy = MRI.getType(DstRegs[0]); 502 LLT LCMTy = getCoverTy(SrcTy, PartTy); 503 504 const unsigned DstSize = DstTy.getSizeInBits(); 505 const unsigned SrcSize = SrcTy.getSizeInBits(); 506 unsigned CoveringSize = LCMTy.getSizeInBits(); 507 508 Register UnmergeSrc = SrcReg; 509 510 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 511 // For scalars, it's common to be able to use a simple extension. 512 if (SrcTy.isScalar() && DstTy.isScalar()) { 513 CoveringSize = alignTo(SrcSize, DstSize); 514 LLT CoverTy = LLT::scalar(CoveringSize); 515 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 516 } else { 517 // Widen to the common type. 518 // FIXME: This should respect the extend type 519 Register Undef = B.buildUndef(SrcTy).getReg(0); 520 SmallVector<Register, 8> MergeParts(1, SrcReg); 521 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 522 MergeParts.push_back(Undef); 523 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 524 } 525 } 526 527 if (LCMTy.isVector() && CoveringSize != SrcSize) 528 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 529 530 B.buildUnmerge(DstRegs, UnmergeSrc); 531 } 532 533 bool CallLowering::determineAndHandleAssignments( 534 ValueHandler &Handler, ValueAssigner &Assigner, 535 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 536 CallingConv::ID CallConv, bool IsVarArg, 537 ArrayRef<Register> ThisReturnRegs) const { 538 MachineFunction &MF = MIRBuilder.getMF(); 539 const Function &F = MF.getFunction(); 540 SmallVector<CCValAssign, 16> ArgLocs; 541 542 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 543 if (!determineAssignments(Assigner, Args, CCInfo)) 544 return false; 545 546 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 547 ThisReturnRegs); 548 } 549 550 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 551 if (Flags.isSExt()) 552 return TargetOpcode::G_SEXT; 553 if (Flags.isZExt()) 554 return TargetOpcode::G_ZEXT; 555 return TargetOpcode::G_ANYEXT; 556 } 557 558 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 559 SmallVectorImpl<ArgInfo> &Args, 560 CCState &CCInfo) const { 561 LLVMContext &Ctx = CCInfo.getContext(); 562 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 563 564 unsigned NumArgs = Args.size(); 565 for (unsigned i = 0; i != NumArgs; ++i) { 566 EVT CurVT = EVT::getEVT(Args[i].Ty); 567 568 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 569 570 // If we need to split the type over multiple regs, check it's a scenario 571 // we currently support. 572 unsigned NumParts = 573 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 574 575 if (NumParts == 1) { 576 // Try to use the register type if we couldn't assign the VT. 577 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 578 Args[i].Flags[0], CCInfo)) 579 return false; 580 continue; 581 } 582 583 // For incoming arguments (physregs to vregs), we could have values in 584 // physregs (or memlocs) which we want to extract and copy to vregs. 585 // During this, we might have to deal with the LLT being split across 586 // multiple regs, so we have to record this information for later. 587 // 588 // If we have outgoing args, then we have the opposite case. We have a 589 // vreg with an LLT which we want to assign to a physical location, and 590 // we might have to record that the value has to be split later. 591 592 // We're handling an incoming arg which is split over multiple regs. 593 // E.g. passing an s128 on AArch64. 594 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 595 Args[i].Flags.clear(); 596 597 for (unsigned Part = 0; Part < NumParts; ++Part) { 598 ISD::ArgFlagsTy Flags = OrigFlags; 599 if (Part == 0) { 600 Flags.setSplit(); 601 } else { 602 Flags.setOrigAlign(Align(1)); 603 if (Part == NumParts - 1) 604 Flags.setSplitEnd(); 605 } 606 607 Args[i].Flags.push_back(Flags); 608 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 609 Args[i].Flags[Part], CCInfo)) { 610 // Still couldn't assign this smaller part type for some reason. 611 return false; 612 } 613 } 614 } 615 616 return true; 617 } 618 619 bool CallLowering::handleAssignments(ValueHandler &Handler, 620 SmallVectorImpl<ArgInfo> &Args, 621 CCState &CCInfo, 622 SmallVectorImpl<CCValAssign> &ArgLocs, 623 MachineIRBuilder &MIRBuilder, 624 ArrayRef<Register> ThisReturnRegs) const { 625 MachineFunction &MF = MIRBuilder.getMF(); 626 MachineRegisterInfo &MRI = MF.getRegInfo(); 627 const Function &F = MF.getFunction(); 628 const DataLayout &DL = F.getParent()->getDataLayout(); 629 630 const unsigned NumArgs = Args.size(); 631 632 // Stores thunks for outgoing register assignments. This is used so we delay 633 // generating register copies until mem loc assignments are done. We do this 634 // so that if the target is using the delayed stack protector feature, we can 635 // find the split point of the block accurately. E.g. if we have: 636 // G_STORE %val, %memloc 637 // $x0 = COPY %foo 638 // $x1 = COPY %bar 639 // CALL func 640 // ... then the split point for the block will correctly be at, and including, 641 // the copy to $x0. If instead the G_STORE instruction immediately precedes 642 // the CALL, then we'd prematurely choose the CALL as the split point, thus 643 // generating a split block with a CALL that uses undefined physregs. 644 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 645 646 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 647 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 648 CCValAssign &VA = ArgLocs[j]; 649 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 650 651 if (VA.needsCustom()) { 652 std::function<void()> Thunk; 653 unsigned NumArgRegs = Handler.assignCustomValue( 654 Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk); 655 if (Thunk) 656 DelayedOutgoingRegAssignments.emplace_back(Thunk); 657 if (!NumArgRegs) 658 return false; 659 j += NumArgRegs; 660 continue; 661 } 662 663 const MVT ValVT = VA.getValVT(); 664 const MVT LocVT = VA.getLocVT(); 665 666 const LLT LocTy(LocVT); 667 const LLT ValTy(ValVT); 668 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 669 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 670 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 671 672 // Expected to be multiple regs for a single incoming arg. 673 // There should be Regs.size() ArgLocs per argument. 674 // This should be the same as getNumRegistersForCallingConv 675 const unsigned NumParts = Args[i].Flags.size(); 676 677 // Now split the registers into the assigned types. 678 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 679 680 if (NumParts != 1 || NewLLT != OrigTy) { 681 // If we can't directly assign the register, we need one or more 682 // intermediate values. 683 Args[i].Regs.resize(NumParts); 684 685 // For each split register, create and assign a vreg that will store 686 // the incoming component of the larger value. These will later be 687 // merged to form the final vreg. 688 for (unsigned Part = 0; Part < NumParts; ++Part) 689 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 690 } 691 692 assert((j + (NumParts - 1)) < ArgLocs.size() && 693 "Too many regs for number of args"); 694 695 // Coerce into outgoing value types before register assignment. 696 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 697 assert(Args[i].OrigRegs.size() == 1); 698 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 699 ValTy, extendOpFromFlags(Args[i].Flags[0])); 700 } 701 702 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 703 for (unsigned Part = 0; Part < NumParts; ++Part) { 704 Register ArgReg = Args[i].Regs[Part]; 705 // There should be Regs.size() ArgLocs per argument. 706 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 707 CCValAssign &VA = ArgLocs[j + Idx]; 708 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 709 710 if (VA.isMemLoc() && !Flags.isByVal()) { 711 // Individual pieces may have been spilled to the stack and others 712 // passed in registers. 713 714 // TODO: The memory size may be larger than the value we need to 715 // store. We may need to adjust the offset for big endian targets. 716 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 717 718 MachinePointerInfo MPO; 719 Register StackAddr = Handler.getStackAddress( 720 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 721 722 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 723 continue; 724 } 725 726 if (VA.isMemLoc() && Flags.isByVal()) { 727 assert(Args[i].Regs.size() == 1 && 728 "didn't expect split byval pointer"); 729 730 if (Handler.isIncomingArgumentHandler()) { 731 // We just need to copy the frame index value to the pointer. 732 MachinePointerInfo MPO; 733 Register StackAddr = Handler.getStackAddress( 734 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 735 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 736 } else { 737 // For outgoing byval arguments, insert the implicit copy byval 738 // implies, such that writes in the callee do not modify the caller's 739 // value. 740 uint64_t MemSize = Flags.getByValSize(); 741 int64_t Offset = VA.getLocMemOffset(); 742 743 MachinePointerInfo DstMPO; 744 Register StackAddr = 745 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 746 747 MachinePointerInfo SrcMPO(Args[i].OrigValue); 748 if (!Args[i].OrigValue) { 749 // We still need to accurately track the stack address space if we 750 // don't know the underlying value. 751 const LLT PtrTy = MRI.getType(StackAddr); 752 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 753 } 754 755 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 756 inferAlignFromPtrInfo(MF, DstMPO)); 757 758 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 759 inferAlignFromPtrInfo(MF, SrcMPO)); 760 761 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 762 DstMPO, DstAlign, SrcMPO, SrcAlign, 763 MemSize, VA); 764 } 765 continue; 766 } 767 768 assert(!VA.needsCustom() && "custom loc should have been handled already"); 769 770 if (i == 0 && !ThisReturnRegs.empty() && 771 Handler.isIncomingArgumentHandler() && 772 isTypeIsValidForThisReturn(ValVT)) { 773 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 774 continue; 775 } 776 777 if (Handler.isIncomingArgumentHandler()) 778 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 779 else { 780 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 781 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 782 }); 783 } 784 } 785 786 // Now that all pieces have been assigned, re-pack the register typed values 787 // into the original value typed registers. 788 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 789 // Merge the split registers into the expected larger result vregs of 790 // the original call. 791 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 792 LocTy, Args[i].Flags[0]); 793 } 794 795 j += NumParts - 1; 796 } 797 for (auto &Fn : DelayedOutgoingRegAssignments) 798 Fn(); 799 800 return true; 801 } 802 803 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 804 ArrayRef<Register> VRegs, Register DemoteReg, 805 int FI) const { 806 MachineFunction &MF = MIRBuilder.getMF(); 807 MachineRegisterInfo &MRI = MF.getRegInfo(); 808 const DataLayout &DL = MF.getDataLayout(); 809 810 SmallVector<EVT, 4> SplitVTs; 811 SmallVector<uint64_t, 4> Offsets; 812 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 813 814 assert(VRegs.size() == SplitVTs.size()); 815 816 unsigned NumValues = SplitVTs.size(); 817 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 818 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 819 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 820 821 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 822 823 for (unsigned I = 0; I < NumValues; ++I) { 824 Register Addr; 825 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 826 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 827 MRI.getType(VRegs[I]), 828 commonAlignment(BaseAlign, Offsets[I])); 829 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 830 } 831 } 832 833 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 834 ArrayRef<Register> VRegs, 835 Register DemoteReg) const { 836 MachineFunction &MF = MIRBuilder.getMF(); 837 MachineRegisterInfo &MRI = MF.getRegInfo(); 838 const DataLayout &DL = MF.getDataLayout(); 839 840 SmallVector<EVT, 4> SplitVTs; 841 SmallVector<uint64_t, 4> Offsets; 842 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 843 844 assert(VRegs.size() == SplitVTs.size()); 845 846 unsigned NumValues = SplitVTs.size(); 847 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 848 unsigned AS = DL.getAllocaAddrSpace(); 849 LLT OffsetLLTy = 850 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 851 852 MachinePointerInfo PtrInfo(AS); 853 854 for (unsigned I = 0; I < NumValues; ++I) { 855 Register Addr; 856 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 857 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 858 MRI.getType(VRegs[I]), 859 commonAlignment(BaseAlign, Offsets[I])); 860 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 861 } 862 } 863 864 void CallLowering::insertSRetIncomingArgument( 865 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 866 MachineRegisterInfo &MRI, const DataLayout &DL) const { 867 unsigned AS = DL.getAllocaAddrSpace(); 868 DemoteReg = MRI.createGenericVirtualRegister( 869 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 870 871 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 872 873 SmallVector<EVT, 1> ValueVTs; 874 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 875 876 // NOTE: Assume that a pointer won't get split into more than one VT. 877 assert(ValueVTs.size() == 1); 878 879 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 880 ArgInfo::NoArgIndex); 881 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 882 DemoteArg.Flags[0].setSRet(); 883 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 884 } 885 886 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 887 const CallBase &CB, 888 CallLoweringInfo &Info) const { 889 const DataLayout &DL = MIRBuilder.getDataLayout(); 890 Type *RetTy = CB.getType(); 891 unsigned AS = DL.getAllocaAddrSpace(); 892 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 893 894 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 895 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 896 897 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 898 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 899 ArgInfo::NoArgIndex); 900 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 901 DemoteArg.Flags[0].setSRet(); 902 903 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 904 Info.DemoteStackIndex = FI; 905 Info.DemoteRegister = DemoteReg; 906 } 907 908 bool CallLowering::checkReturn(CCState &CCInfo, 909 SmallVectorImpl<BaseArgInfo> &Outs, 910 CCAssignFn *Fn) const { 911 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 912 MVT VT = MVT::getVT(Outs[I].Ty); 913 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 914 return false; 915 } 916 return true; 917 } 918 919 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 920 AttributeList Attrs, 921 SmallVectorImpl<BaseArgInfo> &Outs, 922 const DataLayout &DL) const { 923 LLVMContext &Context = RetTy->getContext(); 924 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 925 926 SmallVector<EVT, 4> SplitVTs; 927 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 928 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 929 930 for (EVT VT : SplitVTs) { 931 unsigned NumParts = 932 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 933 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 934 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 935 936 for (unsigned I = 0; I < NumParts; ++I) { 937 Outs.emplace_back(PartTy, Flags); 938 } 939 } 940 } 941 942 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 943 const auto &F = MF.getFunction(); 944 Type *ReturnType = F.getReturnType(); 945 CallingConv::ID CallConv = F.getCallingConv(); 946 947 SmallVector<BaseArgInfo, 4> SplitArgs; 948 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 949 MF.getDataLayout()); 950 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 951 } 952 953 bool CallLowering::parametersInCSRMatch( 954 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 955 const SmallVectorImpl<CCValAssign> &OutLocs, 956 const SmallVectorImpl<ArgInfo> &OutArgs) const { 957 for (unsigned i = 0; i < OutLocs.size(); ++i) { 958 auto &ArgLoc = OutLocs[i]; 959 // If it's not a register, it's fine. 960 if (!ArgLoc.isRegLoc()) 961 continue; 962 963 MCRegister PhysReg = ArgLoc.getLocReg(); 964 965 // Only look at callee-saved registers. 966 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 967 continue; 968 969 LLVM_DEBUG( 970 dbgs() 971 << "... Call has an argument passed in a callee-saved register.\n"); 972 973 // Check if it was copied from. 974 const ArgInfo &OutInfo = OutArgs[i]; 975 976 if (OutInfo.Regs.size() > 1) { 977 LLVM_DEBUG( 978 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 979 return false; 980 } 981 982 // Check if we copy the register, walking through copies from virtual 983 // registers. Note that getDefIgnoringCopies does not ignore copies from 984 // physical registers. 985 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 986 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 987 LLVM_DEBUG( 988 dbgs() 989 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 990 return false; 991 } 992 993 // Got a copy. Verify that it's the same as the register we want. 994 Register CopyRHS = RegDef->getOperand(1).getReg(); 995 if (CopyRHS != PhysReg) { 996 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 997 "VReg, cannot tail call.\n"); 998 return false; 999 } 1000 } 1001 1002 return true; 1003 } 1004 1005 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1006 MachineFunction &MF, 1007 SmallVectorImpl<ArgInfo> &InArgs, 1008 ValueAssigner &CalleeAssigner, 1009 ValueAssigner &CallerAssigner) const { 1010 const Function &F = MF.getFunction(); 1011 CallingConv::ID CalleeCC = Info.CallConv; 1012 CallingConv::ID CallerCC = F.getCallingConv(); 1013 1014 if (CallerCC == CalleeCC) 1015 return true; 1016 1017 SmallVector<CCValAssign, 16> ArgLocs1; 1018 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1019 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1020 return false; 1021 1022 SmallVector<CCValAssign, 16> ArgLocs2; 1023 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1024 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1025 return false; 1026 1027 // We need the argument locations to match up exactly. If there's more in 1028 // one than the other, then we are done. 1029 if (ArgLocs1.size() != ArgLocs2.size()) 1030 return false; 1031 1032 // Make sure that each location is passed in exactly the same way. 1033 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1034 const CCValAssign &Loc1 = ArgLocs1[i]; 1035 const CCValAssign &Loc2 = ArgLocs2[i]; 1036 1037 // We need both of them to be the same. So if one is a register and one 1038 // isn't, we're done. 1039 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1040 return false; 1041 1042 if (Loc1.isRegLoc()) { 1043 // If they don't have the same register location, we're done. 1044 if (Loc1.getLocReg() != Loc2.getLocReg()) 1045 return false; 1046 1047 // They matched, so we can move to the next ArgLoc. 1048 continue; 1049 } 1050 1051 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1052 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1053 return false; 1054 } 1055 1056 return true; 1057 } 1058 1059 LLT CallLowering::ValueHandler::getStackValueStoreType( 1060 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1061 const MVT ValVT = VA.getValVT(); 1062 if (ValVT != MVT::iPTR) { 1063 LLT ValTy(ValVT); 1064 1065 // We lost the pointeriness going through CCValAssign, so try to restore it 1066 // based on the flags. 1067 if (Flags.isPointer()) { 1068 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1069 ValTy.getScalarSizeInBits()); 1070 if (ValVT.isVector()) 1071 return LLT::vector(ValTy.getElementCount(), PtrTy); 1072 return PtrTy; 1073 } 1074 1075 return ValTy; 1076 } 1077 1078 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1079 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1080 } 1081 1082 void CallLowering::ValueHandler::copyArgumentMemory( 1083 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1084 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1085 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1086 CCValAssign &VA) const { 1087 MachineFunction &MF = MIRBuilder.getMF(); 1088 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1089 SrcPtrInfo, 1090 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1091 SrcAlign); 1092 1093 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1094 DstPtrInfo, 1095 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1096 MemSize, DstAlign); 1097 1098 const LLT PtrTy = MRI.getType(DstPtr); 1099 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1100 1101 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1102 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1103 } 1104 1105 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1106 CCValAssign &VA, 1107 unsigned MaxSizeBits) { 1108 LLT LocTy{VA.getLocVT()}; 1109 LLT ValTy{VA.getValVT()}; 1110 1111 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1112 return ValReg; 1113 1114 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1115 if (MaxSizeBits <= ValTy.getSizeInBits()) 1116 return ValReg; 1117 LocTy = LLT::scalar(MaxSizeBits); 1118 } 1119 1120 const LLT ValRegTy = MRI.getType(ValReg); 1121 if (ValRegTy.isPointer()) { 1122 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1123 // we have to cast to do the extension. 1124 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1125 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1126 } 1127 1128 switch (VA.getLocInfo()) { 1129 default: break; 1130 case CCValAssign::Full: 1131 case CCValAssign::BCvt: 1132 // FIXME: bitconverting between vector types may or may not be a 1133 // nop in big-endian situations. 1134 return ValReg; 1135 case CCValAssign::AExt: { 1136 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1137 return MIB.getReg(0); 1138 } 1139 case CCValAssign::SExt: { 1140 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1141 MIRBuilder.buildSExt(NewReg, ValReg); 1142 return NewReg; 1143 } 1144 case CCValAssign::ZExt: { 1145 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1146 MIRBuilder.buildZExt(NewReg, ValReg); 1147 return NewReg; 1148 } 1149 } 1150 llvm_unreachable("unable to extend register"); 1151 } 1152 1153 void CallLowering::ValueAssigner::anchor() {} 1154 1155 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1156 Register SrcReg, 1157 LLT NarrowTy) { 1158 switch (VA.getLocInfo()) { 1159 case CCValAssign::LocInfo::ZExt: { 1160 return MIRBuilder 1161 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1162 NarrowTy.getScalarSizeInBits()) 1163 .getReg(0); 1164 } 1165 case CCValAssign::LocInfo::SExt: { 1166 return MIRBuilder 1167 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1168 NarrowTy.getScalarSizeInBits()) 1169 .getReg(0); 1170 break; 1171 } 1172 default: 1173 return SrcReg; 1174 } 1175 } 1176 1177 /// Check if we can use a basic COPY instruction between the two types. 1178 /// 1179 /// We're currently building on top of the infrastructure using MVT, which loses 1180 /// pointer information in the CCValAssign. We accept copies from physical 1181 /// registers that have been reported as integers if it's to an equivalent sized 1182 /// pointer LLT. 1183 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1184 if (SrcTy == DstTy) 1185 return true; 1186 1187 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1188 return false; 1189 1190 SrcTy = SrcTy.getScalarType(); 1191 DstTy = DstTy.getScalarType(); 1192 1193 return (SrcTy.isPointer() && DstTy.isScalar()) || 1194 (DstTy.isScalar() && SrcTy.isPointer()); 1195 } 1196 1197 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1198 Register PhysReg, 1199 CCValAssign VA) { 1200 const MVT LocVT = VA.getLocVT(); 1201 const LLT LocTy(LocVT); 1202 const LLT RegTy = MRI.getType(ValVReg); 1203 1204 if (isCopyCompatibleType(RegTy, LocTy)) { 1205 MIRBuilder.buildCopy(ValVReg, PhysReg); 1206 return; 1207 } 1208 1209 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1210 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1211 MIRBuilder.buildTrunc(ValVReg, Hint); 1212 } 1213