xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 7f230feeeac8a67b335f52bd2e900a05c6098f20)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Target/TargetMachine.h"
28 
29 #define DEBUG_TYPE "call-lowering"
30 
31 using namespace llvm;
32 
33 void CallLowering::anchor() {}
34 
35 /// Helper function which updates \p Flags when \p AttrFn returns true.
36 static void
37 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
38                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
39   if (AttrFn(Attribute::SExt))
40     Flags.setSExt();
41   if (AttrFn(Attribute::ZExt))
42     Flags.setZExt();
43   if (AttrFn(Attribute::InReg))
44     Flags.setInReg();
45   if (AttrFn(Attribute::StructRet))
46     Flags.setSRet();
47   if (AttrFn(Attribute::Nest))
48     Flags.setNest();
49   if (AttrFn(Attribute::ByVal))
50     Flags.setByVal();
51   if (AttrFn(Attribute::Preallocated))
52     Flags.setPreallocated();
53   if (AttrFn(Attribute::InAlloca))
54     Flags.setInAlloca();
55   if (AttrFn(Attribute::Returned))
56     Flags.setReturned();
57   if (AttrFn(Attribute::SwiftSelf))
58     Flags.setSwiftSelf();
59   if (AttrFn(Attribute::SwiftAsync))
60     Flags.setSwiftAsync();
61   if (AttrFn(Attribute::SwiftError))
62     Flags.setSwiftError();
63 }
64 
65 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
66                                                      unsigned ArgIdx) const {
67   ISD::ArgFlagsTy Flags;
68   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
69     return Call.paramHasAttr(ArgIdx, Attr);
70   });
71   return Flags;
72 }
73 
74 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
75                                              const AttributeList &Attrs,
76                                              unsigned OpIdx) const {
77   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
78     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
79   });
80 }
81 
82 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
83                              ArrayRef<Register> ResRegs,
84                              ArrayRef<ArrayRef<Register>> ArgRegs,
85                              Register SwiftErrorVReg,
86                              std::function<unsigned()> GetCalleeReg) const {
87   CallLoweringInfo Info;
88   const DataLayout &DL = MIRBuilder.getDataLayout();
89   MachineFunction &MF = MIRBuilder.getMF();
90   MachineRegisterInfo &MRI = MF.getRegInfo();
91   bool CanBeTailCalled = CB.isTailCall() &&
92                          isInTailCallPosition(CB, MF.getTarget()) &&
93                          (MF.getFunction()
94                               .getFnAttribute("disable-tail-calls")
95                               .getValueAsString() != "true");
96 
97   CallingConv::ID CallConv = CB.getCallingConv();
98   Type *RetTy = CB.getType();
99   bool IsVarArg = CB.getFunctionType()->isVarArg();
100 
101   SmallVector<BaseArgInfo, 4> SplitArgs;
102   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
103   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
104 
105   if (!Info.CanLowerReturn) {
106     // Callee requires sret demotion.
107     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
108 
109     // The sret demotion isn't compatible with tail-calls, since the sret
110     // argument points into the caller's stack frame.
111     CanBeTailCalled = false;
112   }
113 
114 
115   // First step is to marshall all the function's parameters into the correct
116   // physregs and memory locations. Gather the sequence of argument types that
117   // we'll pass to the assigner function.
118   unsigned i = 0;
119   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
120   for (auto &Arg : CB.args()) {
121     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
122                     i < NumFixedArgs};
123     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
124 
125     // If we have an explicit sret argument that is an Instruction, (i.e., it
126     // might point to function-local memory), we can't meaningfully tail-call.
127     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
128       CanBeTailCalled = false;
129 
130     Info.OrigArgs.push_back(OrigArg);
131     ++i;
132   }
133 
134   // Try looking through a bitcast from one function type to another.
135   // Commonly happens with calls to objc_msgSend().
136   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
137   if (const Function *F = dyn_cast<Function>(CalleeV))
138     Info.Callee = MachineOperand::CreateGA(F, 0);
139   else
140     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
141 
142   Register ReturnHintAlignReg;
143   Align ReturnHintAlign;
144 
145   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
146 
147   if (!Info.OrigRet.Ty->isVoidTy()) {
148     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
149 
150     if (MaybeAlign Alignment = CB.getRetAlign()) {
151       if (*Alignment > Align(1)) {
152         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
153         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
154         ReturnHintAlign = *Alignment;
155       }
156     }
157   }
158 
159   Info.CB = &CB;
160   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
161   Info.CallConv = CallConv;
162   Info.SwiftErrorVReg = SwiftErrorVReg;
163   Info.IsMustTailCall = CB.isMustTailCall();
164   Info.IsTailCall = CanBeTailCalled;
165   Info.IsVarArg = IsVarArg;
166   if (!lowerCall(MIRBuilder, Info))
167     return false;
168 
169   if (ReturnHintAlignReg && !Info.IsTailCall) {
170     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
171                                 ReturnHintAlign);
172   }
173 
174   return true;
175 }
176 
177 template <typename FuncInfoTy>
178 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
179                                const DataLayout &DL,
180                                const FuncInfoTy &FuncInfo) const {
181   auto &Flags = Arg.Flags[0];
182   const AttributeList &Attrs = FuncInfo.getAttributes();
183   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
184 
185   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
186   if (PtrTy) {
187     Flags.setPointer();
188     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
189   }
190 
191   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
192   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
193     assert(OpIdx >= AttributeList::FirstArgIndex);
194     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
195 
196     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
197     if (!ElementTy)
198       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
199     if (!ElementTy)
200       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
201     assert(ElementTy && "Must have byval, inalloca or preallocated type");
202     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
203 
204     // For ByVal, alignment should be passed from FE.  BE will guess if
205     // this info is not there but there are cases it cannot get right.
206     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
207       MemAlign = *ParamAlign;
208     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
209       MemAlign = *ParamAlign;
210     else
211       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
212   } else if (OpIdx >= AttributeList::FirstArgIndex) {
213     if (auto ParamAlign =
214             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
215       MemAlign = *ParamAlign;
216   }
217   Flags.setMemAlign(MemAlign);
218   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
219 
220   // Don't try to use the returned attribute if the argument is marked as
221   // swiftself, since it won't be passed in x0.
222   if (Flags.isSwiftSelf())
223     Flags.setReturned(false);
224 }
225 
226 template void
227 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
228                                     const DataLayout &DL,
229                                     const Function &FuncInfo) const;
230 
231 template void
232 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
233                                     const DataLayout &DL,
234                                     const CallBase &FuncInfo) const;
235 
236 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
237                                      SmallVectorImpl<ArgInfo> &SplitArgs,
238                                      const DataLayout &DL,
239                                      CallingConv::ID CallConv,
240                                      SmallVectorImpl<uint64_t> *Offsets) const {
241   LLVMContext &Ctx = OrigArg.Ty->getContext();
242 
243   SmallVector<EVT, 4> SplitVTs;
244   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
245 
246   if (SplitVTs.size() == 0)
247     return;
248 
249   if (SplitVTs.size() == 1) {
250     // No splitting to do, but we want to replace the original type (e.g. [1 x
251     // double] -> double).
252     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
253                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
254                            OrigArg.IsFixed, OrigArg.OrigValue);
255     return;
256   }
257 
258   // Create one ArgInfo for each virtual register in the original ArgInfo.
259   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
260 
261   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
262       OrigArg.Ty, CallConv, false, DL);
263   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
264     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
265     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
266                            OrigArg.Flags[0], OrigArg.IsFixed);
267     if (NeedsRegBlock)
268       SplitArgs.back().Flags[0].setInConsecutiveRegs();
269   }
270 
271   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
272 }
273 
274 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
275 static MachineInstrBuilder
276 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
277                             ArrayRef<Register> SrcRegs) {
278   MachineRegisterInfo &MRI = *B.getMRI();
279   LLT LLTy = MRI.getType(DstRegs[0]);
280   LLT PartLLT = MRI.getType(SrcRegs[0]);
281 
282   // Deal with v3s16 split into v2s16
283   LLT LCMTy = getCoverTy(LLTy, PartLLT);
284   if (LCMTy == LLTy) {
285     // Common case where no padding is needed.
286     assert(DstRegs.size() == 1);
287     return B.buildConcatVectors(DstRegs[0], SrcRegs);
288   }
289 
290   // We need to create an unmerge to the result registers, which may require
291   // widening the original value.
292   Register UnmergeSrcReg;
293   if (LCMTy != PartLLT) {
294     assert(DstRegs.size() == 1);
295     return B.buildDeleteTrailingVectorElements(DstRegs[0],
296                                                B.buildMerge(LCMTy, SrcRegs));
297   } else {
298     // We don't need to widen anything if we're extracting a scalar which was
299     // promoted to a vector e.g. s8 -> v4s8 -> s8
300     assert(SrcRegs.size() == 1);
301     UnmergeSrcReg = SrcRegs[0];
302   }
303 
304   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
305 
306   SmallVector<Register, 8> PadDstRegs(NumDst);
307   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
308 
309   // Create the excess dead defs for the unmerge.
310   for (int I = DstRegs.size(); I != NumDst; ++I)
311     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
312 
313   if (PadDstRegs.size() == 1)
314     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
315   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
316 }
317 
318 /// Create a sequence of instructions to combine pieces split into register
319 /// typed values to the original IR value. \p OrigRegs contains the destination
320 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
321 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
322 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
323                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
324                               const ISD::ArgFlagsTy Flags) {
325   MachineRegisterInfo &MRI = *B.getMRI();
326 
327   if (PartLLT == LLTy) {
328     // We should have avoided introducing a new virtual register, and just
329     // directly assigned here.
330     assert(OrigRegs[0] == Regs[0]);
331     return;
332   }
333 
334   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
335       Regs.size() == 1) {
336     B.buildBitcast(OrigRegs[0], Regs[0]);
337     return;
338   }
339 
340   // A vector PartLLT needs extending to LLTy's element size.
341   // E.g. <2 x s64> = G_SEXT <2 x s32>.
342   if (PartLLT.isVector() == LLTy.isVector() &&
343       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
344       (!PartLLT.isVector() ||
345        PartLLT.getNumElements() == LLTy.getNumElements()) &&
346       OrigRegs.size() == 1 && Regs.size() == 1) {
347     Register SrcReg = Regs[0];
348 
349     LLT LocTy = MRI.getType(SrcReg);
350 
351     if (Flags.isSExt()) {
352       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
353                    .getReg(0);
354     } else if (Flags.isZExt()) {
355       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
356                    .getReg(0);
357     }
358 
359     // Sometimes pointers are passed zero extended.
360     LLT OrigTy = MRI.getType(OrigRegs[0]);
361     if (OrigTy.isPointer()) {
362       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
363       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
364       return;
365     }
366 
367     B.buildTrunc(OrigRegs[0], SrcReg);
368     return;
369   }
370 
371   if (!LLTy.isVector() && !PartLLT.isVector()) {
372     assert(OrigRegs.size() == 1);
373     LLT OrigTy = MRI.getType(OrigRegs[0]);
374 
375     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
376     if (SrcSize == OrigTy.getSizeInBits())
377       B.buildMerge(OrigRegs[0], Regs);
378     else {
379       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
380       B.buildTrunc(OrigRegs[0], Widened);
381     }
382 
383     return;
384   }
385 
386   if (PartLLT.isVector()) {
387     assert(OrigRegs.size() == 1);
388     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
389 
390     // If PartLLT is a mismatched vector in both number of elements and element
391     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
392     // have the same elt type, i.e. v4s32.
393     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
394         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
395         Regs.size() == 1) {
396       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
397                       .changeElementCount(PartLLT.getElementCount() * 2);
398       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
399       PartLLT = NewTy;
400     }
401 
402     if (LLTy.getScalarType() == PartLLT.getElementType()) {
403       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
404     } else {
405       unsigned I = 0;
406       LLT GCDTy = getGCDType(LLTy, PartLLT);
407 
408       // We are both splitting a vector, and bitcasting its element types. Cast
409       // the source pieces into the appropriate number of pieces with the result
410       // element type.
411       for (Register SrcReg : CastRegs)
412         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
413       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
414     }
415 
416     return;
417   }
418 
419   assert(LLTy.isVector() && !PartLLT.isVector());
420 
421   LLT DstEltTy = LLTy.getElementType();
422 
423   // Pointer information was discarded. We'll need to coerce some register types
424   // to avoid violating type constraints.
425   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
426 
427   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
428 
429   if (DstEltTy == PartLLT) {
430     // Vector was trivially scalarized.
431 
432     if (RealDstEltTy.isPointer()) {
433       for (Register Reg : Regs)
434         MRI.setType(Reg, RealDstEltTy);
435     }
436 
437     B.buildBuildVector(OrigRegs[0], Regs);
438   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
439     // Deal with vector with 64-bit elements decomposed to 32-bit
440     // registers. Need to create intermediate 64-bit elements.
441     SmallVector<Register, 8> EltMerges;
442     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
443 
444     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
445 
446     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
447       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
448       // Fix the type in case this is really a vector of pointers.
449       MRI.setType(Merge.getReg(0), RealDstEltTy);
450       EltMerges.push_back(Merge.getReg(0));
451       Regs = Regs.drop_front(PartsPerElt);
452     }
453 
454     B.buildBuildVector(OrigRegs[0], EltMerges);
455   } else {
456     // Vector was split, and elements promoted to a wider type.
457     // FIXME: Should handle floating point promotions.
458     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
459     auto BV = B.buildBuildVector(BVType, Regs);
460     B.buildTrunc(OrigRegs[0], BV);
461   }
462 }
463 
464 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
465 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
466 /// contain the type of scalar value extension if necessary.
467 ///
468 /// This is used for outgoing values (vregs to physregs)
469 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
470                             Register SrcReg, LLT SrcTy, LLT PartTy,
471                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
472   // We could just insert a regular copy, but this is unreachable at the moment.
473   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
474 
475   const unsigned PartSize = PartTy.getSizeInBits();
476 
477   if (PartTy.isVector() == SrcTy.isVector() &&
478       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
479     assert(DstRegs.size() == 1);
480     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
481     return;
482   }
483 
484   if (SrcTy.isVector() && !PartTy.isVector() &&
485       PartSize > SrcTy.getElementType().getSizeInBits()) {
486     // Vector was scalarized, and the elements extended.
487     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
488     for (int i = 0, e = DstRegs.size(); i != e; ++i)
489       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
490     return;
491   }
492 
493   LLT GCDTy = getGCDType(SrcTy, PartTy);
494   if (GCDTy == PartTy) {
495     // If this already evenly divisible, we can create a simple unmerge.
496     B.buildUnmerge(DstRegs, SrcReg);
497     return;
498   }
499 
500   MachineRegisterInfo &MRI = *B.getMRI();
501   LLT DstTy = MRI.getType(DstRegs[0]);
502   LLT LCMTy = getCoverTy(SrcTy, PartTy);
503 
504   const unsigned DstSize = DstTy.getSizeInBits();
505   const unsigned SrcSize = SrcTy.getSizeInBits();
506   unsigned CoveringSize = LCMTy.getSizeInBits();
507 
508   Register UnmergeSrc = SrcReg;
509 
510   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
511     // For scalars, it's common to be able to use a simple extension.
512     if (SrcTy.isScalar() && DstTy.isScalar()) {
513       CoveringSize = alignTo(SrcSize, DstSize);
514       LLT CoverTy = LLT::scalar(CoveringSize);
515       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
516     } else {
517       // Widen to the common type.
518       // FIXME: This should respect the extend type
519       Register Undef = B.buildUndef(SrcTy).getReg(0);
520       SmallVector<Register, 8> MergeParts(1, SrcReg);
521       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
522         MergeParts.push_back(Undef);
523       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
524     }
525   }
526 
527   if (LCMTy.isVector() && CoveringSize != SrcSize)
528     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
529 
530   B.buildUnmerge(DstRegs, UnmergeSrc);
531 }
532 
533 bool CallLowering::determineAndHandleAssignments(
534     ValueHandler &Handler, ValueAssigner &Assigner,
535     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
536     CallingConv::ID CallConv, bool IsVarArg,
537     ArrayRef<Register> ThisReturnRegs) const {
538   MachineFunction &MF = MIRBuilder.getMF();
539   const Function &F = MF.getFunction();
540   SmallVector<CCValAssign, 16> ArgLocs;
541 
542   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
543   if (!determineAssignments(Assigner, Args, CCInfo))
544     return false;
545 
546   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
547                            ThisReturnRegs);
548 }
549 
550 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
551   if (Flags.isSExt())
552     return TargetOpcode::G_SEXT;
553   if (Flags.isZExt())
554     return TargetOpcode::G_ZEXT;
555   return TargetOpcode::G_ANYEXT;
556 }
557 
558 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
559                                         SmallVectorImpl<ArgInfo> &Args,
560                                         CCState &CCInfo) const {
561   LLVMContext &Ctx = CCInfo.getContext();
562   const CallingConv::ID CallConv = CCInfo.getCallingConv();
563 
564   unsigned NumArgs = Args.size();
565   for (unsigned i = 0; i != NumArgs; ++i) {
566     EVT CurVT = EVT::getEVT(Args[i].Ty);
567 
568     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
569 
570     // If we need to split the type over multiple regs, check it's a scenario
571     // we currently support.
572     unsigned NumParts =
573         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
574 
575     if (NumParts == 1) {
576       // Try to use the register type if we couldn't assign the VT.
577       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
578                              Args[i].Flags[0], CCInfo))
579         return false;
580       continue;
581     }
582 
583     // For incoming arguments (physregs to vregs), we could have values in
584     // physregs (or memlocs) which we want to extract and copy to vregs.
585     // During this, we might have to deal with the LLT being split across
586     // multiple regs, so we have to record this information for later.
587     //
588     // If we have outgoing args, then we have the opposite case. We have a
589     // vreg with an LLT which we want to assign to a physical location, and
590     // we might have to record that the value has to be split later.
591 
592     // We're handling an incoming arg which is split over multiple regs.
593     // E.g. passing an s128 on AArch64.
594     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
595     Args[i].Flags.clear();
596 
597     for (unsigned Part = 0; Part < NumParts; ++Part) {
598       ISD::ArgFlagsTy Flags = OrigFlags;
599       if (Part == 0) {
600         Flags.setSplit();
601       } else {
602         Flags.setOrigAlign(Align(1));
603         if (Part == NumParts - 1)
604           Flags.setSplitEnd();
605       }
606 
607       Args[i].Flags.push_back(Flags);
608       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
609                              Args[i].Flags[Part], CCInfo)) {
610         // Still couldn't assign this smaller part type for some reason.
611         return false;
612       }
613     }
614   }
615 
616   return true;
617 }
618 
619 bool CallLowering::handleAssignments(ValueHandler &Handler,
620                                      SmallVectorImpl<ArgInfo> &Args,
621                                      CCState &CCInfo,
622                                      SmallVectorImpl<CCValAssign> &ArgLocs,
623                                      MachineIRBuilder &MIRBuilder,
624                                      ArrayRef<Register> ThisReturnRegs) const {
625   MachineFunction &MF = MIRBuilder.getMF();
626   MachineRegisterInfo &MRI = MF.getRegInfo();
627   const Function &F = MF.getFunction();
628   const DataLayout &DL = F.getParent()->getDataLayout();
629 
630   const unsigned NumArgs = Args.size();
631 
632   // Stores thunks for outgoing register assignments. This is used so we delay
633   // generating register copies until mem loc assignments are done. We do this
634   // so that if the target is using the delayed stack protector feature, we can
635   // find the split point of the block accurately. E.g. if we have:
636   // G_STORE %val, %memloc
637   // $x0 = COPY %foo
638   // $x1 = COPY %bar
639   // CALL func
640   // ... then the split point for the block will correctly be at, and including,
641   // the copy to $x0. If instead the G_STORE instruction immediately precedes
642   // the CALL, then we'd prematurely choose the CALL as the split point, thus
643   // generating a split block with a CALL that uses undefined physregs.
644   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
645 
646   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
647     assert(j < ArgLocs.size() && "Skipped too many arg locs");
648     CCValAssign &VA = ArgLocs[j];
649     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
650 
651     if (VA.needsCustom()) {
652       std::function<void()> Thunk;
653       unsigned NumArgRegs = Handler.assignCustomValue(
654           Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
655       if (Thunk)
656         DelayedOutgoingRegAssignments.emplace_back(Thunk);
657       if (!NumArgRegs)
658         return false;
659       j += NumArgRegs;
660       continue;
661     }
662 
663     const MVT ValVT = VA.getValVT();
664     const MVT LocVT = VA.getLocVT();
665 
666     const LLT LocTy(LocVT);
667     const LLT ValTy(ValVT);
668     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
669     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
670     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
671 
672     // Expected to be multiple regs for a single incoming arg.
673     // There should be Regs.size() ArgLocs per argument.
674     // This should be the same as getNumRegistersForCallingConv
675     const unsigned NumParts = Args[i].Flags.size();
676 
677     // Now split the registers into the assigned types.
678     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
679 
680     if (NumParts != 1 || NewLLT != OrigTy) {
681       // If we can't directly assign the register, we need one or more
682       // intermediate values.
683       Args[i].Regs.resize(NumParts);
684 
685       // For each split register, create and assign a vreg that will store
686       // the incoming component of the larger value. These will later be
687       // merged to form the final vreg.
688       for (unsigned Part = 0; Part < NumParts; ++Part)
689         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
690     }
691 
692     assert((j + (NumParts - 1)) < ArgLocs.size() &&
693            "Too many regs for number of args");
694 
695     // Coerce into outgoing value types before register assignment.
696     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
697       assert(Args[i].OrigRegs.size() == 1);
698       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
699                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
700     }
701 
702     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
703     for (unsigned Part = 0; Part < NumParts; ++Part) {
704       Register ArgReg = Args[i].Regs[Part];
705       // There should be Regs.size() ArgLocs per argument.
706       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
707       CCValAssign &VA = ArgLocs[j + Idx];
708       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
709 
710       if (VA.isMemLoc() && !Flags.isByVal()) {
711         // Individual pieces may have been spilled to the stack and others
712         // passed in registers.
713 
714         // TODO: The memory size may be larger than the value we need to
715         // store. We may need to adjust the offset for big endian targets.
716         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
717 
718         MachinePointerInfo MPO;
719         Register StackAddr = Handler.getStackAddress(
720             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
721 
722         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
723         continue;
724       }
725 
726       if (VA.isMemLoc() && Flags.isByVal()) {
727         assert(Args[i].Regs.size() == 1 &&
728                "didn't expect split byval pointer");
729 
730         if (Handler.isIncomingArgumentHandler()) {
731           // We just need to copy the frame index value to the pointer.
732           MachinePointerInfo MPO;
733           Register StackAddr = Handler.getStackAddress(
734               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
735           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
736         } else {
737           // For outgoing byval arguments, insert the implicit copy byval
738           // implies, such that writes in the callee do not modify the caller's
739           // value.
740           uint64_t MemSize = Flags.getByValSize();
741           int64_t Offset = VA.getLocMemOffset();
742 
743           MachinePointerInfo DstMPO;
744           Register StackAddr =
745               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
746 
747           MachinePointerInfo SrcMPO(Args[i].OrigValue);
748           if (!Args[i].OrigValue) {
749             // We still need to accurately track the stack address space if we
750             // don't know the underlying value.
751             const LLT PtrTy = MRI.getType(StackAddr);
752             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
753           }
754 
755           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
756                                     inferAlignFromPtrInfo(MF, DstMPO));
757 
758           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
759                                     inferAlignFromPtrInfo(MF, SrcMPO));
760 
761           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
762                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
763                                      MemSize, VA);
764         }
765         continue;
766       }
767 
768       assert(!VA.needsCustom() && "custom loc should have been handled already");
769 
770       if (i == 0 && !ThisReturnRegs.empty() &&
771           Handler.isIncomingArgumentHandler() &&
772           isTypeIsValidForThisReturn(ValVT)) {
773         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
774         continue;
775       }
776 
777       if (Handler.isIncomingArgumentHandler())
778         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
779       else {
780         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
781           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
782         });
783       }
784     }
785 
786     // Now that all pieces have been assigned, re-pack the register typed values
787     // into the original value typed registers.
788     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
789       // Merge the split registers into the expected larger result vregs of
790       // the original call.
791       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
792                         LocTy, Args[i].Flags[0]);
793     }
794 
795     j += NumParts - 1;
796   }
797   for (auto &Fn : DelayedOutgoingRegAssignments)
798     Fn();
799 
800   return true;
801 }
802 
803 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
804                                    ArrayRef<Register> VRegs, Register DemoteReg,
805                                    int FI) const {
806   MachineFunction &MF = MIRBuilder.getMF();
807   MachineRegisterInfo &MRI = MF.getRegInfo();
808   const DataLayout &DL = MF.getDataLayout();
809 
810   SmallVector<EVT, 4> SplitVTs;
811   SmallVector<uint64_t, 4> Offsets;
812   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
813 
814   assert(VRegs.size() == SplitVTs.size());
815 
816   unsigned NumValues = SplitVTs.size();
817   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
818   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
819   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
820 
821   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
822 
823   for (unsigned I = 0; I < NumValues; ++I) {
824     Register Addr;
825     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
826     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
827                                         MRI.getType(VRegs[I]),
828                                         commonAlignment(BaseAlign, Offsets[I]));
829     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
830   }
831 }
832 
833 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
834                                     ArrayRef<Register> VRegs,
835                                     Register DemoteReg) const {
836   MachineFunction &MF = MIRBuilder.getMF();
837   MachineRegisterInfo &MRI = MF.getRegInfo();
838   const DataLayout &DL = MF.getDataLayout();
839 
840   SmallVector<EVT, 4> SplitVTs;
841   SmallVector<uint64_t, 4> Offsets;
842   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
843 
844   assert(VRegs.size() == SplitVTs.size());
845 
846   unsigned NumValues = SplitVTs.size();
847   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
848   unsigned AS = DL.getAllocaAddrSpace();
849   LLT OffsetLLTy =
850       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
851 
852   MachinePointerInfo PtrInfo(AS);
853 
854   for (unsigned I = 0; I < NumValues; ++I) {
855     Register Addr;
856     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
857     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
858                                         MRI.getType(VRegs[I]),
859                                         commonAlignment(BaseAlign, Offsets[I]));
860     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
861   }
862 }
863 
864 void CallLowering::insertSRetIncomingArgument(
865     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
866     MachineRegisterInfo &MRI, const DataLayout &DL) const {
867   unsigned AS = DL.getAllocaAddrSpace();
868   DemoteReg = MRI.createGenericVirtualRegister(
869       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
870 
871   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
872 
873   SmallVector<EVT, 1> ValueVTs;
874   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
875 
876   // NOTE: Assume that a pointer won't get split into more than one VT.
877   assert(ValueVTs.size() == 1);
878 
879   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
880                     ArgInfo::NoArgIndex);
881   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
882   DemoteArg.Flags[0].setSRet();
883   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
884 }
885 
886 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
887                                               const CallBase &CB,
888                                               CallLoweringInfo &Info) const {
889   const DataLayout &DL = MIRBuilder.getDataLayout();
890   Type *RetTy = CB.getType();
891   unsigned AS = DL.getAllocaAddrSpace();
892   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
893 
894   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
895       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
896 
897   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
898   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
899                     ArgInfo::NoArgIndex);
900   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
901   DemoteArg.Flags[0].setSRet();
902 
903   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
904   Info.DemoteStackIndex = FI;
905   Info.DemoteRegister = DemoteReg;
906 }
907 
908 bool CallLowering::checkReturn(CCState &CCInfo,
909                                SmallVectorImpl<BaseArgInfo> &Outs,
910                                CCAssignFn *Fn) const {
911   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
912     MVT VT = MVT::getVT(Outs[I].Ty);
913     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
914       return false;
915   }
916   return true;
917 }
918 
919 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
920                                  AttributeList Attrs,
921                                  SmallVectorImpl<BaseArgInfo> &Outs,
922                                  const DataLayout &DL) const {
923   LLVMContext &Context = RetTy->getContext();
924   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
925 
926   SmallVector<EVT, 4> SplitVTs;
927   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
928   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
929 
930   for (EVT VT : SplitVTs) {
931     unsigned NumParts =
932         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
933     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
934     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
935 
936     for (unsigned I = 0; I < NumParts; ++I) {
937       Outs.emplace_back(PartTy, Flags);
938     }
939   }
940 }
941 
942 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
943   const auto &F = MF.getFunction();
944   Type *ReturnType = F.getReturnType();
945   CallingConv::ID CallConv = F.getCallingConv();
946 
947   SmallVector<BaseArgInfo, 4> SplitArgs;
948   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
949                 MF.getDataLayout());
950   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
951 }
952 
953 bool CallLowering::parametersInCSRMatch(
954     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
955     const SmallVectorImpl<CCValAssign> &OutLocs,
956     const SmallVectorImpl<ArgInfo> &OutArgs) const {
957   for (unsigned i = 0; i < OutLocs.size(); ++i) {
958     auto &ArgLoc = OutLocs[i];
959     // If it's not a register, it's fine.
960     if (!ArgLoc.isRegLoc())
961       continue;
962 
963     MCRegister PhysReg = ArgLoc.getLocReg();
964 
965     // Only look at callee-saved registers.
966     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
967       continue;
968 
969     LLVM_DEBUG(
970         dbgs()
971         << "... Call has an argument passed in a callee-saved register.\n");
972 
973     // Check if it was copied from.
974     const ArgInfo &OutInfo = OutArgs[i];
975 
976     if (OutInfo.Regs.size() > 1) {
977       LLVM_DEBUG(
978           dbgs() << "... Cannot handle arguments in multiple registers.\n");
979       return false;
980     }
981 
982     // Check if we copy the register, walking through copies from virtual
983     // registers. Note that getDefIgnoringCopies does not ignore copies from
984     // physical registers.
985     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
986     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
987       LLVM_DEBUG(
988           dbgs()
989           << "... Parameter was not copied into a VReg, cannot tail call.\n");
990       return false;
991     }
992 
993     // Got a copy. Verify that it's the same as the register we want.
994     Register CopyRHS = RegDef->getOperand(1).getReg();
995     if (CopyRHS != PhysReg) {
996       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
997                            "VReg, cannot tail call.\n");
998       return false;
999     }
1000   }
1001 
1002   return true;
1003 }
1004 
1005 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1006                                      MachineFunction &MF,
1007                                      SmallVectorImpl<ArgInfo> &InArgs,
1008                                      ValueAssigner &CalleeAssigner,
1009                                      ValueAssigner &CallerAssigner) const {
1010   const Function &F = MF.getFunction();
1011   CallingConv::ID CalleeCC = Info.CallConv;
1012   CallingConv::ID CallerCC = F.getCallingConv();
1013 
1014   if (CallerCC == CalleeCC)
1015     return true;
1016 
1017   SmallVector<CCValAssign, 16> ArgLocs1;
1018   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1019   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1020     return false;
1021 
1022   SmallVector<CCValAssign, 16> ArgLocs2;
1023   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1024   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1025     return false;
1026 
1027   // We need the argument locations to match up exactly. If there's more in
1028   // one than the other, then we are done.
1029   if (ArgLocs1.size() != ArgLocs2.size())
1030     return false;
1031 
1032   // Make sure that each location is passed in exactly the same way.
1033   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1034     const CCValAssign &Loc1 = ArgLocs1[i];
1035     const CCValAssign &Loc2 = ArgLocs2[i];
1036 
1037     // We need both of them to be the same. So if one is a register and one
1038     // isn't, we're done.
1039     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1040       return false;
1041 
1042     if (Loc1.isRegLoc()) {
1043       // If they don't have the same register location, we're done.
1044       if (Loc1.getLocReg() != Loc2.getLocReg())
1045         return false;
1046 
1047       // They matched, so we can move to the next ArgLoc.
1048       continue;
1049     }
1050 
1051     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1052     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1053       return false;
1054   }
1055 
1056   return true;
1057 }
1058 
1059 LLT CallLowering::ValueHandler::getStackValueStoreType(
1060     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1061   const MVT ValVT = VA.getValVT();
1062   if (ValVT != MVT::iPTR) {
1063     LLT ValTy(ValVT);
1064 
1065     // We lost the pointeriness going through CCValAssign, so try to restore it
1066     // based on the flags.
1067     if (Flags.isPointer()) {
1068       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1069                                ValTy.getScalarSizeInBits());
1070       if (ValVT.isVector())
1071         return LLT::vector(ValTy.getElementCount(), PtrTy);
1072       return PtrTy;
1073     }
1074 
1075     return ValTy;
1076   }
1077 
1078   unsigned AddrSpace = Flags.getPointerAddrSpace();
1079   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1080 }
1081 
1082 void CallLowering::ValueHandler::copyArgumentMemory(
1083     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1084     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1085     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1086     CCValAssign &VA) const {
1087   MachineFunction &MF = MIRBuilder.getMF();
1088   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1089       SrcPtrInfo,
1090       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1091       SrcAlign);
1092 
1093   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1094       DstPtrInfo,
1095       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1096       MemSize, DstAlign);
1097 
1098   const LLT PtrTy = MRI.getType(DstPtr);
1099   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1100 
1101   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1102   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1103 }
1104 
1105 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1106                                                     CCValAssign &VA,
1107                                                     unsigned MaxSizeBits) {
1108   LLT LocTy{VA.getLocVT()};
1109   LLT ValTy{VA.getValVT()};
1110 
1111   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1112     return ValReg;
1113 
1114   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1115     if (MaxSizeBits <= ValTy.getSizeInBits())
1116       return ValReg;
1117     LocTy = LLT::scalar(MaxSizeBits);
1118   }
1119 
1120   const LLT ValRegTy = MRI.getType(ValReg);
1121   if (ValRegTy.isPointer()) {
1122     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1123     // we have to cast to do the extension.
1124     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1125     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1126   }
1127 
1128   switch (VA.getLocInfo()) {
1129   default: break;
1130   case CCValAssign::Full:
1131   case CCValAssign::BCvt:
1132     // FIXME: bitconverting between vector types may or may not be a
1133     // nop in big-endian situations.
1134     return ValReg;
1135   case CCValAssign::AExt: {
1136     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1137     return MIB.getReg(0);
1138   }
1139   case CCValAssign::SExt: {
1140     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1141     MIRBuilder.buildSExt(NewReg, ValReg);
1142     return NewReg;
1143   }
1144   case CCValAssign::ZExt: {
1145     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1146     MIRBuilder.buildZExt(NewReg, ValReg);
1147     return NewReg;
1148   }
1149   }
1150   llvm_unreachable("unable to extend register");
1151 }
1152 
1153 void CallLowering::ValueAssigner::anchor() {}
1154 
1155 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1156                                                                 Register SrcReg,
1157                                                                 LLT NarrowTy) {
1158   switch (VA.getLocInfo()) {
1159   case CCValAssign::LocInfo::ZExt: {
1160     return MIRBuilder
1161         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1162                          NarrowTy.getScalarSizeInBits())
1163         .getReg(0);
1164   }
1165   case CCValAssign::LocInfo::SExt: {
1166     return MIRBuilder
1167         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1168                          NarrowTy.getScalarSizeInBits())
1169         .getReg(0);
1170     break;
1171   }
1172   default:
1173     return SrcReg;
1174   }
1175 }
1176 
1177 /// Check if we can use a basic COPY instruction between the two types.
1178 ///
1179 /// We're currently building on top of the infrastructure using MVT, which loses
1180 /// pointer information in the CCValAssign. We accept copies from physical
1181 /// registers that have been reported as integers if it's to an equivalent sized
1182 /// pointer LLT.
1183 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1184   if (SrcTy == DstTy)
1185     return true;
1186 
1187   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1188     return false;
1189 
1190   SrcTy = SrcTy.getScalarType();
1191   DstTy = DstTy.getScalarType();
1192 
1193   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1194          (DstTy.isScalar() && SrcTy.isPointer());
1195 }
1196 
1197 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1198                                                           Register PhysReg,
1199                                                           CCValAssign VA) {
1200   const MVT LocVT = VA.getLocVT();
1201   const LLT LocTy(LocVT);
1202   const LLT RegTy = MRI.getType(ValVReg);
1203 
1204   if (isCopyCompatibleType(RegTy, LocTy)) {
1205     MIRBuilder.buildCopy(ValVReg, PhysReg);
1206     return;
1207   }
1208 
1209   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1210   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1211   MIRBuilder.buildTrunc(ValVReg, Hint);
1212 }
1213