xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 76c83e747f28db2c4746bdb02b6728514142c732)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   if (AttrFn(Attribute::SExt))
39     Flags.setSExt();
40   if (AttrFn(Attribute::ZExt))
41     Flags.setZExt();
42   if (AttrFn(Attribute::InReg))
43     Flags.setInReg();
44   if (AttrFn(Attribute::StructRet))
45     Flags.setSRet();
46   if (AttrFn(Attribute::Nest))
47     Flags.setNest();
48   if (AttrFn(Attribute::ByVal))
49     Flags.setByVal();
50   if (AttrFn(Attribute::Preallocated))
51     Flags.setPreallocated();
52   if (AttrFn(Attribute::InAlloca))
53     Flags.setInAlloca();
54   if (AttrFn(Attribute::Returned))
55     Flags.setReturned();
56   if (AttrFn(Attribute::SwiftSelf))
57     Flags.setSwiftSelf();
58   if (AttrFn(Attribute::SwiftAsync))
59     Flags.setSwiftAsync();
60   if (AttrFn(Attribute::SwiftError))
61     Flags.setSwiftError();
62 }
63 
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65                                                      unsigned ArgIdx) const {
66   ISD::ArgFlagsTy Flags;
67   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68     return Call.paramHasAttr(ArgIdx, Attr);
69   });
70   return Flags;
71 }
72 
73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
74                                              const AttributeList &Attrs,
75                                              unsigned OpIdx) const {
76   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
77     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
78   });
79 }
80 
81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
82                              ArrayRef<Register> ResRegs,
83                              ArrayRef<ArrayRef<Register>> ArgRegs,
84                              Register SwiftErrorVReg,
85                              std::function<unsigned()> GetCalleeReg) const {
86   CallLoweringInfo Info;
87   const DataLayout &DL = MIRBuilder.getDataLayout();
88   MachineFunction &MF = MIRBuilder.getMF();
89   MachineRegisterInfo &MRI = MF.getRegInfo();
90   bool CanBeTailCalled = CB.isTailCall() &&
91                          isInTailCallPosition(CB, MF.getTarget()) &&
92                          (MF.getFunction()
93                               .getFnAttribute("disable-tail-calls")
94                               .getValueAsString() != "true");
95 
96   CallingConv::ID CallConv = CB.getCallingConv();
97   Type *RetTy = CB.getType();
98   bool IsVarArg = CB.getFunctionType()->isVarArg();
99 
100   SmallVector<BaseArgInfo, 4> SplitArgs;
101   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
102   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
103 
104   if (!Info.CanLowerReturn) {
105     // Callee requires sret demotion.
106     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
107 
108     // The sret demotion isn't compatible with tail-calls, since the sret
109     // argument points into the caller's stack frame.
110     CanBeTailCalled = false;
111   }
112 
113 
114   // First step is to marshall all the function's parameters into the correct
115   // physregs and memory locations. Gather the sequence of argument types that
116   // we'll pass to the assigner function.
117   unsigned i = 0;
118   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
119   for (auto &Arg : CB.args()) {
120     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
121                     i < NumFixedArgs};
122     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
123 
124     // If we have an explicit sret argument that is an Instruction, (i.e., it
125     // might point to function-local memory), we can't meaningfully tail-call.
126     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
127       CanBeTailCalled = false;
128 
129     Info.OrigArgs.push_back(OrigArg);
130     ++i;
131   }
132 
133   // Try looking through a bitcast from one function type to another.
134   // Commonly happens with calls to objc_msgSend().
135   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
136   if (const Function *F = dyn_cast<Function>(CalleeV))
137     Info.Callee = MachineOperand::CreateGA(F, 0);
138   else
139     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
140 
141   Register ReturnHintAlignReg;
142   Align ReturnHintAlign;
143 
144   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
145 
146   if (!Info.OrigRet.Ty->isVoidTy()) {
147     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
148 
149     if (MaybeAlign Alignment = CB.getRetAlign()) {
150       if (*Alignment > Align(1)) {
151         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
152         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
153         ReturnHintAlign = *Alignment;
154       }
155     }
156   }
157 
158   Info.CB = &CB;
159   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
160   Info.CallConv = CallConv;
161   Info.SwiftErrorVReg = SwiftErrorVReg;
162   Info.IsMustTailCall = CB.isMustTailCall();
163   Info.IsTailCall = CanBeTailCalled;
164   Info.IsVarArg = IsVarArg;
165   if (!lowerCall(MIRBuilder, Info))
166     return false;
167 
168   if (ReturnHintAlignReg && !Info.IsTailCall) {
169     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
170                                 ReturnHintAlign);
171   }
172 
173   return true;
174 }
175 
176 template <typename FuncInfoTy>
177 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
178                                const DataLayout &DL,
179                                const FuncInfoTy &FuncInfo) const {
180   auto &Flags = Arg.Flags[0];
181   const AttributeList &Attrs = FuncInfo.getAttributes();
182   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
183 
184   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
185   if (PtrTy) {
186     Flags.setPointer();
187     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
188   }
189 
190   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
191   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
192     assert(OpIdx >= AttributeList::FirstArgIndex);
193     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
194 
195     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
196     if (!ElementTy)
197       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
198     if (!ElementTy)
199       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
200     assert(ElementTy && "Must have byval, inalloca or preallocated type");
201     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
202 
203     // For ByVal, alignment should be passed from FE.  BE will guess if
204     // this info is not there but there are cases it cannot get right.
205     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
206       MemAlign = *ParamAlign;
207     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
208       MemAlign = *ParamAlign;
209     else
210       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
211   } else if (OpIdx >= AttributeList::FirstArgIndex) {
212     if (auto ParamAlign =
213             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
214       MemAlign = *ParamAlign;
215   }
216   Flags.setMemAlign(MemAlign);
217   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
218 
219   // Don't try to use the returned attribute if the argument is marked as
220   // swiftself, since it won't be passed in x0.
221   if (Flags.isSwiftSelf())
222     Flags.setReturned(false);
223 }
224 
225 template void
226 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
227                                     const DataLayout &DL,
228                                     const Function &FuncInfo) const;
229 
230 template void
231 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
232                                     const DataLayout &DL,
233                                     const CallBase &FuncInfo) const;
234 
235 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
236                                      SmallVectorImpl<ArgInfo> &SplitArgs,
237                                      const DataLayout &DL,
238                                      CallingConv::ID CallConv,
239                                      SmallVectorImpl<uint64_t> *Offsets) const {
240   LLVMContext &Ctx = OrigArg.Ty->getContext();
241 
242   SmallVector<EVT, 4> SplitVTs;
243   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
244 
245   if (SplitVTs.size() == 0)
246     return;
247 
248   if (SplitVTs.size() == 1) {
249     // No splitting to do, but we want to replace the original type (e.g. [1 x
250     // double] -> double).
251     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
252                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
253                            OrigArg.IsFixed, OrigArg.OrigValue);
254     return;
255   }
256 
257   // Create one ArgInfo for each virtual register in the original ArgInfo.
258   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
259 
260   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
261       OrigArg.Ty, CallConv, false, DL);
262   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
263     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
264     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
265                            OrigArg.Flags[0], OrigArg.IsFixed);
266     if (NeedsRegBlock)
267       SplitArgs.back().Flags[0].setInConsecutiveRegs();
268   }
269 
270   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
271 }
272 
273 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
274 static MachineInstrBuilder
275 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
276                             ArrayRef<Register> SrcRegs) {
277   MachineRegisterInfo &MRI = *B.getMRI();
278   LLT LLTy = MRI.getType(DstRegs[0]);
279   LLT PartLLT = MRI.getType(SrcRegs[0]);
280 
281   // Deal with v3s16 split into v2s16
282   LLT LCMTy = getCoverTy(LLTy, PartLLT);
283   if (LCMTy == LLTy) {
284     // Common case where no padding is needed.
285     assert(DstRegs.size() == 1);
286     return B.buildConcatVectors(DstRegs[0], SrcRegs);
287   }
288 
289   // We need to create an unmerge to the result registers, which may require
290   // widening the original value.
291   Register UnmergeSrcReg;
292   if (LCMTy != PartLLT) {
293     assert(DstRegs.size() == 1);
294     return B.buildDeleteTrailingVectorElements(DstRegs[0],
295                                                B.buildMerge(LCMTy, SrcRegs));
296   } else {
297     // We don't need to widen anything if we're extracting a scalar which was
298     // promoted to a vector e.g. s8 -> v4s8 -> s8
299     assert(SrcRegs.size() == 1);
300     UnmergeSrcReg = SrcRegs[0];
301   }
302 
303   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
304 
305   SmallVector<Register, 8> PadDstRegs(NumDst);
306   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
307 
308   // Create the excess dead defs for the unmerge.
309   for (int I = DstRegs.size(); I != NumDst; ++I)
310     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
311 
312   if (PadDstRegs.size() == 1)
313     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
314   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
315 }
316 
317 /// Create a sequence of instructions to combine pieces split into register
318 /// typed values to the original IR value. \p OrigRegs contains the destination
319 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
320 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
321 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
322                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
323                               const ISD::ArgFlagsTy Flags) {
324   MachineRegisterInfo &MRI = *B.getMRI();
325 
326   if (PartLLT == LLTy) {
327     // We should have avoided introducing a new virtual register, and just
328     // directly assigned here.
329     assert(OrigRegs[0] == Regs[0]);
330     return;
331   }
332 
333   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
334       Regs.size() == 1) {
335     B.buildBitcast(OrigRegs[0], Regs[0]);
336     return;
337   }
338 
339   // A vector PartLLT needs extending to LLTy's element size.
340   // E.g. <2 x s64> = G_SEXT <2 x s32>.
341   if (PartLLT.isVector() == LLTy.isVector() &&
342       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
343       (!PartLLT.isVector() ||
344        PartLLT.getNumElements() == LLTy.getNumElements()) &&
345       OrigRegs.size() == 1 && Regs.size() == 1) {
346     Register SrcReg = Regs[0];
347 
348     LLT LocTy = MRI.getType(SrcReg);
349 
350     if (Flags.isSExt()) {
351       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
352                    .getReg(0);
353     } else if (Flags.isZExt()) {
354       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
355                    .getReg(0);
356     }
357 
358     // Sometimes pointers are passed zero extended.
359     LLT OrigTy = MRI.getType(OrigRegs[0]);
360     if (OrigTy.isPointer()) {
361       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
362       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
363       return;
364     }
365 
366     B.buildTrunc(OrigRegs[0], SrcReg);
367     return;
368   }
369 
370   if (!LLTy.isVector() && !PartLLT.isVector()) {
371     assert(OrigRegs.size() == 1);
372     LLT OrigTy = MRI.getType(OrigRegs[0]);
373 
374     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
375     if (SrcSize == OrigTy.getSizeInBits())
376       B.buildMerge(OrigRegs[0], Regs);
377     else {
378       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
379       B.buildTrunc(OrigRegs[0], Widened);
380     }
381 
382     return;
383   }
384 
385   if (PartLLT.isVector()) {
386     assert(OrigRegs.size() == 1);
387     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
388 
389     // If PartLLT is a mismatched vector in both number of elements and element
390     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
391     // have the same elt type, i.e. v4s32.
392     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
393         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
394         Regs.size() == 1) {
395       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
396                       .changeElementCount(PartLLT.getElementCount() * 2);
397       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
398       PartLLT = NewTy;
399     }
400 
401     if (LLTy.getScalarType() == PartLLT.getElementType()) {
402       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
403     } else {
404       unsigned I = 0;
405       LLT GCDTy = getGCDType(LLTy, PartLLT);
406 
407       // We are both splitting a vector, and bitcasting its element types. Cast
408       // the source pieces into the appropriate number of pieces with the result
409       // element type.
410       for (Register SrcReg : CastRegs)
411         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
412       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
413     }
414 
415     return;
416   }
417 
418   assert(LLTy.isVector() && !PartLLT.isVector());
419 
420   LLT DstEltTy = LLTy.getElementType();
421 
422   // Pointer information was discarded. We'll need to coerce some register types
423   // to avoid violating type constraints.
424   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
425 
426   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
427 
428   if (DstEltTy == PartLLT) {
429     // Vector was trivially scalarized.
430 
431     if (RealDstEltTy.isPointer()) {
432       for (Register Reg : Regs)
433         MRI.setType(Reg, RealDstEltTy);
434     }
435 
436     B.buildBuildVector(OrigRegs[0], Regs);
437   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
438     // Deal with vector with 64-bit elements decomposed to 32-bit
439     // registers. Need to create intermediate 64-bit elements.
440     SmallVector<Register, 8> EltMerges;
441     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
442 
443     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
444 
445     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
446       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
447       // Fix the type in case this is really a vector of pointers.
448       MRI.setType(Merge.getReg(0), RealDstEltTy);
449       EltMerges.push_back(Merge.getReg(0));
450       Regs = Regs.drop_front(PartsPerElt);
451     }
452 
453     B.buildBuildVector(OrigRegs[0], EltMerges);
454   } else {
455     // Vector was split, and elements promoted to a wider type.
456     // FIXME: Should handle floating point promotions.
457     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
458     auto BV = B.buildBuildVector(BVType, Regs);
459     B.buildTrunc(OrigRegs[0], BV);
460   }
461 }
462 
463 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
464 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
465 /// contain the type of scalar value extension if necessary.
466 ///
467 /// This is used for outgoing values (vregs to physregs)
468 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
469                             Register SrcReg, LLT SrcTy, LLT PartTy,
470                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
471   // We could just insert a regular copy, but this is unreachable at the moment.
472   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
473 
474   const unsigned PartSize = PartTy.getSizeInBits();
475 
476   if (PartTy.isVector() == SrcTy.isVector() &&
477       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
478     assert(DstRegs.size() == 1);
479     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
480     return;
481   }
482 
483   if (SrcTy.isVector() && !PartTy.isVector() &&
484       PartSize > SrcTy.getElementType().getSizeInBits()) {
485     // Vector was scalarized, and the elements extended.
486     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
487     for (int i = 0, e = DstRegs.size(); i != e; ++i)
488       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
489     return;
490   }
491 
492   LLT GCDTy = getGCDType(SrcTy, PartTy);
493   if (GCDTy == PartTy) {
494     // If this already evenly divisible, we can create a simple unmerge.
495     B.buildUnmerge(DstRegs, SrcReg);
496     return;
497   }
498 
499   MachineRegisterInfo &MRI = *B.getMRI();
500   LLT DstTy = MRI.getType(DstRegs[0]);
501   LLT LCMTy = getCoverTy(SrcTy, PartTy);
502 
503   const unsigned DstSize = DstTy.getSizeInBits();
504   const unsigned SrcSize = SrcTy.getSizeInBits();
505   unsigned CoveringSize = LCMTy.getSizeInBits();
506 
507   Register UnmergeSrc = SrcReg;
508 
509   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
510     // For scalars, it's common to be able to use a simple extension.
511     if (SrcTy.isScalar() && DstTy.isScalar()) {
512       CoveringSize = alignTo(SrcSize, DstSize);
513       LLT CoverTy = LLT::scalar(CoveringSize);
514       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
515     } else {
516       // Widen to the common type.
517       // FIXME: This should respect the extend type
518       Register Undef = B.buildUndef(SrcTy).getReg(0);
519       SmallVector<Register, 8> MergeParts(1, SrcReg);
520       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
521         MergeParts.push_back(Undef);
522       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
523     }
524   }
525 
526   if (LCMTy.isVector() && CoveringSize != SrcSize)
527     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
528 
529   B.buildUnmerge(DstRegs, UnmergeSrc);
530 }
531 
532 bool CallLowering::determineAndHandleAssignments(
533     ValueHandler &Handler, ValueAssigner &Assigner,
534     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
535     CallingConv::ID CallConv, bool IsVarArg,
536     ArrayRef<Register> ThisReturnRegs) const {
537   MachineFunction &MF = MIRBuilder.getMF();
538   const Function &F = MF.getFunction();
539   SmallVector<CCValAssign, 16> ArgLocs;
540 
541   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
542   if (!determineAssignments(Assigner, Args, CCInfo))
543     return false;
544 
545   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
546                            ThisReturnRegs);
547 }
548 
549 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
550   if (Flags.isSExt())
551     return TargetOpcode::G_SEXT;
552   if (Flags.isZExt())
553     return TargetOpcode::G_ZEXT;
554   return TargetOpcode::G_ANYEXT;
555 }
556 
557 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
558                                         SmallVectorImpl<ArgInfo> &Args,
559                                         CCState &CCInfo) const {
560   LLVMContext &Ctx = CCInfo.getContext();
561   const CallingConv::ID CallConv = CCInfo.getCallingConv();
562 
563   unsigned NumArgs = Args.size();
564   for (unsigned i = 0; i != NumArgs; ++i) {
565     EVT CurVT = EVT::getEVT(Args[i].Ty);
566 
567     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
568 
569     // If we need to split the type over multiple regs, check it's a scenario
570     // we currently support.
571     unsigned NumParts =
572         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
573 
574     if (NumParts == 1) {
575       // Try to use the register type if we couldn't assign the VT.
576       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
577                              Args[i].Flags[0], CCInfo))
578         return false;
579       continue;
580     }
581 
582     // For incoming arguments (physregs to vregs), we could have values in
583     // physregs (or memlocs) which we want to extract and copy to vregs.
584     // During this, we might have to deal with the LLT being split across
585     // multiple regs, so we have to record this information for later.
586     //
587     // If we have outgoing args, then we have the opposite case. We have a
588     // vreg with an LLT which we want to assign to a physical location, and
589     // we might have to record that the value has to be split later.
590 
591     // We're handling an incoming arg which is split over multiple regs.
592     // E.g. passing an s128 on AArch64.
593     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
594     Args[i].Flags.clear();
595 
596     for (unsigned Part = 0; Part < NumParts; ++Part) {
597       ISD::ArgFlagsTy Flags = OrigFlags;
598       if (Part == 0) {
599         Flags.setSplit();
600       } else {
601         Flags.setOrigAlign(Align(1));
602         if (Part == NumParts - 1)
603           Flags.setSplitEnd();
604       }
605 
606       Args[i].Flags.push_back(Flags);
607       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
608                              Args[i].Flags[Part], CCInfo)) {
609         // Still couldn't assign this smaller part type for some reason.
610         return false;
611       }
612     }
613   }
614 
615   return true;
616 }
617 
618 bool CallLowering::handleAssignments(ValueHandler &Handler,
619                                      SmallVectorImpl<ArgInfo> &Args,
620                                      CCState &CCInfo,
621                                      SmallVectorImpl<CCValAssign> &ArgLocs,
622                                      MachineIRBuilder &MIRBuilder,
623                                      ArrayRef<Register> ThisReturnRegs) const {
624   MachineFunction &MF = MIRBuilder.getMF();
625   MachineRegisterInfo &MRI = MF.getRegInfo();
626   const Function &F = MF.getFunction();
627   const DataLayout &DL = F.getParent()->getDataLayout();
628 
629   const unsigned NumArgs = Args.size();
630 
631   // Stores thunks for outgoing register assignments. This is used so we delay
632   // generating register copies until mem loc assignments are done. We do this
633   // so that if the target is using the delayed stack protector feature, we can
634   // find the split point of the block accurately. E.g. if we have:
635   // G_STORE %val, %memloc
636   // $x0 = COPY %foo
637   // $x1 = COPY %bar
638   // CALL func
639   // ... then the split point for the block will correctly be at, and including,
640   // the copy to $x0. If instead the G_STORE instruction immediately precedes
641   // the CALL, then we'd prematurely choose the CALL as the split point, thus
642   // generating a split block with a CALL that uses undefined physregs.
643   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
644 
645   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
646     assert(j < ArgLocs.size() && "Skipped too many arg locs");
647     CCValAssign &VA = ArgLocs[j];
648     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
649 
650     if (VA.needsCustom()) {
651       std::function<void()> Thunk;
652       unsigned NumArgRegs = Handler.assignCustomValue(
653           Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
654       if (Thunk)
655         DelayedOutgoingRegAssignments.emplace_back(Thunk);
656       if (!NumArgRegs)
657         return false;
658       j += NumArgRegs;
659       continue;
660     }
661 
662     const MVT ValVT = VA.getValVT();
663     const MVT LocVT = VA.getLocVT();
664 
665     const LLT LocTy(LocVT);
666     const LLT ValTy(ValVT);
667     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
668     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
669     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
670 
671     // Expected to be multiple regs for a single incoming arg.
672     // There should be Regs.size() ArgLocs per argument.
673     // This should be the same as getNumRegistersForCallingConv
674     const unsigned NumParts = Args[i].Flags.size();
675 
676     // Now split the registers into the assigned types.
677     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
678 
679     if (NumParts != 1 || NewLLT != OrigTy) {
680       // If we can't directly assign the register, we need one or more
681       // intermediate values.
682       Args[i].Regs.resize(NumParts);
683 
684       // For each split register, create and assign a vreg that will store
685       // the incoming component of the larger value. These will later be
686       // merged to form the final vreg.
687       for (unsigned Part = 0; Part < NumParts; ++Part)
688         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
689     }
690 
691     assert((j + (NumParts - 1)) < ArgLocs.size() &&
692            "Too many regs for number of args");
693 
694     // Coerce into outgoing value types before register assignment.
695     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
696       assert(Args[i].OrigRegs.size() == 1);
697       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
698                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
699     }
700 
701     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
702     for (unsigned Part = 0; Part < NumParts; ++Part) {
703       Register ArgReg = Args[i].Regs[Part];
704       // There should be Regs.size() ArgLocs per argument.
705       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
706       CCValAssign &VA = ArgLocs[j + Idx];
707       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
708 
709       if (VA.isMemLoc() && !Flags.isByVal()) {
710         // Individual pieces may have been spilled to the stack and others
711         // passed in registers.
712 
713         // TODO: The memory size may be larger than the value we need to
714         // store. We may need to adjust the offset for big endian targets.
715         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
716 
717         MachinePointerInfo MPO;
718         Register StackAddr = Handler.getStackAddress(
719             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
720 
721         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
722         continue;
723       }
724 
725       if (VA.isMemLoc() && Flags.isByVal()) {
726         assert(Args[i].Regs.size() == 1 &&
727                "didn't expect split byval pointer");
728 
729         if (Handler.isIncomingArgumentHandler()) {
730           // We just need to copy the frame index value to the pointer.
731           MachinePointerInfo MPO;
732           Register StackAddr = Handler.getStackAddress(
733               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
734           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
735         } else {
736           // For outgoing byval arguments, insert the implicit copy byval
737           // implies, such that writes in the callee do not modify the caller's
738           // value.
739           uint64_t MemSize = Flags.getByValSize();
740           int64_t Offset = VA.getLocMemOffset();
741 
742           MachinePointerInfo DstMPO;
743           Register StackAddr =
744               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
745 
746           MachinePointerInfo SrcMPO(Args[i].OrigValue);
747           if (!Args[i].OrigValue) {
748             // We still need to accurately track the stack address space if we
749             // don't know the underlying value.
750             const LLT PtrTy = MRI.getType(StackAddr);
751             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
752           }
753 
754           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
755                                     inferAlignFromPtrInfo(MF, DstMPO));
756 
757           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
758                                     inferAlignFromPtrInfo(MF, SrcMPO));
759 
760           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
761                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
762                                      MemSize, VA);
763         }
764         continue;
765       }
766 
767       assert(!VA.needsCustom() && "custom loc should have been handled already");
768 
769       if (i == 0 && !ThisReturnRegs.empty() &&
770           Handler.isIncomingArgumentHandler() &&
771           isTypeIsValidForThisReturn(ValVT)) {
772         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
773         continue;
774       }
775 
776       if (Handler.isIncomingArgumentHandler())
777         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
778       else {
779         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
780           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
781         });
782       }
783     }
784 
785     // Now that all pieces have been assigned, re-pack the register typed values
786     // into the original value typed registers.
787     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
788       // Merge the split registers into the expected larger result vregs of
789       // the original call.
790       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
791                         LocTy, Args[i].Flags[0]);
792     }
793 
794     j += NumParts - 1;
795   }
796   for (auto &Fn : DelayedOutgoingRegAssignments)
797     Fn();
798 
799   return true;
800 }
801 
802 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
803                                    ArrayRef<Register> VRegs, Register DemoteReg,
804                                    int FI) const {
805   MachineFunction &MF = MIRBuilder.getMF();
806   MachineRegisterInfo &MRI = MF.getRegInfo();
807   const DataLayout &DL = MF.getDataLayout();
808 
809   SmallVector<EVT, 4> SplitVTs;
810   SmallVector<uint64_t, 4> Offsets;
811   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
812 
813   assert(VRegs.size() == SplitVTs.size());
814 
815   unsigned NumValues = SplitVTs.size();
816   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
817   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
818   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
819 
820   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
821 
822   for (unsigned I = 0; I < NumValues; ++I) {
823     Register Addr;
824     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
825     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
826                                         MRI.getType(VRegs[I]),
827                                         commonAlignment(BaseAlign, Offsets[I]));
828     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
829   }
830 }
831 
832 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
833                                     ArrayRef<Register> VRegs,
834                                     Register DemoteReg) const {
835   MachineFunction &MF = MIRBuilder.getMF();
836   MachineRegisterInfo &MRI = MF.getRegInfo();
837   const DataLayout &DL = MF.getDataLayout();
838 
839   SmallVector<EVT, 4> SplitVTs;
840   SmallVector<uint64_t, 4> Offsets;
841   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
842 
843   assert(VRegs.size() == SplitVTs.size());
844 
845   unsigned NumValues = SplitVTs.size();
846   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
847   unsigned AS = DL.getAllocaAddrSpace();
848   LLT OffsetLLTy =
849       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
850 
851   MachinePointerInfo PtrInfo(AS);
852 
853   for (unsigned I = 0; I < NumValues; ++I) {
854     Register Addr;
855     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
856     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
857                                         MRI.getType(VRegs[I]),
858                                         commonAlignment(BaseAlign, Offsets[I]));
859     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
860   }
861 }
862 
863 void CallLowering::insertSRetIncomingArgument(
864     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
865     MachineRegisterInfo &MRI, const DataLayout &DL) const {
866   unsigned AS = DL.getAllocaAddrSpace();
867   DemoteReg = MRI.createGenericVirtualRegister(
868       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
869 
870   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
871 
872   SmallVector<EVT, 1> ValueVTs;
873   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
874 
875   // NOTE: Assume that a pointer won't get split into more than one VT.
876   assert(ValueVTs.size() == 1);
877 
878   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
879                     ArgInfo::NoArgIndex);
880   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
881   DemoteArg.Flags[0].setSRet();
882   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
883 }
884 
885 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
886                                               const CallBase &CB,
887                                               CallLoweringInfo &Info) const {
888   const DataLayout &DL = MIRBuilder.getDataLayout();
889   Type *RetTy = CB.getType();
890   unsigned AS = DL.getAllocaAddrSpace();
891   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
892 
893   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
894       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
895 
896   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
897   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
898                     ArgInfo::NoArgIndex);
899   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
900   DemoteArg.Flags[0].setSRet();
901 
902   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
903   Info.DemoteStackIndex = FI;
904   Info.DemoteRegister = DemoteReg;
905 }
906 
907 bool CallLowering::checkReturn(CCState &CCInfo,
908                                SmallVectorImpl<BaseArgInfo> &Outs,
909                                CCAssignFn *Fn) const {
910   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
911     MVT VT = MVT::getVT(Outs[I].Ty);
912     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
913       return false;
914   }
915   return true;
916 }
917 
918 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
919                                  AttributeList Attrs,
920                                  SmallVectorImpl<BaseArgInfo> &Outs,
921                                  const DataLayout &DL) const {
922   LLVMContext &Context = RetTy->getContext();
923   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
924 
925   SmallVector<EVT, 4> SplitVTs;
926   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
927   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
928 
929   for (EVT VT : SplitVTs) {
930     unsigned NumParts =
931         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
932     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
933     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
934 
935     for (unsigned I = 0; I < NumParts; ++I) {
936       Outs.emplace_back(PartTy, Flags);
937     }
938   }
939 }
940 
941 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
942   const auto &F = MF.getFunction();
943   Type *ReturnType = F.getReturnType();
944   CallingConv::ID CallConv = F.getCallingConv();
945 
946   SmallVector<BaseArgInfo, 4> SplitArgs;
947   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
948                 MF.getDataLayout());
949   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
950 }
951 
952 bool CallLowering::parametersInCSRMatch(
953     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
954     const SmallVectorImpl<CCValAssign> &OutLocs,
955     const SmallVectorImpl<ArgInfo> &OutArgs) const {
956   for (unsigned i = 0; i < OutLocs.size(); ++i) {
957     auto &ArgLoc = OutLocs[i];
958     // If it's not a register, it's fine.
959     if (!ArgLoc.isRegLoc())
960       continue;
961 
962     MCRegister PhysReg = ArgLoc.getLocReg();
963 
964     // Only look at callee-saved registers.
965     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
966       continue;
967 
968     LLVM_DEBUG(
969         dbgs()
970         << "... Call has an argument passed in a callee-saved register.\n");
971 
972     // Check if it was copied from.
973     const ArgInfo &OutInfo = OutArgs[i];
974 
975     if (OutInfo.Regs.size() > 1) {
976       LLVM_DEBUG(
977           dbgs() << "... Cannot handle arguments in multiple registers.\n");
978       return false;
979     }
980 
981     // Check if we copy the register, walking through copies from virtual
982     // registers. Note that getDefIgnoringCopies does not ignore copies from
983     // physical registers.
984     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
985     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
986       LLVM_DEBUG(
987           dbgs()
988           << "... Parameter was not copied into a VReg, cannot tail call.\n");
989       return false;
990     }
991 
992     // Got a copy. Verify that it's the same as the register we want.
993     Register CopyRHS = RegDef->getOperand(1).getReg();
994     if (CopyRHS != PhysReg) {
995       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
996                            "VReg, cannot tail call.\n");
997       return false;
998     }
999   }
1000 
1001   return true;
1002 }
1003 
1004 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1005                                      MachineFunction &MF,
1006                                      SmallVectorImpl<ArgInfo> &InArgs,
1007                                      ValueAssigner &CalleeAssigner,
1008                                      ValueAssigner &CallerAssigner) const {
1009   const Function &F = MF.getFunction();
1010   CallingConv::ID CalleeCC = Info.CallConv;
1011   CallingConv::ID CallerCC = F.getCallingConv();
1012 
1013   if (CallerCC == CalleeCC)
1014     return true;
1015 
1016   SmallVector<CCValAssign, 16> ArgLocs1;
1017   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1018   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1019     return false;
1020 
1021   SmallVector<CCValAssign, 16> ArgLocs2;
1022   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1023   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1024     return false;
1025 
1026   // We need the argument locations to match up exactly. If there's more in
1027   // one than the other, then we are done.
1028   if (ArgLocs1.size() != ArgLocs2.size())
1029     return false;
1030 
1031   // Make sure that each location is passed in exactly the same way.
1032   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1033     const CCValAssign &Loc1 = ArgLocs1[i];
1034     const CCValAssign &Loc2 = ArgLocs2[i];
1035 
1036     // We need both of them to be the same. So if one is a register and one
1037     // isn't, we're done.
1038     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1039       return false;
1040 
1041     if (Loc1.isRegLoc()) {
1042       // If they don't have the same register location, we're done.
1043       if (Loc1.getLocReg() != Loc2.getLocReg())
1044         return false;
1045 
1046       // They matched, so we can move to the next ArgLoc.
1047       continue;
1048     }
1049 
1050     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1051     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1052       return false;
1053   }
1054 
1055   return true;
1056 }
1057 
1058 LLT CallLowering::ValueHandler::getStackValueStoreType(
1059     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1060   const MVT ValVT = VA.getValVT();
1061   if (ValVT != MVT::iPTR) {
1062     LLT ValTy(ValVT);
1063 
1064     // We lost the pointeriness going through CCValAssign, so try to restore it
1065     // based on the flags.
1066     if (Flags.isPointer()) {
1067       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1068                                ValTy.getScalarSizeInBits());
1069       if (ValVT.isVector())
1070         return LLT::vector(ValTy.getElementCount(), PtrTy);
1071       return PtrTy;
1072     }
1073 
1074     return ValTy;
1075   }
1076 
1077   unsigned AddrSpace = Flags.getPointerAddrSpace();
1078   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1079 }
1080 
1081 void CallLowering::ValueHandler::copyArgumentMemory(
1082     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1083     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1084     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1085     CCValAssign &VA) const {
1086   MachineFunction &MF = MIRBuilder.getMF();
1087   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1088       SrcPtrInfo,
1089       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1090       SrcAlign);
1091 
1092   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1093       DstPtrInfo,
1094       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1095       MemSize, DstAlign);
1096 
1097   const LLT PtrTy = MRI.getType(DstPtr);
1098   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1099 
1100   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1101   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1102 }
1103 
1104 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1105                                                     CCValAssign &VA,
1106                                                     unsigned MaxSizeBits) {
1107   LLT LocTy{VA.getLocVT()};
1108   LLT ValTy{VA.getValVT()};
1109 
1110   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1111     return ValReg;
1112 
1113   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1114     if (MaxSizeBits <= ValTy.getSizeInBits())
1115       return ValReg;
1116     LocTy = LLT::scalar(MaxSizeBits);
1117   }
1118 
1119   const LLT ValRegTy = MRI.getType(ValReg);
1120   if (ValRegTy.isPointer()) {
1121     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1122     // we have to cast to do the extension.
1123     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1124     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1125   }
1126 
1127   switch (VA.getLocInfo()) {
1128   default: break;
1129   case CCValAssign::Full:
1130   case CCValAssign::BCvt:
1131     // FIXME: bitconverting between vector types may or may not be a
1132     // nop in big-endian situations.
1133     return ValReg;
1134   case CCValAssign::AExt: {
1135     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1136     return MIB.getReg(0);
1137   }
1138   case CCValAssign::SExt: {
1139     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1140     MIRBuilder.buildSExt(NewReg, ValReg);
1141     return NewReg;
1142   }
1143   case CCValAssign::ZExt: {
1144     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1145     MIRBuilder.buildZExt(NewReg, ValReg);
1146     return NewReg;
1147   }
1148   }
1149   llvm_unreachable("unable to extend register");
1150 }
1151 
1152 void CallLowering::ValueAssigner::anchor() {}
1153 
1154 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1155                                                                 Register SrcReg,
1156                                                                 LLT NarrowTy) {
1157   switch (VA.getLocInfo()) {
1158   case CCValAssign::LocInfo::ZExt: {
1159     return MIRBuilder
1160         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1161                          NarrowTy.getScalarSizeInBits())
1162         .getReg(0);
1163   }
1164   case CCValAssign::LocInfo::SExt: {
1165     return MIRBuilder
1166         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1167                          NarrowTy.getScalarSizeInBits())
1168         .getReg(0);
1169     break;
1170   }
1171   default:
1172     return SrcReg;
1173   }
1174 }
1175 
1176 /// Check if we can use a basic COPY instruction between the two types.
1177 ///
1178 /// We're currently building on top of the infrastructure using MVT, which loses
1179 /// pointer information in the CCValAssign. We accept copies from physical
1180 /// registers that have been reported as integers if it's to an equivalent sized
1181 /// pointer LLT.
1182 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1183   if (SrcTy == DstTy)
1184     return true;
1185 
1186   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1187     return false;
1188 
1189   SrcTy = SrcTy.getScalarType();
1190   DstTy = DstTy.getScalarType();
1191 
1192   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1193          (DstTy.isScalar() && SrcTy.isPointer());
1194 }
1195 
1196 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1197                                                           Register PhysReg,
1198                                                           CCValAssign VA) {
1199   const MVT LocVT = VA.getLocVT();
1200   const LLT LocTy(LocVT);
1201   const LLT RegTy = MRI.getType(ValVReg);
1202 
1203   if (isCopyCompatibleType(RegTy, LocTy)) {
1204     MIRBuilder.buildCopy(ValVReg, PhysReg);
1205     return;
1206   }
1207 
1208   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1209   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1210   MIRBuilder.buildTrunc(ValVReg, Hint);
1211 }
1212