1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftError)) 58 Flags.setSwiftError(); 59 } 60 61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 62 unsigned ArgIdx) const { 63 ISD::ArgFlagsTy Flags; 64 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 65 return Call.paramHasAttr(ArgIdx, Attr); 66 }); 67 return Flags; 68 } 69 70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 71 const AttributeList &Attrs, 72 unsigned OpIdx) const { 73 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 74 return Attrs.hasAttribute(OpIdx, Attr); 75 }); 76 } 77 78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 79 ArrayRef<Register> ResRegs, 80 ArrayRef<ArrayRef<Register>> ArgRegs, 81 Register SwiftErrorVReg, 82 std::function<unsigned()> GetCalleeReg) const { 83 CallLoweringInfo Info; 84 const DataLayout &DL = MIRBuilder.getDataLayout(); 85 MachineFunction &MF = MIRBuilder.getMF(); 86 bool CanBeTailCalled = CB.isTailCall() && 87 isInTailCallPosition(CB, MF.getTarget()) && 88 (MF.getFunction() 89 .getFnAttribute("disable-tail-calls") 90 .getValueAsString() != "true"); 91 92 CallingConv::ID CallConv = CB.getCallingConv(); 93 Type *RetTy = CB.getType(); 94 bool IsVarArg = CB.getFunctionType()->isVarArg(); 95 96 SmallVector<BaseArgInfo, 4> SplitArgs; 97 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 98 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 99 100 if (!Info.CanLowerReturn) { 101 // Callee requires sret demotion. 102 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 103 104 // The sret demotion isn't compatible with tail-calls, since the sret 105 // argument points into the caller's stack frame. 106 CanBeTailCalled = false; 107 } 108 109 // First step is to marshall all the function's parameters into the correct 110 // physregs and memory locations. Gather the sequence of argument types that 111 // we'll pass to the assigner function. 112 unsigned i = 0; 113 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 114 for (auto &Arg : CB.args()) { 115 ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i), 116 i < NumFixedArgs}; 117 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 118 119 // If we have an explicit sret argument that is an Instruction, (i.e., it 120 // might point to function-local memory), we can't meaningfully tail-call. 121 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 122 CanBeTailCalled = false; 123 124 Info.OrigArgs.push_back(OrigArg); 125 ++i; 126 } 127 128 // Try looking through a bitcast from one function type to another. 129 // Commonly happens with calls to objc_msgSend(). 130 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 131 if (const Function *F = dyn_cast<Function>(CalleeV)) 132 Info.Callee = MachineOperand::CreateGA(F, 0); 133 else 134 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 135 136 Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}}; 137 if (!Info.OrigRet.Ty->isVoidTy()) 138 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 139 140 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 141 Info.CallConv = CallConv; 142 Info.SwiftErrorVReg = SwiftErrorVReg; 143 Info.IsMustTailCall = CB.isMustTailCall(); 144 Info.IsTailCall = CanBeTailCalled; 145 Info.IsVarArg = IsVarArg; 146 return lowerCall(MIRBuilder, Info); 147 } 148 149 template <typename FuncInfoTy> 150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 151 const DataLayout &DL, 152 const FuncInfoTy &FuncInfo) const { 153 auto &Flags = Arg.Flags[0]; 154 const AttributeList &Attrs = FuncInfo.getAttributes(); 155 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 156 157 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 158 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType(); 159 160 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 161 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 162 163 // For ByVal, alignment should be passed from FE. BE will guess if 164 // this info is not there but there are cases it cannot get right. 165 Align FrameAlign; 166 if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2)) 167 FrameAlign = *ParamAlign; 168 else 169 FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 170 Flags.setByValAlign(FrameAlign); 171 } 172 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 173 174 // Don't try to use the returned attribute if the argument is marked as 175 // swiftself, since it won't be passed in x0. 176 if (Flags.isSwiftSelf()) 177 Flags.setReturned(false); 178 } 179 180 template void 181 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 182 const DataLayout &DL, 183 const Function &FuncInfo) const; 184 185 template void 186 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 187 const DataLayout &DL, 188 const CallBase &FuncInfo) const; 189 190 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 191 SmallVectorImpl<ArgInfo> &SplitArgs, 192 const DataLayout &DL, 193 CallingConv::ID CallConv) const { 194 LLVMContext &Ctx = OrigArg.Ty->getContext(); 195 196 SmallVector<EVT, 4> SplitVTs; 197 SmallVector<uint64_t, 4> Offsets; 198 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 199 200 if (SplitVTs.size() == 0) 201 return; 202 203 if (SplitVTs.size() == 1) { 204 // No splitting to do, but we want to replace the original type (e.g. [1 x 205 // double] -> double). 206 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 207 OrigArg.Flags[0], OrigArg.IsFixed); 208 return; 209 } 210 211 // Create one ArgInfo for each virtual register in the original ArgInfo. 212 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 213 214 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 215 OrigArg.Ty, CallConv, false); 216 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 217 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 218 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 219 OrigArg.IsFixed); 220 if (NeedsRegBlock) 221 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 222 } 223 224 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 225 } 226 227 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy, 228 MachineIRBuilder &MIRBuilder) const { 229 assert(SrcRegs.size() > 1 && "Nothing to pack"); 230 231 const DataLayout &DL = MIRBuilder.getMF().getDataLayout(); 232 MachineRegisterInfo *MRI = MIRBuilder.getMRI(); 233 234 LLT PackedLLT = getLLTForType(*PackedTy, DL); 235 236 SmallVector<LLT, 8> LLTs; 237 SmallVector<uint64_t, 8> Offsets; 238 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 239 assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch"); 240 241 Register Dst = MRI->createGenericVirtualRegister(PackedLLT); 242 MIRBuilder.buildUndef(Dst); 243 for (unsigned i = 0; i < SrcRegs.size(); ++i) { 244 Register NewDst = MRI->createGenericVirtualRegister(PackedLLT); 245 MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]); 246 Dst = NewDst; 247 } 248 249 return Dst; 250 } 251 252 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 253 Type *PackedTy, 254 MachineIRBuilder &MIRBuilder) const { 255 assert(DstRegs.size() > 1 && "Nothing to unpack"); 256 257 const DataLayout &DL = MIRBuilder.getDataLayout(); 258 259 SmallVector<LLT, 8> LLTs; 260 SmallVector<uint64_t, 8> Offsets; 261 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 262 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 263 264 for (unsigned i = 0; i < DstRegs.size(); ++i) 265 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 266 } 267 268 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 269 static MachineInstrBuilder 270 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 271 ArrayRef<Register> SrcRegs) { 272 MachineRegisterInfo &MRI = *B.getMRI(); 273 LLT LLTy = MRI.getType(DstRegs[0]); 274 LLT PartLLT = MRI.getType(SrcRegs[0]); 275 276 // Deal with v3s16 split into v2s16 277 LLT LCMTy = getLCMType(LLTy, PartLLT); 278 if (LCMTy == LLTy) { 279 // Common case where no padding is needed. 280 assert(DstRegs.size() == 1); 281 return B.buildConcatVectors(DstRegs[0], SrcRegs); 282 } 283 284 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 285 Register Undef = B.buildUndef(PartLLT).getReg(0); 286 287 // Build vector of undefs. 288 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 289 290 // Replace the first sources with the real registers. 291 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 292 293 auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs); 294 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 295 296 SmallVector<Register, 8> PadDstRegs(NumDst); 297 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 298 299 // Create the excess dead defs for the unmerge. 300 for (int I = DstRegs.size(); I != NumDst; ++I) 301 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 302 303 return B.buildUnmerge(PadDstRegs, Widened); 304 } 305 306 /// Create a sequence of instructions to combine pieces split into register 307 /// typed values to the original IR value. \p OrigRegs contains the destination 308 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 309 /// with type \p PartLLT. 310 static void buildCopyToParts(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 311 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) { 312 MachineRegisterInfo &MRI = *B.getMRI(); 313 314 if (!LLTy.isVector() && !PartLLT.isVector()) { 315 assert(OrigRegs.size() == 1); 316 LLT OrigTy = MRI.getType(OrigRegs[0]); 317 318 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size(); 319 if (SrcSize == OrigTy.getSizeInBits()) 320 B.buildMerge(OrigRegs[0], Regs); 321 else { 322 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 323 B.buildTrunc(OrigRegs[0], Widened); 324 } 325 326 return; 327 } 328 329 if (LLTy.isVector() && PartLLT.isVector()) { 330 assert(OrigRegs.size() == 1); 331 assert(LLTy.getElementType() == PartLLT.getElementType()); 332 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 333 return; 334 } 335 336 assert(LLTy.isVector() && !PartLLT.isVector()); 337 338 LLT DstEltTy = LLTy.getElementType(); 339 340 // Pointer information was discarded. We'll need to coerce some register types 341 // to avoid violating type constraints. 342 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 343 344 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 345 346 if (DstEltTy == PartLLT) { 347 // Vector was trivially scalarized. 348 349 if (RealDstEltTy.isPointer()) { 350 for (Register Reg : Regs) 351 MRI.setType(Reg, RealDstEltTy); 352 } 353 354 B.buildBuildVector(OrigRegs[0], Regs); 355 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 356 // Deal with vector with 64-bit elements decomposed to 32-bit 357 // registers. Need to create intermediate 64-bit elements. 358 SmallVector<Register, 8> EltMerges; 359 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 360 361 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 362 363 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 364 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 365 // Fix the type in case this is really a vector of pointers. 366 MRI.setType(Merge.getReg(0), RealDstEltTy); 367 EltMerges.push_back(Merge.getReg(0)); 368 Regs = Regs.drop_front(PartsPerElt); 369 } 370 371 B.buildBuildVector(OrigRegs[0], EltMerges); 372 } else { 373 // Vector was split, and elements promoted to a wider type. 374 // FIXME: Should handle floating point promotions. 375 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 376 auto BV = B.buildBuildVector(BVType, Regs); 377 B.buildTrunc(OrigRegs[0], BV); 378 } 379 } 380 381 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder, 382 SmallVectorImpl<ArgInfo> &Args, 383 ValueHandler &Handler, 384 CallingConv::ID CallConv, bool IsVarArg, 385 Register ThisReturnReg) const { 386 MachineFunction &MF = MIRBuilder.getMF(); 387 const Function &F = MF.getFunction(); 388 SmallVector<CCValAssign, 16> ArgLocs; 389 390 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 391 return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler, 392 ThisReturnReg); 393 } 394 395 bool CallLowering::handleAssignments(CCState &CCInfo, 396 SmallVectorImpl<CCValAssign> &ArgLocs, 397 MachineIRBuilder &MIRBuilder, 398 SmallVectorImpl<ArgInfo> &Args, 399 ValueHandler &Handler, 400 Register ThisReturnReg) const { 401 MachineFunction &MF = MIRBuilder.getMF(); 402 const Function &F = MF.getFunction(); 403 const DataLayout &DL = F.getParent()->getDataLayout(); 404 405 unsigned NumArgs = Args.size(); 406 for (unsigned i = 0; i != NumArgs; ++i) { 407 EVT CurVT = EVT::getEVT(Args[i].Ty); 408 if (CurVT.isSimple() && 409 !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(), 410 CCValAssign::Full, Args[i], Args[i].Flags[0], 411 CCInfo)) 412 continue; 413 414 MVT NewVT = TLI->getRegisterTypeForCallingConv( 415 F.getContext(), CCInfo.getCallingConv(), EVT(CurVT)); 416 417 // If we need to split the type over multiple regs, check it's a scenario 418 // we currently support. 419 unsigned NumParts = TLI->getNumRegistersForCallingConv( 420 F.getContext(), CCInfo.getCallingConv(), CurVT); 421 422 if (NumParts == 1) { 423 // Try to use the register type if we couldn't assign the VT. 424 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 425 Args[i].Flags[0], CCInfo)) 426 return false; 427 continue; 428 } 429 430 assert(NumParts > 1); 431 432 // For incoming arguments (physregs to vregs), we could have values in 433 // physregs (or memlocs) which we want to extract and copy to vregs. 434 // During this, we might have to deal with the LLT being split across 435 // multiple regs, so we have to record this information for later. 436 // 437 // If we have outgoing args, then we have the opposite case. We have a 438 // vreg with an LLT which we want to assign to a physical location, and 439 // we might have to record that the value has to be split later. 440 if (Handler.isIncomingArgumentHandler()) { 441 // We're handling an incoming arg which is split over multiple regs. 442 // E.g. passing an s128 on AArch64. 443 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 444 Args[i].OrigRegs.push_back(Args[i].Regs[0]); 445 Args[i].Regs.clear(); 446 Args[i].Flags.clear(); 447 LLT NewLLT = getLLTForMVT(NewVT); 448 // For each split register, create and assign a vreg that will store 449 // the incoming component of the larger value. These will later be 450 // merged to form the final vreg. 451 for (unsigned Part = 0; Part < NumParts; ++Part) { 452 Register Reg = 453 MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT); 454 ISD::ArgFlagsTy Flags = OrigFlags; 455 if (Part == 0) { 456 Flags.setSplit(); 457 } else { 458 Flags.setOrigAlign(Align(1)); 459 if (Part == NumParts - 1) 460 Flags.setSplitEnd(); 461 } 462 Args[i].Regs.push_back(Reg); 463 Args[i].Flags.push_back(Flags); 464 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 465 Args[i].Flags[Part], CCInfo)) { 466 // Still couldn't assign this smaller part type for some reason. 467 return false; 468 } 469 } 470 } else { 471 // This type is passed via multiple registers in the calling convention. 472 // We need to extract the individual parts. 473 Register LargeReg = Args[i].Regs[0]; 474 LLT SmallTy = LLT::scalar(NewVT.getSizeInBits()); 475 auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg); 476 assert(Unmerge->getNumOperands() == NumParts + 1); 477 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 478 // We're going to replace the regs and flags with the split ones. 479 Args[i].Regs.clear(); 480 Args[i].Flags.clear(); 481 for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) { 482 ISD::ArgFlagsTy Flags = OrigFlags; 483 if (PartIdx == 0) { 484 Flags.setSplit(); 485 } else { 486 Flags.setOrigAlign(Align(1)); 487 if (PartIdx == NumParts - 1) 488 Flags.setSplitEnd(); 489 } 490 491 // TODO: Also check if there is a valid extension that preserves the 492 // bits. However currently this call lowering doesn't support non-exact 493 // split parts, so that can't be tested. 494 if (OrigFlags.isReturned() && 495 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 496 Flags.setReturned(false); 497 } 498 499 Args[i].Regs.push_back(Unmerge.getReg(PartIdx)); 500 Args[i].Flags.push_back(Flags); 501 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, 502 Args[i], Args[i].Flags[PartIdx], CCInfo)) 503 return false; 504 } 505 } 506 } 507 508 for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) { 509 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 510 511 CCValAssign &VA = ArgLocs[j]; 512 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 513 514 if (VA.needsCustom()) { 515 unsigned NumArgRegs = 516 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 517 if (!NumArgRegs) 518 return false; 519 j += NumArgRegs; 520 continue; 521 } 522 523 EVT OrigVT = EVT::getEVT(Args[i].Ty); 524 EVT VAVT = VA.getValVT(); 525 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 526 const LLT VATy(VAVT.getSimpleVT()); 527 528 // Expected to be multiple regs for a single incoming arg. 529 // There should be Regs.size() ArgLocs per argument. 530 unsigned NumArgRegs = Args[i].Regs.size(); 531 MachineRegisterInfo &MRI = MF.getRegInfo(); 532 assert((j + (NumArgRegs - 1)) < ArgLocs.size() && 533 "Too many regs for number of args"); 534 for (unsigned Part = 0; Part < NumArgRegs; ++Part) { 535 Register ArgReg = Args[i].Regs[Part]; 536 LLT ArgRegTy = MRI.getType(ArgReg); 537 // There should be Regs.size() ArgLocs per argument. 538 VA = ArgLocs[j + Part]; 539 if (VA.isMemLoc()) { 540 // Individual pieces may have been spilled to the stack and others 541 // passed in registers. 542 543 // FIXME: Use correct address space for pointer size 544 EVT LocVT = VA.getValVT(); 545 unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize() 546 : LocVT.getStoreSize(); 547 unsigned Offset = VA.getLocMemOffset(); 548 MachinePointerInfo MPO; 549 Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO); 550 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO, 551 VA); 552 continue; 553 } 554 555 assert(VA.isRegLoc() && "custom loc should have been handled already"); 556 557 if (i == 0 && ThisReturnReg.isValid() && 558 Handler.isIncomingArgumentHandler() && 559 isTypeIsValidForThisReturn(VAVT)) { 560 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 561 continue; 562 } 563 564 // GlobalISel does not currently work for scalable vectors. 565 if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() || 566 !Handler.isIncomingArgumentHandler()) { 567 // This is an argument that might have been split. There should be 568 // Regs.size() ArgLocs per argument. 569 570 // Insert the argument copies. If VAVT < OrigVT, we'll insert the merge 571 // to the original register after handling all of the parts. 572 Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA); 573 continue; 574 } 575 576 // This ArgLoc covers multiple pieces, so we need to split it. 577 Register NewReg = MRI.createGenericVirtualRegister(VATy); 578 Handler.assignValueToReg(NewReg, VA.getLocReg(), VA); 579 // If it's a vector type, we either need to truncate the elements 580 // or do an unmerge to get the lower block of elements. 581 if (VATy.isVector() && 582 VATy.getNumElements() > OrigVT.getVectorNumElements()) { 583 // Just handle the case where the VA type is a multiple of original 584 // type. 585 if (VATy.getNumElements() % OrigVT.getVectorNumElements() != 0) { 586 LLVM_DEBUG(dbgs() << "Incoming promoted vector arg elts is not a " 587 "multiple of orig type elt: " 588 << VATy << " vs " << OrigTy); 589 return false; 590 } 591 SmallVector<Register, 4> DstRegs = {ArgReg}; 592 unsigned NumParts = 593 VATy.getNumElements() / OrigVT.getVectorNumElements() - 1; 594 for (unsigned Idx = 0; Idx < NumParts; ++Idx) 595 DstRegs.push_back( 596 MIRBuilder.getMRI()->createGenericVirtualRegister(OrigTy)); 597 MIRBuilder.buildUnmerge(DstRegs, {NewReg}); 598 } else if (VATy.getScalarSizeInBits() > ArgRegTy.getScalarSizeInBits()) { 599 MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0); 600 } else { 601 MIRBuilder.buildCopy(ArgReg, NewReg); 602 } 603 } 604 605 // Now that all pieces have been handled, re-pack any arguments into any 606 // wider, original registers. 607 if (Handler.isIncomingArgumentHandler()) { 608 // Merge the split registers into the expected larger result vregs of 609 // the original call. 610 611 if (OrigTy != VATy && !Args[i].OrigRegs.empty()) { 612 buildCopyToParts(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 613 VATy); 614 } 615 } 616 617 j += NumArgRegs - 1; 618 } 619 620 return true; 621 } 622 623 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 624 ArrayRef<Register> VRegs, Register DemoteReg, 625 int FI) const { 626 MachineFunction &MF = MIRBuilder.getMF(); 627 MachineRegisterInfo &MRI = MF.getRegInfo(); 628 const DataLayout &DL = MF.getDataLayout(); 629 630 SmallVector<EVT, 4> SplitVTs; 631 SmallVector<uint64_t, 4> Offsets; 632 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 633 634 assert(VRegs.size() == SplitVTs.size()); 635 636 unsigned NumValues = SplitVTs.size(); 637 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 638 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 639 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 640 641 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 642 643 for (unsigned I = 0; I < NumValues; ++I) { 644 Register Addr; 645 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 646 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 647 MRI.getType(VRegs[I]).getSizeInBytes(), 648 commonAlignment(BaseAlign, Offsets[I])); 649 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 650 } 651 } 652 653 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 654 ArrayRef<Register> VRegs, 655 Register DemoteReg) const { 656 MachineFunction &MF = MIRBuilder.getMF(); 657 MachineRegisterInfo &MRI = MF.getRegInfo(); 658 const DataLayout &DL = MF.getDataLayout(); 659 660 SmallVector<EVT, 4> SplitVTs; 661 SmallVector<uint64_t, 4> Offsets; 662 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 663 664 assert(VRegs.size() == SplitVTs.size()); 665 666 unsigned NumValues = SplitVTs.size(); 667 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 668 unsigned AS = DL.getAllocaAddrSpace(); 669 LLT OffsetLLTy = 670 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 671 672 MachinePointerInfo PtrInfo(AS); 673 674 for (unsigned I = 0; I < NumValues; ++I) { 675 Register Addr; 676 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 677 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 678 MRI.getType(VRegs[I]).getSizeInBytes(), 679 commonAlignment(BaseAlign, Offsets[I])); 680 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 681 } 682 } 683 684 void CallLowering::insertSRetIncomingArgument( 685 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 686 MachineRegisterInfo &MRI, const DataLayout &DL) const { 687 unsigned AS = DL.getAllocaAddrSpace(); 688 DemoteReg = MRI.createGenericVirtualRegister( 689 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 690 691 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 692 693 SmallVector<EVT, 1> ValueVTs; 694 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 695 696 // NOTE: Assume that a pointer won't get split into more than one VT. 697 assert(ValueVTs.size() == 1); 698 699 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext())); 700 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 701 DemoteArg.Flags[0].setSRet(); 702 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 703 } 704 705 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 706 const CallBase &CB, 707 CallLoweringInfo &Info) const { 708 const DataLayout &DL = MIRBuilder.getDataLayout(); 709 Type *RetTy = CB.getType(); 710 unsigned AS = DL.getAllocaAddrSpace(); 711 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 712 713 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 714 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 715 716 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 717 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS)); 718 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 719 DemoteArg.Flags[0].setSRet(); 720 721 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 722 Info.DemoteStackIndex = FI; 723 Info.DemoteRegister = DemoteReg; 724 } 725 726 bool CallLowering::checkReturn(CCState &CCInfo, 727 SmallVectorImpl<BaseArgInfo> &Outs, 728 CCAssignFn *Fn) const { 729 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 730 MVT VT = MVT::getVT(Outs[I].Ty); 731 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 732 return false; 733 } 734 return true; 735 } 736 737 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 738 AttributeList Attrs, 739 SmallVectorImpl<BaseArgInfo> &Outs, 740 const DataLayout &DL) const { 741 LLVMContext &Context = RetTy->getContext(); 742 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 743 744 SmallVector<EVT, 4> SplitVTs; 745 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 746 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 747 748 for (EVT VT : SplitVTs) { 749 unsigned NumParts = 750 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 751 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 752 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 753 754 for (unsigned I = 0; I < NumParts; ++I) { 755 Outs.emplace_back(PartTy, Flags); 756 } 757 } 758 } 759 760 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 761 const auto &F = MF.getFunction(); 762 Type *ReturnType = F.getReturnType(); 763 CallingConv::ID CallConv = F.getCallingConv(); 764 765 SmallVector<BaseArgInfo, 4> SplitArgs; 766 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 767 MF.getDataLayout()); 768 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 769 } 770 771 bool CallLowering::analyzeArgInfo(CCState &CCState, 772 SmallVectorImpl<ArgInfo> &Args, 773 CCAssignFn &AssignFnFixed, 774 CCAssignFn &AssignFnVarArg) const { 775 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 776 MVT VT = MVT::getVT(Args[i].Ty); 777 CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg; 778 if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) { 779 // Bail out on anything we can't handle. 780 LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString() 781 << " (arg number = " << i << "\n"); 782 return false; 783 } 784 } 785 return true; 786 } 787 788 bool CallLowering::parametersInCSRMatch( 789 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 790 const SmallVectorImpl<CCValAssign> &OutLocs, 791 const SmallVectorImpl<ArgInfo> &OutArgs) const { 792 for (unsigned i = 0; i < OutLocs.size(); ++i) { 793 auto &ArgLoc = OutLocs[i]; 794 // If it's not a register, it's fine. 795 if (!ArgLoc.isRegLoc()) 796 continue; 797 798 MCRegister PhysReg = ArgLoc.getLocReg(); 799 800 // Only look at callee-saved registers. 801 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 802 continue; 803 804 LLVM_DEBUG( 805 dbgs() 806 << "... Call has an argument passed in a callee-saved register.\n"); 807 808 // Check if it was copied from. 809 const ArgInfo &OutInfo = OutArgs[i]; 810 811 if (OutInfo.Regs.size() > 1) { 812 LLVM_DEBUG( 813 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 814 return false; 815 } 816 817 // Check if we copy the register, walking through copies from virtual 818 // registers. Note that getDefIgnoringCopies does not ignore copies from 819 // physical registers. 820 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 821 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 822 LLVM_DEBUG( 823 dbgs() 824 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 825 return false; 826 } 827 828 // Got a copy. Verify that it's the same as the register we want. 829 Register CopyRHS = RegDef->getOperand(1).getReg(); 830 if (CopyRHS != PhysReg) { 831 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 832 "VReg, cannot tail call.\n"); 833 return false; 834 } 835 } 836 837 return true; 838 } 839 840 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 841 MachineFunction &MF, 842 SmallVectorImpl<ArgInfo> &InArgs, 843 CCAssignFn &CalleeAssignFnFixed, 844 CCAssignFn &CalleeAssignFnVarArg, 845 CCAssignFn &CallerAssignFnFixed, 846 CCAssignFn &CallerAssignFnVarArg) const { 847 const Function &F = MF.getFunction(); 848 CallingConv::ID CalleeCC = Info.CallConv; 849 CallingConv::ID CallerCC = F.getCallingConv(); 850 851 if (CallerCC == CalleeCC) 852 return true; 853 854 SmallVector<CCValAssign, 16> ArgLocs1; 855 CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext()); 856 if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed, 857 CalleeAssignFnVarArg)) 858 return false; 859 860 SmallVector<CCValAssign, 16> ArgLocs2; 861 CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext()); 862 if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed, 863 CalleeAssignFnVarArg)) 864 return false; 865 866 // We need the argument locations to match up exactly. If there's more in 867 // one than the other, then we are done. 868 if (ArgLocs1.size() != ArgLocs2.size()) 869 return false; 870 871 // Make sure that each location is passed in exactly the same way. 872 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 873 const CCValAssign &Loc1 = ArgLocs1[i]; 874 const CCValAssign &Loc2 = ArgLocs2[i]; 875 876 // We need both of them to be the same. So if one is a register and one 877 // isn't, we're done. 878 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 879 return false; 880 881 if (Loc1.isRegLoc()) { 882 // If they don't have the same register location, we're done. 883 if (Loc1.getLocReg() != Loc2.getLocReg()) 884 return false; 885 886 // They matched, so we can move to the next ArgLoc. 887 continue; 888 } 889 890 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 891 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 892 return false; 893 } 894 895 return true; 896 } 897 898 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 899 CCValAssign &VA, 900 unsigned MaxSizeBits) { 901 LLT LocTy{VA.getLocVT()}; 902 LLT ValTy = MRI.getType(ValReg); 903 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 904 return ValReg; 905 906 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 907 if (MaxSizeBits <= ValTy.getSizeInBits()) 908 return ValReg; 909 LocTy = LLT::scalar(MaxSizeBits); 910 } 911 912 switch (VA.getLocInfo()) { 913 default: break; 914 case CCValAssign::Full: 915 case CCValAssign::BCvt: 916 // FIXME: bitconverting between vector types may or may not be a 917 // nop in big-endian situations. 918 return ValReg; 919 case CCValAssign::AExt: { 920 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 921 return MIB.getReg(0); 922 } 923 case CCValAssign::SExt: { 924 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 925 MIRBuilder.buildSExt(NewReg, ValReg); 926 return NewReg; 927 } 928 case CCValAssign::ZExt: { 929 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 930 MIRBuilder.buildZExt(NewReg, ValReg); 931 return NewReg; 932 } 933 } 934 llvm_unreachable("unable to extend register"); 935 } 936 937 void CallLowering::ValueHandler::anchor() {} 938