xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 6c260d3bc059b29aa62b91378be4afa2d98d8067)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftError))
58     Flags.setSwiftError();
59 }
60 
61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
62                                                      unsigned ArgIdx) const {
63   ISD::ArgFlagsTy Flags;
64   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
65     return Call.paramHasAttr(ArgIdx, Attr);
66   });
67   return Flags;
68 }
69 
70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
71                                              const AttributeList &Attrs,
72                                              unsigned OpIdx) const {
73   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
74     return Attrs.hasAttribute(OpIdx, Attr);
75   });
76 }
77 
78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
79                              ArrayRef<Register> ResRegs,
80                              ArrayRef<ArrayRef<Register>> ArgRegs,
81                              Register SwiftErrorVReg,
82                              std::function<unsigned()> GetCalleeReg) const {
83   CallLoweringInfo Info;
84   const DataLayout &DL = MIRBuilder.getDataLayout();
85   MachineFunction &MF = MIRBuilder.getMF();
86   bool CanBeTailCalled = CB.isTailCall() &&
87                          isInTailCallPosition(CB, MF.getTarget()) &&
88                          (MF.getFunction()
89                               .getFnAttribute("disable-tail-calls")
90                               .getValueAsString() != "true");
91 
92   CallingConv::ID CallConv = CB.getCallingConv();
93   Type *RetTy = CB.getType();
94   bool IsVarArg = CB.getFunctionType()->isVarArg();
95 
96   SmallVector<BaseArgInfo, 4> SplitArgs;
97   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
98   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
99 
100   if (!Info.CanLowerReturn) {
101     // Callee requires sret demotion.
102     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
103 
104     // The sret demotion isn't compatible with tail-calls, since the sret
105     // argument points into the caller's stack frame.
106     CanBeTailCalled = false;
107   }
108 
109   // First step is to marshall all the function's parameters into the correct
110   // physregs and memory locations. Gather the sequence of argument types that
111   // we'll pass to the assigner function.
112   unsigned i = 0;
113   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
114   for (auto &Arg : CB.args()) {
115     ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i),
116                     i < NumFixedArgs};
117     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
118 
119     // If we have an explicit sret argument that is an Instruction, (i.e., it
120     // might point to function-local memory), we can't meaningfully tail-call.
121     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
122       CanBeTailCalled = false;
123 
124     Info.OrigArgs.push_back(OrigArg);
125     ++i;
126   }
127 
128   // Try looking through a bitcast from one function type to another.
129   // Commonly happens with calls to objc_msgSend().
130   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
131   if (const Function *F = dyn_cast<Function>(CalleeV))
132     Info.Callee = MachineOperand::CreateGA(F, 0);
133   else
134     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
135 
136   Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
137   if (!Info.OrigRet.Ty->isVoidTy())
138     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
139 
140   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
141   Info.CallConv = CallConv;
142   Info.SwiftErrorVReg = SwiftErrorVReg;
143   Info.IsMustTailCall = CB.isMustTailCall();
144   Info.IsTailCall = CanBeTailCalled;
145   Info.IsVarArg = IsVarArg;
146   return lowerCall(MIRBuilder, Info);
147 }
148 
149 template <typename FuncInfoTy>
150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
151                                const DataLayout &DL,
152                                const FuncInfoTy &FuncInfo) const {
153   auto &Flags = Arg.Flags[0];
154   const AttributeList &Attrs = FuncInfo.getAttributes();
155   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
156 
157   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
158     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
159 
160     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
161     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
162 
163     // For ByVal, alignment should be passed from FE.  BE will guess if
164     // this info is not there but there are cases it cannot get right.
165     Align FrameAlign;
166     if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2))
167       FrameAlign = *ParamAlign;
168     else
169       FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
170     Flags.setByValAlign(FrameAlign);
171   }
172   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
173 
174   // Don't try to use the returned attribute if the argument is marked as
175   // swiftself, since it won't be passed in x0.
176   if (Flags.isSwiftSelf())
177     Flags.setReturned(false);
178 }
179 
180 template void
181 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
182                                     const DataLayout &DL,
183                                     const Function &FuncInfo) const;
184 
185 template void
186 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
187                                     const DataLayout &DL,
188                                     const CallBase &FuncInfo) const;
189 
190 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
191                                      SmallVectorImpl<ArgInfo> &SplitArgs,
192                                      const DataLayout &DL,
193                                      CallingConv::ID CallConv) const {
194   LLVMContext &Ctx = OrigArg.Ty->getContext();
195 
196   SmallVector<EVT, 4> SplitVTs;
197   SmallVector<uint64_t, 4> Offsets;
198   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
199 
200   if (SplitVTs.size() == 0)
201     return;
202 
203   if (SplitVTs.size() == 1) {
204     // No splitting to do, but we want to replace the original type (e.g. [1 x
205     // double] -> double).
206     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
207                            OrigArg.Flags[0], OrigArg.IsFixed);
208     return;
209   }
210 
211   // Create one ArgInfo for each virtual register in the original ArgInfo.
212   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
213 
214   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
215       OrigArg.Ty, CallConv, false);
216   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
217     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
218     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
219                            OrigArg.IsFixed);
220     if (NeedsRegBlock)
221       SplitArgs.back().Flags[0].setInConsecutiveRegs();
222   }
223 
224   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
225 }
226 
227 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
228                                 MachineIRBuilder &MIRBuilder) const {
229   assert(SrcRegs.size() > 1 && "Nothing to pack");
230 
231   const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
232   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
233 
234   LLT PackedLLT = getLLTForType(*PackedTy, DL);
235 
236   SmallVector<LLT, 8> LLTs;
237   SmallVector<uint64_t, 8> Offsets;
238   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
239   assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
240 
241   Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
242   MIRBuilder.buildUndef(Dst);
243   for (unsigned i = 0; i < SrcRegs.size(); ++i) {
244     Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
245     MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
246     Dst = NewDst;
247   }
248 
249   return Dst;
250 }
251 
252 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
253                               Type *PackedTy,
254                               MachineIRBuilder &MIRBuilder) const {
255   assert(DstRegs.size() > 1 && "Nothing to unpack");
256 
257   const DataLayout &DL = MIRBuilder.getDataLayout();
258 
259   SmallVector<LLT, 8> LLTs;
260   SmallVector<uint64_t, 8> Offsets;
261   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
262   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
263 
264   for (unsigned i = 0; i < DstRegs.size(); ++i)
265     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
266 }
267 
268 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
269 static MachineInstrBuilder
270 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
271                             ArrayRef<Register> SrcRegs) {
272   MachineRegisterInfo &MRI = *B.getMRI();
273   LLT LLTy = MRI.getType(DstRegs[0]);
274   LLT PartLLT = MRI.getType(SrcRegs[0]);
275 
276   // Deal with v3s16 split into v2s16
277   LLT LCMTy = getLCMType(LLTy, PartLLT);
278   if (LCMTy == LLTy) {
279     // Common case where no padding is needed.
280     assert(DstRegs.size() == 1);
281     return B.buildConcatVectors(DstRegs[0], SrcRegs);
282   }
283 
284   const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
285   Register Undef = B.buildUndef(PartLLT).getReg(0);
286 
287   // Build vector of undefs.
288   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
289 
290   // Replace the first sources with the real registers.
291   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
292 
293   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
294   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
295 
296   SmallVector<Register, 8> PadDstRegs(NumDst);
297   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
298 
299   // Create the excess dead defs for the unmerge.
300   for (int I = DstRegs.size(); I != NumDst; ++I)
301     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
302 
303   return B.buildUnmerge(PadDstRegs, Widened);
304 }
305 
306 /// Create a sequence of instructions to combine pieces split into register
307 /// typed values to the original IR value. \p OrigRegs contains the destination
308 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
309 /// with type \p PartLLT.
310 static void buildCopyToParts(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
311                              ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) {
312   MachineRegisterInfo &MRI = *B.getMRI();
313 
314   if (!LLTy.isVector() && !PartLLT.isVector()) {
315     assert(OrigRegs.size() == 1);
316     LLT OrigTy = MRI.getType(OrigRegs[0]);
317 
318     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
319     if (SrcSize == OrigTy.getSizeInBits())
320       B.buildMerge(OrigRegs[0], Regs);
321     else {
322       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
323       B.buildTrunc(OrigRegs[0], Widened);
324     }
325 
326     return;
327   }
328 
329   if (LLTy.isVector() && PartLLT.isVector()) {
330     assert(OrigRegs.size() == 1);
331     assert(LLTy.getElementType() == PartLLT.getElementType());
332     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
333     return;
334   }
335 
336   assert(LLTy.isVector() && !PartLLT.isVector());
337 
338   LLT DstEltTy = LLTy.getElementType();
339 
340   // Pointer information was discarded. We'll need to coerce some register types
341   // to avoid violating type constraints.
342   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
343 
344   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
345 
346   if (DstEltTy == PartLLT) {
347     // Vector was trivially scalarized.
348 
349     if (RealDstEltTy.isPointer()) {
350       for (Register Reg : Regs)
351         MRI.setType(Reg, RealDstEltTy);
352     }
353 
354     B.buildBuildVector(OrigRegs[0], Regs);
355   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
356     // Deal with vector with 64-bit elements decomposed to 32-bit
357     // registers. Need to create intermediate 64-bit elements.
358     SmallVector<Register, 8> EltMerges;
359     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
360 
361     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
362 
363     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
364       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
365       // Fix the type in case this is really a vector of pointers.
366       MRI.setType(Merge.getReg(0), RealDstEltTy);
367       EltMerges.push_back(Merge.getReg(0));
368       Regs = Regs.drop_front(PartsPerElt);
369     }
370 
371     B.buildBuildVector(OrigRegs[0], EltMerges);
372   } else {
373     // Vector was split, and elements promoted to a wider type.
374     // FIXME: Should handle floating point promotions.
375     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
376     auto BV = B.buildBuildVector(BVType, Regs);
377     B.buildTrunc(OrigRegs[0], BV);
378   }
379 }
380 
381 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
382                                      SmallVectorImpl<ArgInfo> &Args,
383                                      ValueHandler &Handler,
384                                      CallingConv::ID CallConv, bool IsVarArg,
385                                      Register ThisReturnReg) const {
386   MachineFunction &MF = MIRBuilder.getMF();
387   const Function &F = MF.getFunction();
388   SmallVector<CCValAssign, 16> ArgLocs;
389 
390   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
391   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler,
392                            ThisReturnReg);
393 }
394 
395 bool CallLowering::handleAssignments(CCState &CCInfo,
396                                      SmallVectorImpl<CCValAssign> &ArgLocs,
397                                      MachineIRBuilder &MIRBuilder,
398                                      SmallVectorImpl<ArgInfo> &Args,
399                                      ValueHandler &Handler,
400                                      Register ThisReturnReg) const {
401   MachineFunction &MF = MIRBuilder.getMF();
402   const Function &F = MF.getFunction();
403   const DataLayout &DL = F.getParent()->getDataLayout();
404 
405   unsigned NumArgs = Args.size();
406   for (unsigned i = 0; i != NumArgs; ++i) {
407     EVT CurVT = EVT::getEVT(Args[i].Ty);
408     if (CurVT.isSimple() &&
409         !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(),
410                            CCValAssign::Full, Args[i], Args[i].Flags[0],
411                            CCInfo))
412       continue;
413 
414     MVT NewVT = TLI->getRegisterTypeForCallingConv(
415         F.getContext(), CCInfo.getCallingConv(), EVT(CurVT));
416 
417     // If we need to split the type over multiple regs, check it's a scenario
418     // we currently support.
419     unsigned NumParts = TLI->getNumRegistersForCallingConv(
420         F.getContext(), CCInfo.getCallingConv(), CurVT);
421 
422     if (NumParts == 1) {
423       // Try to use the register type if we couldn't assign the VT.
424       if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
425                             Args[i].Flags[0], CCInfo))
426         return false;
427       continue;
428     }
429 
430     assert(NumParts > 1);
431 
432     // For incoming arguments (physregs to vregs), we could have values in
433     // physregs (or memlocs) which we want to extract and copy to vregs.
434     // During this, we might have to deal with the LLT being split across
435     // multiple regs, so we have to record this information for later.
436     //
437     // If we have outgoing args, then we have the opposite case. We have a
438     // vreg with an LLT which we want to assign to a physical location, and
439     // we might have to record that the value has to be split later.
440     if (Handler.isIncomingArgumentHandler()) {
441       // We're handling an incoming arg which is split over multiple regs.
442       // E.g. passing an s128 on AArch64.
443       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
444       Args[i].OrigRegs.push_back(Args[i].Regs[0]);
445       Args[i].Regs.clear();
446       Args[i].Flags.clear();
447       LLT NewLLT = getLLTForMVT(NewVT);
448       // For each split register, create and assign a vreg that will store
449       // the incoming component of the larger value. These will later be
450       // merged to form the final vreg.
451       for (unsigned Part = 0; Part < NumParts; ++Part) {
452         Register Reg =
453             MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
454         ISD::ArgFlagsTy Flags = OrigFlags;
455         if (Part == 0) {
456           Flags.setSplit();
457         } else {
458           Flags.setOrigAlign(Align(1));
459           if (Part == NumParts - 1)
460             Flags.setSplitEnd();
461         }
462         Args[i].Regs.push_back(Reg);
463         Args[i].Flags.push_back(Flags);
464         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
465                               Args[i].Flags[Part], CCInfo)) {
466           // Still couldn't assign this smaller part type for some reason.
467           return false;
468         }
469       }
470     } else {
471       // This type is passed via multiple registers in the calling convention.
472       // We need to extract the individual parts.
473       Register LargeReg = Args[i].Regs[0];
474       LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
475       auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
476       assert(Unmerge->getNumOperands() == NumParts + 1);
477       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
478       // We're going to replace the regs and flags with the split ones.
479       Args[i].Regs.clear();
480       Args[i].Flags.clear();
481       for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
482         ISD::ArgFlagsTy Flags = OrigFlags;
483         if (PartIdx == 0) {
484           Flags.setSplit();
485         } else {
486           Flags.setOrigAlign(Align(1));
487           if (PartIdx == NumParts - 1)
488             Flags.setSplitEnd();
489         }
490 
491         // TODO: Also check if there is a valid extension that preserves the
492         // bits. However currently this call lowering doesn't support non-exact
493         // split parts, so that can't be tested.
494         if (OrigFlags.isReturned() &&
495             (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) {
496           Flags.setReturned(false);
497         }
498 
499         Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
500         Args[i].Flags.push_back(Flags);
501         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full,
502                               Args[i], Args[i].Flags[PartIdx], CCInfo))
503           return false;
504       }
505     }
506   }
507 
508   for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
509     assert(j < ArgLocs.size() && "Skipped too many arg locs");
510 
511     CCValAssign &VA = ArgLocs[j];
512     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
513 
514     if (VA.needsCustom()) {
515       unsigned NumArgRegs =
516           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
517       if (!NumArgRegs)
518         return false;
519       j += NumArgRegs;
520       continue;
521     }
522 
523     EVT OrigVT = EVT::getEVT(Args[i].Ty);
524     EVT VAVT = VA.getValVT();
525     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
526     const LLT VATy(VAVT.getSimpleVT());
527 
528     // Expected to be multiple regs for a single incoming arg.
529     // There should be Regs.size() ArgLocs per argument.
530     unsigned NumArgRegs = Args[i].Regs.size();
531     MachineRegisterInfo &MRI = MF.getRegInfo();
532     assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
533            "Too many regs for number of args");
534     for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
535       Register ArgReg = Args[i].Regs[Part];
536       LLT ArgRegTy = MRI.getType(ArgReg);
537       // There should be Regs.size() ArgLocs per argument.
538       VA = ArgLocs[j + Part];
539       if (VA.isMemLoc()) {
540         // Individual pieces may have been spilled to the stack and others
541         // passed in registers.
542 
543         // FIXME: Use correct address space for pointer size
544         EVT LocVT = VA.getValVT();
545         unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize()
546                                               : LocVT.getStoreSize();
547         unsigned Offset = VA.getLocMemOffset();
548         MachinePointerInfo MPO;
549         Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO);
550         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO,
551                                      VA);
552         continue;
553       }
554 
555       assert(VA.isRegLoc() && "custom loc should have been handled already");
556 
557       if (i == 0 && ThisReturnReg.isValid() &&
558           Handler.isIncomingArgumentHandler() &&
559           isTypeIsValidForThisReturn(VAVT)) {
560         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
561         continue;
562       }
563 
564       // GlobalISel does not currently work for scalable vectors.
565       if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() ||
566           !Handler.isIncomingArgumentHandler()) {
567         // This is an argument that might have been split. There should be
568         // Regs.size() ArgLocs per argument.
569 
570         // Insert the argument copies. If VAVT < OrigVT, we'll insert the merge
571         // to the original register after handling all of the parts.
572         Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
573         continue;
574       }
575 
576       // This ArgLoc covers multiple pieces, so we need to split it.
577       Register NewReg = MRI.createGenericVirtualRegister(VATy);
578       Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
579       // If it's a vector type, we either need to truncate the elements
580       // or do an unmerge to get the lower block of elements.
581       if (VATy.isVector() &&
582           VATy.getNumElements() > OrigVT.getVectorNumElements()) {
583         // Just handle the case where the VA type is a multiple of original
584         // type.
585         if (VATy.getNumElements() % OrigVT.getVectorNumElements() != 0) {
586           LLVM_DEBUG(dbgs() << "Incoming promoted vector arg elts is not a "
587                                "multiple of orig type elt: "
588                             << VATy << " vs " << OrigTy);
589           return false;
590         }
591         SmallVector<Register, 4> DstRegs = {ArgReg};
592         unsigned NumParts =
593             VATy.getNumElements() / OrigVT.getVectorNumElements() - 1;
594         for (unsigned Idx = 0; Idx < NumParts; ++Idx)
595           DstRegs.push_back(
596               MIRBuilder.getMRI()->createGenericVirtualRegister(OrigTy));
597         MIRBuilder.buildUnmerge(DstRegs, {NewReg});
598       } else if (VATy.getScalarSizeInBits() > ArgRegTy.getScalarSizeInBits()) {
599         MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
600       } else {
601         MIRBuilder.buildCopy(ArgReg, NewReg);
602       }
603     }
604 
605     // Now that all pieces have been handled, re-pack any arguments into any
606     // wider, original registers.
607     if (Handler.isIncomingArgumentHandler()) {
608       // Merge the split registers into the expected larger result vregs of
609       // the original call.
610 
611       if (OrigTy != VATy && !Args[i].OrigRegs.empty()) {
612         buildCopyToParts(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
613                          VATy);
614       }
615     }
616 
617     j += NumArgRegs - 1;
618   }
619 
620   return true;
621 }
622 
623 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
624                                    ArrayRef<Register> VRegs, Register DemoteReg,
625                                    int FI) const {
626   MachineFunction &MF = MIRBuilder.getMF();
627   MachineRegisterInfo &MRI = MF.getRegInfo();
628   const DataLayout &DL = MF.getDataLayout();
629 
630   SmallVector<EVT, 4> SplitVTs;
631   SmallVector<uint64_t, 4> Offsets;
632   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
633 
634   assert(VRegs.size() == SplitVTs.size());
635 
636   unsigned NumValues = SplitVTs.size();
637   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
638   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
639   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
640 
641   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
642 
643   for (unsigned I = 0; I < NumValues; ++I) {
644     Register Addr;
645     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
646     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
647                                         MRI.getType(VRegs[I]).getSizeInBytes(),
648                                         commonAlignment(BaseAlign, Offsets[I]));
649     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
650   }
651 }
652 
653 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
654                                     ArrayRef<Register> VRegs,
655                                     Register DemoteReg) const {
656   MachineFunction &MF = MIRBuilder.getMF();
657   MachineRegisterInfo &MRI = MF.getRegInfo();
658   const DataLayout &DL = MF.getDataLayout();
659 
660   SmallVector<EVT, 4> SplitVTs;
661   SmallVector<uint64_t, 4> Offsets;
662   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
663 
664   assert(VRegs.size() == SplitVTs.size());
665 
666   unsigned NumValues = SplitVTs.size();
667   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
668   unsigned AS = DL.getAllocaAddrSpace();
669   LLT OffsetLLTy =
670       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
671 
672   MachinePointerInfo PtrInfo(AS);
673 
674   for (unsigned I = 0; I < NumValues; ++I) {
675     Register Addr;
676     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
677     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
678                                         MRI.getType(VRegs[I]).getSizeInBytes(),
679                                         commonAlignment(BaseAlign, Offsets[I]));
680     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
681   }
682 }
683 
684 void CallLowering::insertSRetIncomingArgument(
685     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
686     MachineRegisterInfo &MRI, const DataLayout &DL) const {
687   unsigned AS = DL.getAllocaAddrSpace();
688   DemoteReg = MRI.createGenericVirtualRegister(
689       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
690 
691   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
692 
693   SmallVector<EVT, 1> ValueVTs;
694   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
695 
696   // NOTE: Assume that a pointer won't get split into more than one VT.
697   assert(ValueVTs.size() == 1);
698 
699   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
700   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
701   DemoteArg.Flags[0].setSRet();
702   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
703 }
704 
705 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
706                                               const CallBase &CB,
707                                               CallLoweringInfo &Info) const {
708   const DataLayout &DL = MIRBuilder.getDataLayout();
709   Type *RetTy = CB.getType();
710   unsigned AS = DL.getAllocaAddrSpace();
711   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
712 
713   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
714       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
715 
716   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
717   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
718   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
719   DemoteArg.Flags[0].setSRet();
720 
721   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
722   Info.DemoteStackIndex = FI;
723   Info.DemoteRegister = DemoteReg;
724 }
725 
726 bool CallLowering::checkReturn(CCState &CCInfo,
727                                SmallVectorImpl<BaseArgInfo> &Outs,
728                                CCAssignFn *Fn) const {
729   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
730     MVT VT = MVT::getVT(Outs[I].Ty);
731     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
732       return false;
733   }
734   return true;
735 }
736 
737 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
738                                  AttributeList Attrs,
739                                  SmallVectorImpl<BaseArgInfo> &Outs,
740                                  const DataLayout &DL) const {
741   LLVMContext &Context = RetTy->getContext();
742   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
743 
744   SmallVector<EVT, 4> SplitVTs;
745   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
746   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
747 
748   for (EVT VT : SplitVTs) {
749     unsigned NumParts =
750         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
751     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
752     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
753 
754     for (unsigned I = 0; I < NumParts; ++I) {
755       Outs.emplace_back(PartTy, Flags);
756     }
757   }
758 }
759 
760 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
761   const auto &F = MF.getFunction();
762   Type *ReturnType = F.getReturnType();
763   CallingConv::ID CallConv = F.getCallingConv();
764 
765   SmallVector<BaseArgInfo, 4> SplitArgs;
766   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
767                 MF.getDataLayout());
768   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
769 }
770 
771 bool CallLowering::analyzeArgInfo(CCState &CCState,
772                                   SmallVectorImpl<ArgInfo> &Args,
773                                   CCAssignFn &AssignFnFixed,
774                                   CCAssignFn &AssignFnVarArg) const {
775   for (unsigned i = 0, e = Args.size(); i < e; ++i) {
776     MVT VT = MVT::getVT(Args[i].Ty);
777     CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
778     if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
779       // Bail out on anything we can't handle.
780       LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
781                         << " (arg number = " << i << "\n");
782       return false;
783     }
784   }
785   return true;
786 }
787 
788 bool CallLowering::parametersInCSRMatch(
789     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
790     const SmallVectorImpl<CCValAssign> &OutLocs,
791     const SmallVectorImpl<ArgInfo> &OutArgs) const {
792   for (unsigned i = 0; i < OutLocs.size(); ++i) {
793     auto &ArgLoc = OutLocs[i];
794     // If it's not a register, it's fine.
795     if (!ArgLoc.isRegLoc())
796       continue;
797 
798     MCRegister PhysReg = ArgLoc.getLocReg();
799 
800     // Only look at callee-saved registers.
801     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
802       continue;
803 
804     LLVM_DEBUG(
805         dbgs()
806         << "... Call has an argument passed in a callee-saved register.\n");
807 
808     // Check if it was copied from.
809     const ArgInfo &OutInfo = OutArgs[i];
810 
811     if (OutInfo.Regs.size() > 1) {
812       LLVM_DEBUG(
813           dbgs() << "... Cannot handle arguments in multiple registers.\n");
814       return false;
815     }
816 
817     // Check if we copy the register, walking through copies from virtual
818     // registers. Note that getDefIgnoringCopies does not ignore copies from
819     // physical registers.
820     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
821     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
822       LLVM_DEBUG(
823           dbgs()
824           << "... Parameter was not copied into a VReg, cannot tail call.\n");
825       return false;
826     }
827 
828     // Got a copy. Verify that it's the same as the register we want.
829     Register CopyRHS = RegDef->getOperand(1).getReg();
830     if (CopyRHS != PhysReg) {
831       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
832                            "VReg, cannot tail call.\n");
833       return false;
834     }
835   }
836 
837   return true;
838 }
839 
840 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
841                                      MachineFunction &MF,
842                                      SmallVectorImpl<ArgInfo> &InArgs,
843                                      CCAssignFn &CalleeAssignFnFixed,
844                                      CCAssignFn &CalleeAssignFnVarArg,
845                                      CCAssignFn &CallerAssignFnFixed,
846                                      CCAssignFn &CallerAssignFnVarArg) const {
847   const Function &F = MF.getFunction();
848   CallingConv::ID CalleeCC = Info.CallConv;
849   CallingConv::ID CallerCC = F.getCallingConv();
850 
851   if (CallerCC == CalleeCC)
852     return true;
853 
854   SmallVector<CCValAssign, 16> ArgLocs1;
855   CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
856   if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
857                       CalleeAssignFnVarArg))
858     return false;
859 
860   SmallVector<CCValAssign, 16> ArgLocs2;
861   CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
862   if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
863                       CalleeAssignFnVarArg))
864     return false;
865 
866   // We need the argument locations to match up exactly. If there's more in
867   // one than the other, then we are done.
868   if (ArgLocs1.size() != ArgLocs2.size())
869     return false;
870 
871   // Make sure that each location is passed in exactly the same way.
872   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
873     const CCValAssign &Loc1 = ArgLocs1[i];
874     const CCValAssign &Loc2 = ArgLocs2[i];
875 
876     // We need both of them to be the same. So if one is a register and one
877     // isn't, we're done.
878     if (Loc1.isRegLoc() != Loc2.isRegLoc())
879       return false;
880 
881     if (Loc1.isRegLoc()) {
882       // If they don't have the same register location, we're done.
883       if (Loc1.getLocReg() != Loc2.getLocReg())
884         return false;
885 
886       // They matched, so we can move to the next ArgLoc.
887       continue;
888     }
889 
890     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
891     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
892       return false;
893   }
894 
895   return true;
896 }
897 
898 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
899                                                     CCValAssign &VA,
900                                                     unsigned MaxSizeBits) {
901   LLT LocTy{VA.getLocVT()};
902   LLT ValTy = MRI.getType(ValReg);
903   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
904     return ValReg;
905 
906   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
907     if (MaxSizeBits <= ValTy.getSizeInBits())
908       return ValReg;
909     LocTy = LLT::scalar(MaxSizeBits);
910   }
911 
912   switch (VA.getLocInfo()) {
913   default: break;
914   case CCValAssign::Full:
915   case CCValAssign::BCvt:
916     // FIXME: bitconverting between vector types may or may not be a
917     // nop in big-endian situations.
918     return ValReg;
919   case CCValAssign::AExt: {
920     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
921     return MIB.getReg(0);
922   }
923   case CCValAssign::SExt: {
924     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
925     MIRBuilder.buildSExt(NewReg, ValReg);
926     return NewReg;
927   }
928   case CCValAssign::ZExt: {
929     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
930     MIRBuilder.buildZExt(NewReg, ValReg);
931     return NewReg;
932   }
933   }
934   llvm_unreachable("unable to extend register");
935 }
936 
937 void CallLowering::ValueHandler::anchor() {}
938