xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 67504c95494ff05be2a613129110c9bcf17f6c13)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   if (AttrFn(Attribute::SExt))
39     Flags.setSExt();
40   if (AttrFn(Attribute::ZExt))
41     Flags.setZExt();
42   if (AttrFn(Attribute::InReg))
43     Flags.setInReg();
44   if (AttrFn(Attribute::StructRet))
45     Flags.setSRet();
46   if (AttrFn(Attribute::Nest))
47     Flags.setNest();
48   if (AttrFn(Attribute::ByVal))
49     Flags.setByVal();
50   if (AttrFn(Attribute::Preallocated))
51     Flags.setPreallocated();
52   if (AttrFn(Attribute::InAlloca))
53     Flags.setInAlloca();
54   if (AttrFn(Attribute::Returned))
55     Flags.setReturned();
56   if (AttrFn(Attribute::SwiftSelf))
57     Flags.setSwiftSelf();
58   if (AttrFn(Attribute::SwiftAsync))
59     Flags.setSwiftAsync();
60   if (AttrFn(Attribute::SwiftError))
61     Flags.setSwiftError();
62 }
63 
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65                                                      unsigned ArgIdx) const {
66   ISD::ArgFlagsTy Flags;
67   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68     return Call.paramHasAttr(ArgIdx, Attr);
69   });
70   return Flags;
71 }
72 
73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
74                                              const AttributeList &Attrs,
75                                              unsigned OpIdx) const {
76   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
77     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
78   });
79 }
80 
81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
82                              ArrayRef<Register> ResRegs,
83                              ArrayRef<ArrayRef<Register>> ArgRegs,
84                              Register SwiftErrorVReg,
85                              std::function<unsigned()> GetCalleeReg) const {
86   CallLoweringInfo Info;
87   const DataLayout &DL = MIRBuilder.getDataLayout();
88   MachineFunction &MF = MIRBuilder.getMF();
89   MachineRegisterInfo &MRI = MF.getRegInfo();
90   bool CanBeTailCalled = CB.isTailCall() &&
91                          isInTailCallPosition(CB, MF.getTarget()) &&
92                          (MF.getFunction()
93                               .getFnAttribute("disable-tail-calls")
94                               .getValueAsString() != "true");
95 
96   CallingConv::ID CallConv = CB.getCallingConv();
97   Type *RetTy = CB.getType();
98   bool IsVarArg = CB.getFunctionType()->isVarArg();
99 
100   SmallVector<BaseArgInfo, 4> SplitArgs;
101   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
102   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
103 
104   if (!Info.CanLowerReturn) {
105     // Callee requires sret demotion.
106     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
107 
108     // The sret demotion isn't compatible with tail-calls, since the sret
109     // argument points into the caller's stack frame.
110     CanBeTailCalled = false;
111   }
112 
113 
114   // First step is to marshall all the function's parameters into the correct
115   // physregs and memory locations. Gather the sequence of argument types that
116   // we'll pass to the assigner function.
117   unsigned i = 0;
118   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
119   for (const auto &Arg : CB.args()) {
120     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
121                     i < NumFixedArgs};
122     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
123 
124     // If we have an explicit sret argument that is an Instruction, (i.e., it
125     // might point to function-local memory), we can't meaningfully tail-call.
126     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
127       CanBeTailCalled = false;
128 
129     Info.OrigArgs.push_back(OrigArg);
130     ++i;
131   }
132 
133   // Try looking through a bitcast from one function type to another.
134   // Commonly happens with calls to objc_msgSend().
135   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
136   if (const Function *F = dyn_cast<Function>(CalleeV))
137     Info.Callee = MachineOperand::CreateGA(F, 0);
138   else
139     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
140 
141   Register ReturnHintAlignReg;
142   Align ReturnHintAlign;
143 
144   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
145 
146   if (!Info.OrigRet.Ty->isVoidTy()) {
147     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
148 
149     if (MaybeAlign Alignment = CB.getRetAlign()) {
150       if (*Alignment > Align(1)) {
151         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
152         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
153         ReturnHintAlign = *Alignment;
154       }
155     }
156   }
157 
158   auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
159   if (Bundle && CB.isIndirectCall()) {
160     Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
161     assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
162   }
163 
164   Info.CB = &CB;
165   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
166   Info.CallConv = CallConv;
167   Info.SwiftErrorVReg = SwiftErrorVReg;
168   Info.IsMustTailCall = CB.isMustTailCall();
169   Info.IsTailCall = CanBeTailCalled;
170   Info.IsVarArg = IsVarArg;
171   if (!lowerCall(MIRBuilder, Info))
172     return false;
173 
174   if (ReturnHintAlignReg && !Info.IsTailCall) {
175     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
176                                 ReturnHintAlign);
177   }
178 
179   return true;
180 }
181 
182 template <typename FuncInfoTy>
183 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
184                                const DataLayout &DL,
185                                const FuncInfoTy &FuncInfo) const {
186   auto &Flags = Arg.Flags[0];
187   const AttributeList &Attrs = FuncInfo.getAttributes();
188   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
189 
190   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
191   if (PtrTy) {
192     Flags.setPointer();
193     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
194   }
195 
196   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
197   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
198     assert(OpIdx >= AttributeList::FirstArgIndex);
199     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
200 
201     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
202     if (!ElementTy)
203       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
204     if (!ElementTy)
205       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
206     assert(ElementTy && "Must have byval, inalloca or preallocated type");
207     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
208 
209     // For ByVal, alignment should be passed from FE.  BE will guess if
210     // this info is not there but there are cases it cannot get right.
211     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
212       MemAlign = *ParamAlign;
213     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
214       MemAlign = *ParamAlign;
215     else
216       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
217   } else if (OpIdx >= AttributeList::FirstArgIndex) {
218     if (auto ParamAlign =
219             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
220       MemAlign = *ParamAlign;
221   }
222   Flags.setMemAlign(MemAlign);
223   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
224 
225   // Don't try to use the returned attribute if the argument is marked as
226   // swiftself, since it won't be passed in x0.
227   if (Flags.isSwiftSelf())
228     Flags.setReturned(false);
229 }
230 
231 template void
232 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
233                                     const DataLayout &DL,
234                                     const Function &FuncInfo) const;
235 
236 template void
237 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
238                                     const DataLayout &DL,
239                                     const CallBase &FuncInfo) const;
240 
241 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
242                                      SmallVectorImpl<ArgInfo> &SplitArgs,
243                                      const DataLayout &DL,
244                                      CallingConv::ID CallConv,
245                                      SmallVectorImpl<uint64_t> *Offsets) const {
246   LLVMContext &Ctx = OrigArg.Ty->getContext();
247 
248   SmallVector<EVT, 4> SplitVTs;
249   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
250 
251   if (SplitVTs.size() == 0)
252     return;
253 
254   if (SplitVTs.size() == 1) {
255     // No splitting to do, but we want to replace the original type (e.g. [1 x
256     // double] -> double).
257     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
258                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
259                            OrigArg.IsFixed, OrigArg.OrigValue);
260     return;
261   }
262 
263   // Create one ArgInfo for each virtual register in the original ArgInfo.
264   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
265 
266   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
267       OrigArg.Ty, CallConv, false, DL);
268   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
269     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
270     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
271                            OrigArg.Flags[0], OrigArg.IsFixed);
272     if (NeedsRegBlock)
273       SplitArgs.back().Flags[0].setInConsecutiveRegs();
274   }
275 
276   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
277 }
278 
279 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
280 static MachineInstrBuilder
281 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
282                             ArrayRef<Register> SrcRegs) {
283   MachineRegisterInfo &MRI = *B.getMRI();
284   LLT LLTy = MRI.getType(DstRegs[0]);
285   LLT PartLLT = MRI.getType(SrcRegs[0]);
286 
287   // Deal with v3s16 split into v2s16
288   LLT LCMTy = getCoverTy(LLTy, PartLLT);
289   if (LCMTy == LLTy) {
290     // Common case where no padding is needed.
291     assert(DstRegs.size() == 1);
292     return B.buildConcatVectors(DstRegs[0], SrcRegs);
293   }
294 
295   // We need to create an unmerge to the result registers, which may require
296   // widening the original value.
297   Register UnmergeSrcReg;
298   if (LCMTy != PartLLT) {
299     assert(DstRegs.size() == 1);
300     return B.buildDeleteTrailingVectorElements(DstRegs[0],
301                                                B.buildMerge(LCMTy, SrcRegs));
302   } else {
303     // We don't need to widen anything if we're extracting a scalar which was
304     // promoted to a vector e.g. s8 -> v4s8 -> s8
305     assert(SrcRegs.size() == 1);
306     UnmergeSrcReg = SrcRegs[0];
307   }
308 
309   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
310 
311   SmallVector<Register, 8> PadDstRegs(NumDst);
312   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
313 
314   // Create the excess dead defs for the unmerge.
315   for (int I = DstRegs.size(); I != NumDst; ++I)
316     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
317 
318   if (PadDstRegs.size() == 1)
319     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
320   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
321 }
322 
323 /// Create a sequence of instructions to combine pieces split into register
324 /// typed values to the original IR value. \p OrigRegs contains the destination
325 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
326 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
327 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
328                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
329                               const ISD::ArgFlagsTy Flags) {
330   MachineRegisterInfo &MRI = *B.getMRI();
331 
332   if (PartLLT == LLTy) {
333     // We should have avoided introducing a new virtual register, and just
334     // directly assigned here.
335     assert(OrigRegs[0] == Regs[0]);
336     return;
337   }
338 
339   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
340       Regs.size() == 1) {
341     B.buildBitcast(OrigRegs[0], Regs[0]);
342     return;
343   }
344 
345   // A vector PartLLT needs extending to LLTy's element size.
346   // E.g. <2 x s64> = G_SEXT <2 x s32>.
347   if (PartLLT.isVector() == LLTy.isVector() &&
348       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
349       (!PartLLT.isVector() ||
350        PartLLT.getNumElements() == LLTy.getNumElements()) &&
351       OrigRegs.size() == 1 && Regs.size() == 1) {
352     Register SrcReg = Regs[0];
353 
354     LLT LocTy = MRI.getType(SrcReg);
355 
356     if (Flags.isSExt()) {
357       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
358                    .getReg(0);
359     } else if (Flags.isZExt()) {
360       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
361                    .getReg(0);
362     }
363 
364     // Sometimes pointers are passed zero extended.
365     LLT OrigTy = MRI.getType(OrigRegs[0]);
366     if (OrigTy.isPointer()) {
367       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
368       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
369       return;
370     }
371 
372     B.buildTrunc(OrigRegs[0], SrcReg);
373     return;
374   }
375 
376   if (!LLTy.isVector() && !PartLLT.isVector()) {
377     assert(OrigRegs.size() == 1);
378     LLT OrigTy = MRI.getType(OrigRegs[0]);
379 
380     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
381     if (SrcSize == OrigTy.getSizeInBits())
382       B.buildMerge(OrigRegs[0], Regs);
383     else {
384       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
385       B.buildTrunc(OrigRegs[0], Widened);
386     }
387 
388     return;
389   }
390 
391   if (PartLLT.isVector()) {
392     assert(OrigRegs.size() == 1);
393     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
394 
395     // If PartLLT is a mismatched vector in both number of elements and element
396     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
397     // have the same elt type, i.e. v4s32.
398     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
399         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
400         Regs.size() == 1) {
401       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
402                       .changeElementCount(PartLLT.getElementCount() * 2);
403       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
404       PartLLT = NewTy;
405     }
406 
407     if (LLTy.getScalarType() == PartLLT.getElementType()) {
408       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
409     } else {
410       unsigned I = 0;
411       LLT GCDTy = getGCDType(LLTy, PartLLT);
412 
413       // We are both splitting a vector, and bitcasting its element types. Cast
414       // the source pieces into the appropriate number of pieces with the result
415       // element type.
416       for (Register SrcReg : CastRegs)
417         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
418       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
419     }
420 
421     return;
422   }
423 
424   assert(LLTy.isVector() && !PartLLT.isVector());
425 
426   LLT DstEltTy = LLTy.getElementType();
427 
428   // Pointer information was discarded. We'll need to coerce some register types
429   // to avoid violating type constraints.
430   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
431 
432   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
433 
434   if (DstEltTy == PartLLT) {
435     // Vector was trivially scalarized.
436 
437     if (RealDstEltTy.isPointer()) {
438       for (Register Reg : Regs)
439         MRI.setType(Reg, RealDstEltTy);
440     }
441 
442     B.buildBuildVector(OrigRegs[0], Regs);
443   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
444     // Deal with vector with 64-bit elements decomposed to 32-bit
445     // registers. Need to create intermediate 64-bit elements.
446     SmallVector<Register, 8> EltMerges;
447     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
448 
449     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
450 
451     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
452       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
453       // Fix the type in case this is really a vector of pointers.
454       MRI.setType(Merge.getReg(0), RealDstEltTy);
455       EltMerges.push_back(Merge.getReg(0));
456       Regs = Regs.drop_front(PartsPerElt);
457     }
458 
459     B.buildBuildVector(OrigRegs[0], EltMerges);
460   } else {
461     // Vector was split, and elements promoted to a wider type.
462     // FIXME: Should handle floating point promotions.
463     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
464     auto BV = B.buildBuildVector(BVType, Regs);
465     B.buildTrunc(OrigRegs[0], BV);
466   }
467 }
468 
469 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
470 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
471 /// contain the type of scalar value extension if necessary.
472 ///
473 /// This is used for outgoing values (vregs to physregs)
474 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
475                             Register SrcReg, LLT SrcTy, LLT PartTy,
476                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
477   // We could just insert a regular copy, but this is unreachable at the moment.
478   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
479 
480   const unsigned PartSize = PartTy.getSizeInBits();
481 
482   if (PartTy.isVector() == SrcTy.isVector() &&
483       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
484     assert(DstRegs.size() == 1);
485     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
486     return;
487   }
488 
489   if (SrcTy.isVector() && !PartTy.isVector() &&
490       PartSize > SrcTy.getElementType().getSizeInBits()) {
491     // Vector was scalarized, and the elements extended.
492     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
493     for (int i = 0, e = DstRegs.size(); i != e; ++i)
494       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
495     return;
496   }
497 
498   LLT GCDTy = getGCDType(SrcTy, PartTy);
499   if (GCDTy == PartTy) {
500     // If this already evenly divisible, we can create a simple unmerge.
501     B.buildUnmerge(DstRegs, SrcReg);
502     return;
503   }
504 
505   MachineRegisterInfo &MRI = *B.getMRI();
506   LLT DstTy = MRI.getType(DstRegs[0]);
507   LLT LCMTy = getCoverTy(SrcTy, PartTy);
508 
509   if (PartTy.isVector() && LCMTy == PartTy) {
510     assert(DstRegs.size() == 1);
511     B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
512     return;
513   }
514 
515   const unsigned DstSize = DstTy.getSizeInBits();
516   const unsigned SrcSize = SrcTy.getSizeInBits();
517   unsigned CoveringSize = LCMTy.getSizeInBits();
518 
519   Register UnmergeSrc = SrcReg;
520 
521   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
522     // For scalars, it's common to be able to use a simple extension.
523     if (SrcTy.isScalar() && DstTy.isScalar()) {
524       CoveringSize = alignTo(SrcSize, DstSize);
525       LLT CoverTy = LLT::scalar(CoveringSize);
526       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
527     } else {
528       // Widen to the common type.
529       // FIXME: This should respect the extend type
530       Register Undef = B.buildUndef(SrcTy).getReg(0);
531       SmallVector<Register, 8> MergeParts(1, SrcReg);
532       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
533         MergeParts.push_back(Undef);
534       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
535     }
536   }
537 
538   if (LCMTy.isVector() && CoveringSize != SrcSize)
539     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
540 
541   B.buildUnmerge(DstRegs, UnmergeSrc);
542 }
543 
544 bool CallLowering::determineAndHandleAssignments(
545     ValueHandler &Handler, ValueAssigner &Assigner,
546     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
547     CallingConv::ID CallConv, bool IsVarArg,
548     ArrayRef<Register> ThisReturnRegs) const {
549   MachineFunction &MF = MIRBuilder.getMF();
550   const Function &F = MF.getFunction();
551   SmallVector<CCValAssign, 16> ArgLocs;
552 
553   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
554   if (!determineAssignments(Assigner, Args, CCInfo))
555     return false;
556 
557   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
558                            ThisReturnRegs);
559 }
560 
561 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
562   if (Flags.isSExt())
563     return TargetOpcode::G_SEXT;
564   if (Flags.isZExt())
565     return TargetOpcode::G_ZEXT;
566   return TargetOpcode::G_ANYEXT;
567 }
568 
569 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
570                                         SmallVectorImpl<ArgInfo> &Args,
571                                         CCState &CCInfo) const {
572   LLVMContext &Ctx = CCInfo.getContext();
573   const CallingConv::ID CallConv = CCInfo.getCallingConv();
574 
575   unsigned NumArgs = Args.size();
576   for (unsigned i = 0; i != NumArgs; ++i) {
577     EVT CurVT = EVT::getEVT(Args[i].Ty);
578 
579     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
580 
581     // If we need to split the type over multiple regs, check it's a scenario
582     // we currently support.
583     unsigned NumParts =
584         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
585 
586     if (NumParts == 1) {
587       // Try to use the register type if we couldn't assign the VT.
588       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
589                              Args[i].Flags[0], CCInfo))
590         return false;
591       continue;
592     }
593 
594     // For incoming arguments (physregs to vregs), we could have values in
595     // physregs (or memlocs) which we want to extract and copy to vregs.
596     // During this, we might have to deal with the LLT being split across
597     // multiple regs, so we have to record this information for later.
598     //
599     // If we have outgoing args, then we have the opposite case. We have a
600     // vreg with an LLT which we want to assign to a physical location, and
601     // we might have to record that the value has to be split later.
602 
603     // We're handling an incoming arg which is split over multiple regs.
604     // E.g. passing an s128 on AArch64.
605     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
606     Args[i].Flags.clear();
607 
608     for (unsigned Part = 0; Part < NumParts; ++Part) {
609       ISD::ArgFlagsTy Flags = OrigFlags;
610       if (Part == 0) {
611         Flags.setSplit();
612       } else {
613         Flags.setOrigAlign(Align(1));
614         if (Part == NumParts - 1)
615           Flags.setSplitEnd();
616       }
617 
618       Args[i].Flags.push_back(Flags);
619       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
620                              Args[i].Flags[Part], CCInfo)) {
621         // Still couldn't assign this smaller part type for some reason.
622         return false;
623       }
624     }
625   }
626 
627   return true;
628 }
629 
630 bool CallLowering::handleAssignments(ValueHandler &Handler,
631                                      SmallVectorImpl<ArgInfo> &Args,
632                                      CCState &CCInfo,
633                                      SmallVectorImpl<CCValAssign> &ArgLocs,
634                                      MachineIRBuilder &MIRBuilder,
635                                      ArrayRef<Register> ThisReturnRegs) const {
636   MachineFunction &MF = MIRBuilder.getMF();
637   MachineRegisterInfo &MRI = MF.getRegInfo();
638   const Function &F = MF.getFunction();
639   const DataLayout &DL = F.getParent()->getDataLayout();
640 
641   const unsigned NumArgs = Args.size();
642 
643   // Stores thunks for outgoing register assignments. This is used so we delay
644   // generating register copies until mem loc assignments are done. We do this
645   // so that if the target is using the delayed stack protector feature, we can
646   // find the split point of the block accurately. E.g. if we have:
647   // G_STORE %val, %memloc
648   // $x0 = COPY %foo
649   // $x1 = COPY %bar
650   // CALL func
651   // ... then the split point for the block will correctly be at, and including,
652   // the copy to $x0. If instead the G_STORE instruction immediately precedes
653   // the CALL, then we'd prematurely choose the CALL as the split point, thus
654   // generating a split block with a CALL that uses undefined physregs.
655   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
656 
657   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
658     assert(j < ArgLocs.size() && "Skipped too many arg locs");
659     CCValAssign &VA = ArgLocs[j];
660     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
661 
662     if (VA.needsCustom()) {
663       std::function<void()> Thunk;
664       unsigned NumArgRegs = Handler.assignCustomValue(
665           Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
666       if (Thunk)
667         DelayedOutgoingRegAssignments.emplace_back(Thunk);
668       if (!NumArgRegs)
669         return false;
670       j += NumArgRegs;
671       continue;
672     }
673 
674     const MVT ValVT = VA.getValVT();
675     const MVT LocVT = VA.getLocVT();
676 
677     const LLT LocTy(LocVT);
678     const LLT ValTy(ValVT);
679     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
680     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
681     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
682 
683     // Expected to be multiple regs for a single incoming arg.
684     // There should be Regs.size() ArgLocs per argument.
685     // This should be the same as getNumRegistersForCallingConv
686     const unsigned NumParts = Args[i].Flags.size();
687 
688     // Now split the registers into the assigned types.
689     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
690 
691     if (NumParts != 1 || NewLLT != OrigTy) {
692       // If we can't directly assign the register, we need one or more
693       // intermediate values.
694       Args[i].Regs.resize(NumParts);
695 
696       // For each split register, create and assign a vreg that will store
697       // the incoming component of the larger value. These will later be
698       // merged to form the final vreg.
699       for (unsigned Part = 0; Part < NumParts; ++Part)
700         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
701     }
702 
703     assert((j + (NumParts - 1)) < ArgLocs.size() &&
704            "Too many regs for number of args");
705 
706     // Coerce into outgoing value types before register assignment.
707     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
708       assert(Args[i].OrigRegs.size() == 1);
709       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
710                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
711     }
712 
713     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
714     for (unsigned Part = 0; Part < NumParts; ++Part) {
715       Register ArgReg = Args[i].Regs[Part];
716       // There should be Regs.size() ArgLocs per argument.
717       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
718       CCValAssign &VA = ArgLocs[j + Idx];
719       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
720 
721       if (VA.isMemLoc() && !Flags.isByVal()) {
722         // Individual pieces may have been spilled to the stack and others
723         // passed in registers.
724 
725         // TODO: The memory size may be larger than the value we need to
726         // store. We may need to adjust the offset for big endian targets.
727         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
728 
729         MachinePointerInfo MPO;
730         Register StackAddr = Handler.getStackAddress(
731             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
732 
733         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
734         continue;
735       }
736 
737       if (VA.isMemLoc() && Flags.isByVal()) {
738         assert(Args[i].Regs.size() == 1 &&
739                "didn't expect split byval pointer");
740 
741         if (Handler.isIncomingArgumentHandler()) {
742           // We just need to copy the frame index value to the pointer.
743           MachinePointerInfo MPO;
744           Register StackAddr = Handler.getStackAddress(
745               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
746           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
747         } else {
748           // For outgoing byval arguments, insert the implicit copy byval
749           // implies, such that writes in the callee do not modify the caller's
750           // value.
751           uint64_t MemSize = Flags.getByValSize();
752           int64_t Offset = VA.getLocMemOffset();
753 
754           MachinePointerInfo DstMPO;
755           Register StackAddr =
756               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
757 
758           MachinePointerInfo SrcMPO(Args[i].OrigValue);
759           if (!Args[i].OrigValue) {
760             // We still need to accurately track the stack address space if we
761             // don't know the underlying value.
762             const LLT PtrTy = MRI.getType(StackAddr);
763             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
764           }
765 
766           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
767                                     inferAlignFromPtrInfo(MF, DstMPO));
768 
769           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
770                                     inferAlignFromPtrInfo(MF, SrcMPO));
771 
772           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
773                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
774                                      MemSize, VA);
775         }
776         continue;
777       }
778 
779       assert(!VA.needsCustom() && "custom loc should have been handled already");
780 
781       if (i == 0 && !ThisReturnRegs.empty() &&
782           Handler.isIncomingArgumentHandler() &&
783           isTypeIsValidForThisReturn(ValVT)) {
784         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
785         continue;
786       }
787 
788       if (Handler.isIncomingArgumentHandler())
789         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
790       else {
791         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
792           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
793         });
794       }
795     }
796 
797     // Now that all pieces have been assigned, re-pack the register typed values
798     // into the original value typed registers.
799     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
800       // Merge the split registers into the expected larger result vregs of
801       // the original call.
802       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
803                         LocTy, Args[i].Flags[0]);
804     }
805 
806     j += NumParts - 1;
807   }
808   for (auto &Fn : DelayedOutgoingRegAssignments)
809     Fn();
810 
811   return true;
812 }
813 
814 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
815                                    ArrayRef<Register> VRegs, Register DemoteReg,
816                                    int FI) const {
817   MachineFunction &MF = MIRBuilder.getMF();
818   MachineRegisterInfo &MRI = MF.getRegInfo();
819   const DataLayout &DL = MF.getDataLayout();
820 
821   SmallVector<EVT, 4> SplitVTs;
822   SmallVector<uint64_t, 4> Offsets;
823   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
824 
825   assert(VRegs.size() == SplitVTs.size());
826 
827   unsigned NumValues = SplitVTs.size();
828   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
829   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
830   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
831 
832   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
833 
834   for (unsigned I = 0; I < NumValues; ++I) {
835     Register Addr;
836     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
837     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
838                                         MRI.getType(VRegs[I]),
839                                         commonAlignment(BaseAlign, Offsets[I]));
840     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
841   }
842 }
843 
844 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
845                                     ArrayRef<Register> VRegs,
846                                     Register DemoteReg) const {
847   MachineFunction &MF = MIRBuilder.getMF();
848   MachineRegisterInfo &MRI = MF.getRegInfo();
849   const DataLayout &DL = MF.getDataLayout();
850 
851   SmallVector<EVT, 4> SplitVTs;
852   SmallVector<uint64_t, 4> Offsets;
853   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
854 
855   assert(VRegs.size() == SplitVTs.size());
856 
857   unsigned NumValues = SplitVTs.size();
858   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
859   unsigned AS = DL.getAllocaAddrSpace();
860   LLT OffsetLLTy =
861       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
862 
863   MachinePointerInfo PtrInfo(AS);
864 
865   for (unsigned I = 0; I < NumValues; ++I) {
866     Register Addr;
867     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
868     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
869                                         MRI.getType(VRegs[I]),
870                                         commonAlignment(BaseAlign, Offsets[I]));
871     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
872   }
873 }
874 
875 void CallLowering::insertSRetIncomingArgument(
876     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
877     MachineRegisterInfo &MRI, const DataLayout &DL) const {
878   unsigned AS = DL.getAllocaAddrSpace();
879   DemoteReg = MRI.createGenericVirtualRegister(
880       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
881 
882   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
883 
884   SmallVector<EVT, 1> ValueVTs;
885   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
886 
887   // NOTE: Assume that a pointer won't get split into more than one VT.
888   assert(ValueVTs.size() == 1);
889 
890   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
891                     ArgInfo::NoArgIndex);
892   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
893   DemoteArg.Flags[0].setSRet();
894   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
895 }
896 
897 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
898                                               const CallBase &CB,
899                                               CallLoweringInfo &Info) const {
900   const DataLayout &DL = MIRBuilder.getDataLayout();
901   Type *RetTy = CB.getType();
902   unsigned AS = DL.getAllocaAddrSpace();
903   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
904 
905   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
906       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
907 
908   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
909   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
910                     ArgInfo::NoArgIndex);
911   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
912   DemoteArg.Flags[0].setSRet();
913 
914   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
915   Info.DemoteStackIndex = FI;
916   Info.DemoteRegister = DemoteReg;
917 }
918 
919 bool CallLowering::checkReturn(CCState &CCInfo,
920                                SmallVectorImpl<BaseArgInfo> &Outs,
921                                CCAssignFn *Fn) const {
922   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
923     MVT VT = MVT::getVT(Outs[I].Ty);
924     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
925       return false;
926   }
927   return true;
928 }
929 
930 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
931                                  AttributeList Attrs,
932                                  SmallVectorImpl<BaseArgInfo> &Outs,
933                                  const DataLayout &DL) const {
934   LLVMContext &Context = RetTy->getContext();
935   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
936 
937   SmallVector<EVT, 4> SplitVTs;
938   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
939   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
940 
941   for (EVT VT : SplitVTs) {
942     unsigned NumParts =
943         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
944     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
945     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
946 
947     for (unsigned I = 0; I < NumParts; ++I) {
948       Outs.emplace_back(PartTy, Flags);
949     }
950   }
951 }
952 
953 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
954   const auto &F = MF.getFunction();
955   Type *ReturnType = F.getReturnType();
956   CallingConv::ID CallConv = F.getCallingConv();
957 
958   SmallVector<BaseArgInfo, 4> SplitArgs;
959   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
960                 MF.getDataLayout());
961   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
962 }
963 
964 bool CallLowering::parametersInCSRMatch(
965     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
966     const SmallVectorImpl<CCValAssign> &OutLocs,
967     const SmallVectorImpl<ArgInfo> &OutArgs) const {
968   for (unsigned i = 0; i < OutLocs.size(); ++i) {
969     const auto &ArgLoc = OutLocs[i];
970     // If it's not a register, it's fine.
971     if (!ArgLoc.isRegLoc())
972       continue;
973 
974     MCRegister PhysReg = ArgLoc.getLocReg();
975 
976     // Only look at callee-saved registers.
977     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
978       continue;
979 
980     LLVM_DEBUG(
981         dbgs()
982         << "... Call has an argument passed in a callee-saved register.\n");
983 
984     // Check if it was copied from.
985     const ArgInfo &OutInfo = OutArgs[i];
986 
987     if (OutInfo.Regs.size() > 1) {
988       LLVM_DEBUG(
989           dbgs() << "... Cannot handle arguments in multiple registers.\n");
990       return false;
991     }
992 
993     // Check if we copy the register, walking through copies from virtual
994     // registers. Note that getDefIgnoringCopies does not ignore copies from
995     // physical registers.
996     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
997     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
998       LLVM_DEBUG(
999           dbgs()
1000           << "... Parameter was not copied into a VReg, cannot tail call.\n");
1001       return false;
1002     }
1003 
1004     // Got a copy. Verify that it's the same as the register we want.
1005     Register CopyRHS = RegDef->getOperand(1).getReg();
1006     if (CopyRHS != PhysReg) {
1007       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1008                            "VReg, cannot tail call.\n");
1009       return false;
1010     }
1011   }
1012 
1013   return true;
1014 }
1015 
1016 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1017                                      MachineFunction &MF,
1018                                      SmallVectorImpl<ArgInfo> &InArgs,
1019                                      ValueAssigner &CalleeAssigner,
1020                                      ValueAssigner &CallerAssigner) const {
1021   const Function &F = MF.getFunction();
1022   CallingConv::ID CalleeCC = Info.CallConv;
1023   CallingConv::ID CallerCC = F.getCallingConv();
1024 
1025   if (CallerCC == CalleeCC)
1026     return true;
1027 
1028   SmallVector<CCValAssign, 16> ArgLocs1;
1029   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1030   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1031     return false;
1032 
1033   SmallVector<CCValAssign, 16> ArgLocs2;
1034   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1035   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1036     return false;
1037 
1038   // We need the argument locations to match up exactly. If there's more in
1039   // one than the other, then we are done.
1040   if (ArgLocs1.size() != ArgLocs2.size())
1041     return false;
1042 
1043   // Make sure that each location is passed in exactly the same way.
1044   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1045     const CCValAssign &Loc1 = ArgLocs1[i];
1046     const CCValAssign &Loc2 = ArgLocs2[i];
1047 
1048     // We need both of them to be the same. So if one is a register and one
1049     // isn't, we're done.
1050     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1051       return false;
1052 
1053     if (Loc1.isRegLoc()) {
1054       // If they don't have the same register location, we're done.
1055       if (Loc1.getLocReg() != Loc2.getLocReg())
1056         return false;
1057 
1058       // They matched, so we can move to the next ArgLoc.
1059       continue;
1060     }
1061 
1062     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1063     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1064       return false;
1065   }
1066 
1067   return true;
1068 }
1069 
1070 LLT CallLowering::ValueHandler::getStackValueStoreType(
1071     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1072   const MVT ValVT = VA.getValVT();
1073   if (ValVT != MVT::iPTR) {
1074     LLT ValTy(ValVT);
1075 
1076     // We lost the pointeriness going through CCValAssign, so try to restore it
1077     // based on the flags.
1078     if (Flags.isPointer()) {
1079       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1080                                ValTy.getScalarSizeInBits());
1081       if (ValVT.isVector())
1082         return LLT::vector(ValTy.getElementCount(), PtrTy);
1083       return PtrTy;
1084     }
1085 
1086     return ValTy;
1087   }
1088 
1089   unsigned AddrSpace = Flags.getPointerAddrSpace();
1090   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1091 }
1092 
1093 void CallLowering::ValueHandler::copyArgumentMemory(
1094     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1095     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1096     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1097     CCValAssign &VA) const {
1098   MachineFunction &MF = MIRBuilder.getMF();
1099   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1100       SrcPtrInfo,
1101       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1102       SrcAlign);
1103 
1104   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1105       DstPtrInfo,
1106       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1107       MemSize, DstAlign);
1108 
1109   const LLT PtrTy = MRI.getType(DstPtr);
1110   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1111 
1112   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1113   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1114 }
1115 
1116 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1117                                                     CCValAssign &VA,
1118                                                     unsigned MaxSizeBits) {
1119   LLT LocTy{VA.getLocVT()};
1120   LLT ValTy{VA.getValVT()};
1121 
1122   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1123     return ValReg;
1124 
1125   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1126     if (MaxSizeBits <= ValTy.getSizeInBits())
1127       return ValReg;
1128     LocTy = LLT::scalar(MaxSizeBits);
1129   }
1130 
1131   const LLT ValRegTy = MRI.getType(ValReg);
1132   if (ValRegTy.isPointer()) {
1133     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1134     // we have to cast to do the extension.
1135     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1136     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1137   }
1138 
1139   switch (VA.getLocInfo()) {
1140   default: break;
1141   case CCValAssign::Full:
1142   case CCValAssign::BCvt:
1143     // FIXME: bitconverting between vector types may or may not be a
1144     // nop in big-endian situations.
1145     return ValReg;
1146   case CCValAssign::AExt: {
1147     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1148     return MIB.getReg(0);
1149   }
1150   case CCValAssign::SExt: {
1151     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1152     MIRBuilder.buildSExt(NewReg, ValReg);
1153     return NewReg;
1154   }
1155   case CCValAssign::ZExt: {
1156     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1157     MIRBuilder.buildZExt(NewReg, ValReg);
1158     return NewReg;
1159   }
1160   }
1161   llvm_unreachable("unable to extend register");
1162 }
1163 
1164 void CallLowering::ValueAssigner::anchor() {}
1165 
1166 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1167                                                                 Register SrcReg,
1168                                                                 LLT NarrowTy) {
1169   switch (VA.getLocInfo()) {
1170   case CCValAssign::LocInfo::ZExt: {
1171     return MIRBuilder
1172         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1173                          NarrowTy.getScalarSizeInBits())
1174         .getReg(0);
1175   }
1176   case CCValAssign::LocInfo::SExt: {
1177     return MIRBuilder
1178         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1179                          NarrowTy.getScalarSizeInBits())
1180         .getReg(0);
1181     break;
1182   }
1183   default:
1184     return SrcReg;
1185   }
1186 }
1187 
1188 /// Check if we can use a basic COPY instruction between the two types.
1189 ///
1190 /// We're currently building on top of the infrastructure using MVT, which loses
1191 /// pointer information in the CCValAssign. We accept copies from physical
1192 /// registers that have been reported as integers if it's to an equivalent sized
1193 /// pointer LLT.
1194 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1195   if (SrcTy == DstTy)
1196     return true;
1197 
1198   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1199     return false;
1200 
1201   SrcTy = SrcTy.getScalarType();
1202   DstTy = DstTy.getScalarType();
1203 
1204   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1205          (DstTy.isScalar() && SrcTy.isPointer());
1206 }
1207 
1208 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1209                                                           Register PhysReg,
1210                                                           CCValAssign VA) {
1211   const MVT LocVT = VA.getLocVT();
1212   const LLT LocTy(LocVT);
1213   const LLT RegTy = MRI.getType(ValVReg);
1214 
1215   if (isCopyCompatibleType(RegTy, LocTy)) {
1216     MIRBuilder.buildCopy(ValVReg, PhysReg);
1217     return;
1218   }
1219 
1220   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1221   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1222   MIRBuilder.buildTrunc(ValVReg, Hint);
1223 }
1224