1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "call-lowering" 29 30 using namespace llvm; 31 32 void CallLowering::anchor() {} 33 34 /// Helper function which updates \p Flags when \p AttrFn returns true. 35 static void 36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 37 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 38 if (AttrFn(Attribute::SExt)) 39 Flags.setSExt(); 40 if (AttrFn(Attribute::ZExt)) 41 Flags.setZExt(); 42 if (AttrFn(Attribute::InReg)) 43 Flags.setInReg(); 44 if (AttrFn(Attribute::StructRet)) 45 Flags.setSRet(); 46 if (AttrFn(Attribute::Nest)) 47 Flags.setNest(); 48 if (AttrFn(Attribute::ByVal)) 49 Flags.setByVal(); 50 if (AttrFn(Attribute::Preallocated)) 51 Flags.setPreallocated(); 52 if (AttrFn(Attribute::InAlloca)) 53 Flags.setInAlloca(); 54 if (AttrFn(Attribute::Returned)) 55 Flags.setReturned(); 56 if (AttrFn(Attribute::SwiftSelf)) 57 Flags.setSwiftSelf(); 58 if (AttrFn(Attribute::SwiftAsync)) 59 Flags.setSwiftAsync(); 60 if (AttrFn(Attribute::SwiftError)) 61 Flags.setSwiftError(); 62 } 63 64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 65 unsigned ArgIdx) const { 66 ISD::ArgFlagsTy Flags; 67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 68 return Call.paramHasAttr(ArgIdx, Attr); 69 }); 70 return Flags; 71 } 72 73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 74 const AttributeList &Attrs, 75 unsigned OpIdx) const { 76 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 77 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 78 }); 79 } 80 81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 82 ArrayRef<Register> ResRegs, 83 ArrayRef<ArrayRef<Register>> ArgRegs, 84 Register SwiftErrorVReg, 85 std::function<unsigned()> GetCalleeReg) const { 86 CallLoweringInfo Info; 87 const DataLayout &DL = MIRBuilder.getDataLayout(); 88 MachineFunction &MF = MIRBuilder.getMF(); 89 MachineRegisterInfo &MRI = MF.getRegInfo(); 90 bool CanBeTailCalled = CB.isTailCall() && 91 isInTailCallPosition(CB, MF.getTarget()) && 92 (MF.getFunction() 93 .getFnAttribute("disable-tail-calls") 94 .getValueAsString() != "true"); 95 96 CallingConv::ID CallConv = CB.getCallingConv(); 97 Type *RetTy = CB.getType(); 98 bool IsVarArg = CB.getFunctionType()->isVarArg(); 99 100 SmallVector<BaseArgInfo, 4> SplitArgs; 101 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 102 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 103 104 if (!Info.CanLowerReturn) { 105 // Callee requires sret demotion. 106 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 107 108 // The sret demotion isn't compatible with tail-calls, since the sret 109 // argument points into the caller's stack frame. 110 CanBeTailCalled = false; 111 } 112 113 114 // First step is to marshall all the function's parameters into the correct 115 // physregs and memory locations. Gather the sequence of argument types that 116 // we'll pass to the assigner function. 117 unsigned i = 0; 118 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 119 for (const auto &Arg : CB.args()) { 120 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 121 i < NumFixedArgs}; 122 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 123 124 // If we have an explicit sret argument that is an Instruction, (i.e., it 125 // might point to function-local memory), we can't meaningfully tail-call. 126 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 127 CanBeTailCalled = false; 128 129 Info.OrigArgs.push_back(OrigArg); 130 ++i; 131 } 132 133 // Try looking through a bitcast from one function type to another. 134 // Commonly happens with calls to objc_msgSend(). 135 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 136 if (const Function *F = dyn_cast<Function>(CalleeV)) 137 Info.Callee = MachineOperand::CreateGA(F, 0); 138 else 139 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 140 141 Register ReturnHintAlignReg; 142 Align ReturnHintAlign; 143 144 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 145 146 if (!Info.OrigRet.Ty->isVoidTy()) { 147 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 148 149 if (MaybeAlign Alignment = CB.getRetAlign()) { 150 if (*Alignment > Align(1)) { 151 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 152 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 153 ReturnHintAlign = *Alignment; 154 } 155 } 156 } 157 158 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 159 if (Bundle && CB.isIndirectCall()) { 160 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 161 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 162 } 163 164 Info.CB = &CB; 165 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 166 Info.CallConv = CallConv; 167 Info.SwiftErrorVReg = SwiftErrorVReg; 168 Info.IsMustTailCall = CB.isMustTailCall(); 169 Info.IsTailCall = CanBeTailCalled; 170 Info.IsVarArg = IsVarArg; 171 if (!lowerCall(MIRBuilder, Info)) 172 return false; 173 174 if (ReturnHintAlignReg && !Info.IsTailCall) { 175 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 176 ReturnHintAlign); 177 } 178 179 return true; 180 } 181 182 template <typename FuncInfoTy> 183 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 184 const DataLayout &DL, 185 const FuncInfoTy &FuncInfo) const { 186 auto &Flags = Arg.Flags[0]; 187 const AttributeList &Attrs = FuncInfo.getAttributes(); 188 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 189 190 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 191 if (PtrTy) { 192 Flags.setPointer(); 193 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 194 } 195 196 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 197 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 198 assert(OpIdx >= AttributeList::FirstArgIndex); 199 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 200 201 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 202 if (!ElementTy) 203 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 204 if (!ElementTy) 205 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 206 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 207 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 208 209 // For ByVal, alignment should be passed from FE. BE will guess if 210 // this info is not there but there are cases it cannot get right. 211 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 212 MemAlign = *ParamAlign; 213 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 214 MemAlign = *ParamAlign; 215 else 216 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 217 } else if (OpIdx >= AttributeList::FirstArgIndex) { 218 if (auto ParamAlign = 219 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 220 MemAlign = *ParamAlign; 221 } 222 Flags.setMemAlign(MemAlign); 223 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 224 225 // Don't try to use the returned attribute if the argument is marked as 226 // swiftself, since it won't be passed in x0. 227 if (Flags.isSwiftSelf()) 228 Flags.setReturned(false); 229 } 230 231 template void 232 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 233 const DataLayout &DL, 234 const Function &FuncInfo) const; 235 236 template void 237 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 238 const DataLayout &DL, 239 const CallBase &FuncInfo) const; 240 241 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 242 SmallVectorImpl<ArgInfo> &SplitArgs, 243 const DataLayout &DL, 244 CallingConv::ID CallConv, 245 SmallVectorImpl<uint64_t> *Offsets) const { 246 LLVMContext &Ctx = OrigArg.Ty->getContext(); 247 248 SmallVector<EVT, 4> SplitVTs; 249 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 250 251 if (SplitVTs.size() == 0) 252 return; 253 254 if (SplitVTs.size() == 1) { 255 // No splitting to do, but we want to replace the original type (e.g. [1 x 256 // double] -> double). 257 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 258 OrigArg.OrigArgIndex, OrigArg.Flags[0], 259 OrigArg.IsFixed, OrigArg.OrigValue); 260 return; 261 } 262 263 // Create one ArgInfo for each virtual register in the original ArgInfo. 264 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 265 266 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 267 OrigArg.Ty, CallConv, false, DL); 268 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 269 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 270 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 271 OrigArg.Flags[0], OrigArg.IsFixed); 272 if (NeedsRegBlock) 273 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 274 } 275 276 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 277 } 278 279 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 280 static MachineInstrBuilder 281 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 282 ArrayRef<Register> SrcRegs) { 283 MachineRegisterInfo &MRI = *B.getMRI(); 284 LLT LLTy = MRI.getType(DstRegs[0]); 285 LLT PartLLT = MRI.getType(SrcRegs[0]); 286 287 // Deal with v3s16 split into v2s16 288 LLT LCMTy = getCoverTy(LLTy, PartLLT); 289 if (LCMTy == LLTy) { 290 // Common case where no padding is needed. 291 assert(DstRegs.size() == 1); 292 return B.buildConcatVectors(DstRegs[0], SrcRegs); 293 } 294 295 // We need to create an unmerge to the result registers, which may require 296 // widening the original value. 297 Register UnmergeSrcReg; 298 if (LCMTy != PartLLT) { 299 assert(DstRegs.size() == 1); 300 return B.buildDeleteTrailingVectorElements(DstRegs[0], 301 B.buildMerge(LCMTy, SrcRegs)); 302 } else { 303 // We don't need to widen anything if we're extracting a scalar which was 304 // promoted to a vector e.g. s8 -> v4s8 -> s8 305 assert(SrcRegs.size() == 1); 306 UnmergeSrcReg = SrcRegs[0]; 307 } 308 309 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 310 311 SmallVector<Register, 8> PadDstRegs(NumDst); 312 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 313 314 // Create the excess dead defs for the unmerge. 315 for (int I = DstRegs.size(); I != NumDst; ++I) 316 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 317 318 if (PadDstRegs.size() == 1) 319 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 320 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 321 } 322 323 /// Create a sequence of instructions to combine pieces split into register 324 /// typed values to the original IR value. \p OrigRegs contains the destination 325 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 326 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 327 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 328 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 329 const ISD::ArgFlagsTy Flags) { 330 MachineRegisterInfo &MRI = *B.getMRI(); 331 332 if (PartLLT == LLTy) { 333 // We should have avoided introducing a new virtual register, and just 334 // directly assigned here. 335 assert(OrigRegs[0] == Regs[0]); 336 return; 337 } 338 339 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 340 Regs.size() == 1) { 341 B.buildBitcast(OrigRegs[0], Regs[0]); 342 return; 343 } 344 345 // A vector PartLLT needs extending to LLTy's element size. 346 // E.g. <2 x s64> = G_SEXT <2 x s32>. 347 if (PartLLT.isVector() == LLTy.isVector() && 348 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 349 (!PartLLT.isVector() || 350 PartLLT.getNumElements() == LLTy.getNumElements()) && 351 OrigRegs.size() == 1 && Regs.size() == 1) { 352 Register SrcReg = Regs[0]; 353 354 LLT LocTy = MRI.getType(SrcReg); 355 356 if (Flags.isSExt()) { 357 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 358 .getReg(0); 359 } else if (Flags.isZExt()) { 360 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 361 .getReg(0); 362 } 363 364 // Sometimes pointers are passed zero extended. 365 LLT OrigTy = MRI.getType(OrigRegs[0]); 366 if (OrigTy.isPointer()) { 367 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 368 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 369 return; 370 } 371 372 B.buildTrunc(OrigRegs[0], SrcReg); 373 return; 374 } 375 376 if (!LLTy.isVector() && !PartLLT.isVector()) { 377 assert(OrigRegs.size() == 1); 378 LLT OrigTy = MRI.getType(OrigRegs[0]); 379 380 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 381 if (SrcSize == OrigTy.getSizeInBits()) 382 B.buildMerge(OrigRegs[0], Regs); 383 else { 384 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 385 B.buildTrunc(OrigRegs[0], Widened); 386 } 387 388 return; 389 } 390 391 if (PartLLT.isVector()) { 392 assert(OrigRegs.size() == 1); 393 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 394 395 // If PartLLT is a mismatched vector in both number of elements and element 396 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 397 // have the same elt type, i.e. v4s32. 398 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 399 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 400 Regs.size() == 1) { 401 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 402 .changeElementCount(PartLLT.getElementCount() * 2); 403 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 404 PartLLT = NewTy; 405 } 406 407 if (LLTy.getScalarType() == PartLLT.getElementType()) { 408 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 409 } else { 410 unsigned I = 0; 411 LLT GCDTy = getGCDType(LLTy, PartLLT); 412 413 // We are both splitting a vector, and bitcasting its element types. Cast 414 // the source pieces into the appropriate number of pieces with the result 415 // element type. 416 for (Register SrcReg : CastRegs) 417 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 418 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 419 } 420 421 return; 422 } 423 424 assert(LLTy.isVector() && !PartLLT.isVector()); 425 426 LLT DstEltTy = LLTy.getElementType(); 427 428 // Pointer information was discarded. We'll need to coerce some register types 429 // to avoid violating type constraints. 430 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 431 432 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 433 434 if (DstEltTy == PartLLT) { 435 // Vector was trivially scalarized. 436 437 if (RealDstEltTy.isPointer()) { 438 for (Register Reg : Regs) 439 MRI.setType(Reg, RealDstEltTy); 440 } 441 442 B.buildBuildVector(OrigRegs[0], Regs); 443 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 444 // Deal with vector with 64-bit elements decomposed to 32-bit 445 // registers. Need to create intermediate 64-bit elements. 446 SmallVector<Register, 8> EltMerges; 447 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 448 449 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 450 451 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 452 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 453 // Fix the type in case this is really a vector of pointers. 454 MRI.setType(Merge.getReg(0), RealDstEltTy); 455 EltMerges.push_back(Merge.getReg(0)); 456 Regs = Regs.drop_front(PartsPerElt); 457 } 458 459 B.buildBuildVector(OrigRegs[0], EltMerges); 460 } else { 461 // Vector was split, and elements promoted to a wider type. 462 // FIXME: Should handle floating point promotions. 463 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 464 auto BV = B.buildBuildVector(BVType, Regs); 465 B.buildTrunc(OrigRegs[0], BV); 466 } 467 } 468 469 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 470 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 471 /// contain the type of scalar value extension if necessary. 472 /// 473 /// This is used for outgoing values (vregs to physregs) 474 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 475 Register SrcReg, LLT SrcTy, LLT PartTy, 476 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 477 // We could just insert a regular copy, but this is unreachable at the moment. 478 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 479 480 const unsigned PartSize = PartTy.getSizeInBits(); 481 482 if (PartTy.isVector() == SrcTy.isVector() && 483 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 484 assert(DstRegs.size() == 1); 485 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 486 return; 487 } 488 489 if (SrcTy.isVector() && !PartTy.isVector() && 490 PartSize > SrcTy.getElementType().getSizeInBits()) { 491 // Vector was scalarized, and the elements extended. 492 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 493 for (int i = 0, e = DstRegs.size(); i != e; ++i) 494 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 495 return; 496 } 497 498 LLT GCDTy = getGCDType(SrcTy, PartTy); 499 if (GCDTy == PartTy) { 500 // If this already evenly divisible, we can create a simple unmerge. 501 B.buildUnmerge(DstRegs, SrcReg); 502 return; 503 } 504 505 MachineRegisterInfo &MRI = *B.getMRI(); 506 LLT DstTy = MRI.getType(DstRegs[0]); 507 LLT LCMTy = getCoverTy(SrcTy, PartTy); 508 509 if (PartTy.isVector() && LCMTy == PartTy) { 510 assert(DstRegs.size() == 1); 511 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 512 return; 513 } 514 515 const unsigned DstSize = DstTy.getSizeInBits(); 516 const unsigned SrcSize = SrcTy.getSizeInBits(); 517 unsigned CoveringSize = LCMTy.getSizeInBits(); 518 519 Register UnmergeSrc = SrcReg; 520 521 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 522 // For scalars, it's common to be able to use a simple extension. 523 if (SrcTy.isScalar() && DstTy.isScalar()) { 524 CoveringSize = alignTo(SrcSize, DstSize); 525 LLT CoverTy = LLT::scalar(CoveringSize); 526 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 527 } else { 528 // Widen to the common type. 529 // FIXME: This should respect the extend type 530 Register Undef = B.buildUndef(SrcTy).getReg(0); 531 SmallVector<Register, 8> MergeParts(1, SrcReg); 532 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 533 MergeParts.push_back(Undef); 534 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 535 } 536 } 537 538 if (LCMTy.isVector() && CoveringSize != SrcSize) 539 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 540 541 B.buildUnmerge(DstRegs, UnmergeSrc); 542 } 543 544 bool CallLowering::determineAndHandleAssignments( 545 ValueHandler &Handler, ValueAssigner &Assigner, 546 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 547 CallingConv::ID CallConv, bool IsVarArg, 548 ArrayRef<Register> ThisReturnRegs) const { 549 MachineFunction &MF = MIRBuilder.getMF(); 550 const Function &F = MF.getFunction(); 551 SmallVector<CCValAssign, 16> ArgLocs; 552 553 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 554 if (!determineAssignments(Assigner, Args, CCInfo)) 555 return false; 556 557 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 558 ThisReturnRegs); 559 } 560 561 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 562 if (Flags.isSExt()) 563 return TargetOpcode::G_SEXT; 564 if (Flags.isZExt()) 565 return TargetOpcode::G_ZEXT; 566 return TargetOpcode::G_ANYEXT; 567 } 568 569 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 570 SmallVectorImpl<ArgInfo> &Args, 571 CCState &CCInfo) const { 572 LLVMContext &Ctx = CCInfo.getContext(); 573 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 574 575 unsigned NumArgs = Args.size(); 576 for (unsigned i = 0; i != NumArgs; ++i) { 577 EVT CurVT = EVT::getEVT(Args[i].Ty); 578 579 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 580 581 // If we need to split the type over multiple regs, check it's a scenario 582 // we currently support. 583 unsigned NumParts = 584 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 585 586 if (NumParts == 1) { 587 // Try to use the register type if we couldn't assign the VT. 588 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 589 Args[i].Flags[0], CCInfo)) 590 return false; 591 continue; 592 } 593 594 // For incoming arguments (physregs to vregs), we could have values in 595 // physregs (or memlocs) which we want to extract and copy to vregs. 596 // During this, we might have to deal with the LLT being split across 597 // multiple regs, so we have to record this information for later. 598 // 599 // If we have outgoing args, then we have the opposite case. We have a 600 // vreg with an LLT which we want to assign to a physical location, and 601 // we might have to record that the value has to be split later. 602 603 // We're handling an incoming arg which is split over multiple regs. 604 // E.g. passing an s128 on AArch64. 605 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 606 Args[i].Flags.clear(); 607 608 for (unsigned Part = 0; Part < NumParts; ++Part) { 609 ISD::ArgFlagsTy Flags = OrigFlags; 610 if (Part == 0) { 611 Flags.setSplit(); 612 } else { 613 Flags.setOrigAlign(Align(1)); 614 if (Part == NumParts - 1) 615 Flags.setSplitEnd(); 616 } 617 618 Args[i].Flags.push_back(Flags); 619 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 620 Args[i].Flags[Part], CCInfo)) { 621 // Still couldn't assign this smaller part type for some reason. 622 return false; 623 } 624 } 625 } 626 627 return true; 628 } 629 630 bool CallLowering::handleAssignments(ValueHandler &Handler, 631 SmallVectorImpl<ArgInfo> &Args, 632 CCState &CCInfo, 633 SmallVectorImpl<CCValAssign> &ArgLocs, 634 MachineIRBuilder &MIRBuilder, 635 ArrayRef<Register> ThisReturnRegs) const { 636 MachineFunction &MF = MIRBuilder.getMF(); 637 MachineRegisterInfo &MRI = MF.getRegInfo(); 638 const Function &F = MF.getFunction(); 639 const DataLayout &DL = F.getParent()->getDataLayout(); 640 641 const unsigned NumArgs = Args.size(); 642 643 // Stores thunks for outgoing register assignments. This is used so we delay 644 // generating register copies until mem loc assignments are done. We do this 645 // so that if the target is using the delayed stack protector feature, we can 646 // find the split point of the block accurately. E.g. if we have: 647 // G_STORE %val, %memloc 648 // $x0 = COPY %foo 649 // $x1 = COPY %bar 650 // CALL func 651 // ... then the split point for the block will correctly be at, and including, 652 // the copy to $x0. If instead the G_STORE instruction immediately precedes 653 // the CALL, then we'd prematurely choose the CALL as the split point, thus 654 // generating a split block with a CALL that uses undefined physregs. 655 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 656 657 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 658 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 659 CCValAssign &VA = ArgLocs[j]; 660 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 661 662 if (VA.needsCustom()) { 663 std::function<void()> Thunk; 664 unsigned NumArgRegs = Handler.assignCustomValue( 665 Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk); 666 if (Thunk) 667 DelayedOutgoingRegAssignments.emplace_back(Thunk); 668 if (!NumArgRegs) 669 return false; 670 j += NumArgRegs; 671 continue; 672 } 673 674 const MVT ValVT = VA.getValVT(); 675 const MVT LocVT = VA.getLocVT(); 676 677 const LLT LocTy(LocVT); 678 const LLT ValTy(ValVT); 679 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 680 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 681 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 682 683 // Expected to be multiple regs for a single incoming arg. 684 // There should be Regs.size() ArgLocs per argument. 685 // This should be the same as getNumRegistersForCallingConv 686 const unsigned NumParts = Args[i].Flags.size(); 687 688 // Now split the registers into the assigned types. 689 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 690 691 if (NumParts != 1 || NewLLT != OrigTy) { 692 // If we can't directly assign the register, we need one or more 693 // intermediate values. 694 Args[i].Regs.resize(NumParts); 695 696 // For each split register, create and assign a vreg that will store 697 // the incoming component of the larger value. These will later be 698 // merged to form the final vreg. 699 for (unsigned Part = 0; Part < NumParts; ++Part) 700 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 701 } 702 703 assert((j + (NumParts - 1)) < ArgLocs.size() && 704 "Too many regs for number of args"); 705 706 // Coerce into outgoing value types before register assignment. 707 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 708 assert(Args[i].OrigRegs.size() == 1); 709 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 710 ValTy, extendOpFromFlags(Args[i].Flags[0])); 711 } 712 713 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 714 for (unsigned Part = 0; Part < NumParts; ++Part) { 715 Register ArgReg = Args[i].Regs[Part]; 716 // There should be Regs.size() ArgLocs per argument. 717 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 718 CCValAssign &VA = ArgLocs[j + Idx]; 719 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 720 721 if (VA.isMemLoc() && !Flags.isByVal()) { 722 // Individual pieces may have been spilled to the stack and others 723 // passed in registers. 724 725 // TODO: The memory size may be larger than the value we need to 726 // store. We may need to adjust the offset for big endian targets. 727 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 728 729 MachinePointerInfo MPO; 730 Register StackAddr = Handler.getStackAddress( 731 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 732 733 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 734 continue; 735 } 736 737 if (VA.isMemLoc() && Flags.isByVal()) { 738 assert(Args[i].Regs.size() == 1 && 739 "didn't expect split byval pointer"); 740 741 if (Handler.isIncomingArgumentHandler()) { 742 // We just need to copy the frame index value to the pointer. 743 MachinePointerInfo MPO; 744 Register StackAddr = Handler.getStackAddress( 745 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 746 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 747 } else { 748 // For outgoing byval arguments, insert the implicit copy byval 749 // implies, such that writes in the callee do not modify the caller's 750 // value. 751 uint64_t MemSize = Flags.getByValSize(); 752 int64_t Offset = VA.getLocMemOffset(); 753 754 MachinePointerInfo DstMPO; 755 Register StackAddr = 756 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 757 758 MachinePointerInfo SrcMPO(Args[i].OrigValue); 759 if (!Args[i].OrigValue) { 760 // We still need to accurately track the stack address space if we 761 // don't know the underlying value. 762 const LLT PtrTy = MRI.getType(StackAddr); 763 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 764 } 765 766 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 767 inferAlignFromPtrInfo(MF, DstMPO)); 768 769 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 770 inferAlignFromPtrInfo(MF, SrcMPO)); 771 772 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 773 DstMPO, DstAlign, SrcMPO, SrcAlign, 774 MemSize, VA); 775 } 776 continue; 777 } 778 779 assert(!VA.needsCustom() && "custom loc should have been handled already"); 780 781 if (i == 0 && !ThisReturnRegs.empty() && 782 Handler.isIncomingArgumentHandler() && 783 isTypeIsValidForThisReturn(ValVT)) { 784 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 785 continue; 786 } 787 788 if (Handler.isIncomingArgumentHandler()) 789 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 790 else { 791 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 792 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 793 }); 794 } 795 } 796 797 // Now that all pieces have been assigned, re-pack the register typed values 798 // into the original value typed registers. 799 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 800 // Merge the split registers into the expected larger result vregs of 801 // the original call. 802 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 803 LocTy, Args[i].Flags[0]); 804 } 805 806 j += NumParts - 1; 807 } 808 for (auto &Fn : DelayedOutgoingRegAssignments) 809 Fn(); 810 811 return true; 812 } 813 814 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 815 ArrayRef<Register> VRegs, Register DemoteReg, 816 int FI) const { 817 MachineFunction &MF = MIRBuilder.getMF(); 818 MachineRegisterInfo &MRI = MF.getRegInfo(); 819 const DataLayout &DL = MF.getDataLayout(); 820 821 SmallVector<EVT, 4> SplitVTs; 822 SmallVector<uint64_t, 4> Offsets; 823 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 824 825 assert(VRegs.size() == SplitVTs.size()); 826 827 unsigned NumValues = SplitVTs.size(); 828 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 829 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 830 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 831 832 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 833 834 for (unsigned I = 0; I < NumValues; ++I) { 835 Register Addr; 836 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 837 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 838 MRI.getType(VRegs[I]), 839 commonAlignment(BaseAlign, Offsets[I])); 840 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 841 } 842 } 843 844 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 845 ArrayRef<Register> VRegs, 846 Register DemoteReg) const { 847 MachineFunction &MF = MIRBuilder.getMF(); 848 MachineRegisterInfo &MRI = MF.getRegInfo(); 849 const DataLayout &DL = MF.getDataLayout(); 850 851 SmallVector<EVT, 4> SplitVTs; 852 SmallVector<uint64_t, 4> Offsets; 853 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 854 855 assert(VRegs.size() == SplitVTs.size()); 856 857 unsigned NumValues = SplitVTs.size(); 858 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 859 unsigned AS = DL.getAllocaAddrSpace(); 860 LLT OffsetLLTy = 861 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 862 863 MachinePointerInfo PtrInfo(AS); 864 865 for (unsigned I = 0; I < NumValues; ++I) { 866 Register Addr; 867 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 868 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 869 MRI.getType(VRegs[I]), 870 commonAlignment(BaseAlign, Offsets[I])); 871 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 872 } 873 } 874 875 void CallLowering::insertSRetIncomingArgument( 876 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 877 MachineRegisterInfo &MRI, const DataLayout &DL) const { 878 unsigned AS = DL.getAllocaAddrSpace(); 879 DemoteReg = MRI.createGenericVirtualRegister( 880 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 881 882 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 883 884 SmallVector<EVT, 1> ValueVTs; 885 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 886 887 // NOTE: Assume that a pointer won't get split into more than one VT. 888 assert(ValueVTs.size() == 1); 889 890 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 891 ArgInfo::NoArgIndex); 892 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 893 DemoteArg.Flags[0].setSRet(); 894 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 895 } 896 897 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 898 const CallBase &CB, 899 CallLoweringInfo &Info) const { 900 const DataLayout &DL = MIRBuilder.getDataLayout(); 901 Type *RetTy = CB.getType(); 902 unsigned AS = DL.getAllocaAddrSpace(); 903 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 904 905 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 906 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 907 908 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 909 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 910 ArgInfo::NoArgIndex); 911 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 912 DemoteArg.Flags[0].setSRet(); 913 914 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 915 Info.DemoteStackIndex = FI; 916 Info.DemoteRegister = DemoteReg; 917 } 918 919 bool CallLowering::checkReturn(CCState &CCInfo, 920 SmallVectorImpl<BaseArgInfo> &Outs, 921 CCAssignFn *Fn) const { 922 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 923 MVT VT = MVT::getVT(Outs[I].Ty); 924 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 925 return false; 926 } 927 return true; 928 } 929 930 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 931 AttributeList Attrs, 932 SmallVectorImpl<BaseArgInfo> &Outs, 933 const DataLayout &DL) const { 934 LLVMContext &Context = RetTy->getContext(); 935 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 936 937 SmallVector<EVT, 4> SplitVTs; 938 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 939 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 940 941 for (EVT VT : SplitVTs) { 942 unsigned NumParts = 943 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 944 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 945 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 946 947 for (unsigned I = 0; I < NumParts; ++I) { 948 Outs.emplace_back(PartTy, Flags); 949 } 950 } 951 } 952 953 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 954 const auto &F = MF.getFunction(); 955 Type *ReturnType = F.getReturnType(); 956 CallingConv::ID CallConv = F.getCallingConv(); 957 958 SmallVector<BaseArgInfo, 4> SplitArgs; 959 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 960 MF.getDataLayout()); 961 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 962 } 963 964 bool CallLowering::parametersInCSRMatch( 965 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 966 const SmallVectorImpl<CCValAssign> &OutLocs, 967 const SmallVectorImpl<ArgInfo> &OutArgs) const { 968 for (unsigned i = 0; i < OutLocs.size(); ++i) { 969 const auto &ArgLoc = OutLocs[i]; 970 // If it's not a register, it's fine. 971 if (!ArgLoc.isRegLoc()) 972 continue; 973 974 MCRegister PhysReg = ArgLoc.getLocReg(); 975 976 // Only look at callee-saved registers. 977 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 978 continue; 979 980 LLVM_DEBUG( 981 dbgs() 982 << "... Call has an argument passed in a callee-saved register.\n"); 983 984 // Check if it was copied from. 985 const ArgInfo &OutInfo = OutArgs[i]; 986 987 if (OutInfo.Regs.size() > 1) { 988 LLVM_DEBUG( 989 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 990 return false; 991 } 992 993 // Check if we copy the register, walking through copies from virtual 994 // registers. Note that getDefIgnoringCopies does not ignore copies from 995 // physical registers. 996 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 997 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 998 LLVM_DEBUG( 999 dbgs() 1000 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1001 return false; 1002 } 1003 1004 // Got a copy. Verify that it's the same as the register we want. 1005 Register CopyRHS = RegDef->getOperand(1).getReg(); 1006 if (CopyRHS != PhysReg) { 1007 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1008 "VReg, cannot tail call.\n"); 1009 return false; 1010 } 1011 } 1012 1013 return true; 1014 } 1015 1016 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1017 MachineFunction &MF, 1018 SmallVectorImpl<ArgInfo> &InArgs, 1019 ValueAssigner &CalleeAssigner, 1020 ValueAssigner &CallerAssigner) const { 1021 const Function &F = MF.getFunction(); 1022 CallingConv::ID CalleeCC = Info.CallConv; 1023 CallingConv::ID CallerCC = F.getCallingConv(); 1024 1025 if (CallerCC == CalleeCC) 1026 return true; 1027 1028 SmallVector<CCValAssign, 16> ArgLocs1; 1029 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1030 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1031 return false; 1032 1033 SmallVector<CCValAssign, 16> ArgLocs2; 1034 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1035 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1036 return false; 1037 1038 // We need the argument locations to match up exactly. If there's more in 1039 // one than the other, then we are done. 1040 if (ArgLocs1.size() != ArgLocs2.size()) 1041 return false; 1042 1043 // Make sure that each location is passed in exactly the same way. 1044 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1045 const CCValAssign &Loc1 = ArgLocs1[i]; 1046 const CCValAssign &Loc2 = ArgLocs2[i]; 1047 1048 // We need both of them to be the same. So if one is a register and one 1049 // isn't, we're done. 1050 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1051 return false; 1052 1053 if (Loc1.isRegLoc()) { 1054 // If they don't have the same register location, we're done. 1055 if (Loc1.getLocReg() != Loc2.getLocReg()) 1056 return false; 1057 1058 // They matched, so we can move to the next ArgLoc. 1059 continue; 1060 } 1061 1062 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1063 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1064 return false; 1065 } 1066 1067 return true; 1068 } 1069 1070 LLT CallLowering::ValueHandler::getStackValueStoreType( 1071 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1072 const MVT ValVT = VA.getValVT(); 1073 if (ValVT != MVT::iPTR) { 1074 LLT ValTy(ValVT); 1075 1076 // We lost the pointeriness going through CCValAssign, so try to restore it 1077 // based on the flags. 1078 if (Flags.isPointer()) { 1079 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1080 ValTy.getScalarSizeInBits()); 1081 if (ValVT.isVector()) 1082 return LLT::vector(ValTy.getElementCount(), PtrTy); 1083 return PtrTy; 1084 } 1085 1086 return ValTy; 1087 } 1088 1089 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1090 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1091 } 1092 1093 void CallLowering::ValueHandler::copyArgumentMemory( 1094 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1095 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1096 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1097 CCValAssign &VA) const { 1098 MachineFunction &MF = MIRBuilder.getMF(); 1099 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1100 SrcPtrInfo, 1101 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1102 SrcAlign); 1103 1104 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1105 DstPtrInfo, 1106 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1107 MemSize, DstAlign); 1108 1109 const LLT PtrTy = MRI.getType(DstPtr); 1110 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1111 1112 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1113 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1114 } 1115 1116 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1117 CCValAssign &VA, 1118 unsigned MaxSizeBits) { 1119 LLT LocTy{VA.getLocVT()}; 1120 LLT ValTy{VA.getValVT()}; 1121 1122 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1123 return ValReg; 1124 1125 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1126 if (MaxSizeBits <= ValTy.getSizeInBits()) 1127 return ValReg; 1128 LocTy = LLT::scalar(MaxSizeBits); 1129 } 1130 1131 const LLT ValRegTy = MRI.getType(ValReg); 1132 if (ValRegTy.isPointer()) { 1133 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1134 // we have to cast to do the extension. 1135 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1136 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1137 } 1138 1139 switch (VA.getLocInfo()) { 1140 default: break; 1141 case CCValAssign::Full: 1142 case CCValAssign::BCvt: 1143 // FIXME: bitconverting between vector types may or may not be a 1144 // nop in big-endian situations. 1145 return ValReg; 1146 case CCValAssign::AExt: { 1147 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1148 return MIB.getReg(0); 1149 } 1150 case CCValAssign::SExt: { 1151 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1152 MIRBuilder.buildSExt(NewReg, ValReg); 1153 return NewReg; 1154 } 1155 case CCValAssign::ZExt: { 1156 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1157 MIRBuilder.buildZExt(NewReg, ValReg); 1158 return NewReg; 1159 } 1160 } 1161 llvm_unreachable("unable to extend register"); 1162 } 1163 1164 void CallLowering::ValueAssigner::anchor() {} 1165 1166 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1167 Register SrcReg, 1168 LLT NarrowTy) { 1169 switch (VA.getLocInfo()) { 1170 case CCValAssign::LocInfo::ZExt: { 1171 return MIRBuilder 1172 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1173 NarrowTy.getScalarSizeInBits()) 1174 .getReg(0); 1175 } 1176 case CCValAssign::LocInfo::SExt: { 1177 return MIRBuilder 1178 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1179 NarrowTy.getScalarSizeInBits()) 1180 .getReg(0); 1181 break; 1182 } 1183 default: 1184 return SrcReg; 1185 } 1186 } 1187 1188 /// Check if we can use a basic COPY instruction between the two types. 1189 /// 1190 /// We're currently building on top of the infrastructure using MVT, which loses 1191 /// pointer information in the CCValAssign. We accept copies from physical 1192 /// registers that have been reported as integers if it's to an equivalent sized 1193 /// pointer LLT. 1194 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1195 if (SrcTy == DstTy) 1196 return true; 1197 1198 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1199 return false; 1200 1201 SrcTy = SrcTy.getScalarType(); 1202 DstTy = DstTy.getScalarType(); 1203 1204 return (SrcTy.isPointer() && DstTy.isScalar()) || 1205 (DstTy.isScalar() && SrcTy.isPointer()); 1206 } 1207 1208 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1209 Register PhysReg, 1210 CCValAssign VA) { 1211 const MVT LocVT = VA.getLocVT(); 1212 const LLT LocTy(LocVT); 1213 const LLT RegTy = MRI.getType(ValVReg); 1214 1215 if (isCopyCompatibleType(RegTy, LocTy)) { 1216 MIRBuilder.buildCopy(ValVReg, PhysReg); 1217 return; 1218 } 1219 1220 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1221 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1222 MIRBuilder.buildTrunc(ValVReg, Hint); 1223 } 1224