1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftAsync)) 58 Flags.setSwiftAsync(); 59 if (AttrFn(Attribute::SwiftError)) 60 Flags.setSwiftError(); 61 } 62 63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 64 unsigned ArgIdx) const { 65 ISD::ArgFlagsTy Flags; 66 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 67 return Call.paramHasAttr(ArgIdx, Attr); 68 }); 69 return Flags; 70 } 71 72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 73 const AttributeList &Attrs, 74 unsigned OpIdx) const { 75 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 76 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 77 }); 78 } 79 80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 81 ArrayRef<Register> ResRegs, 82 ArrayRef<ArrayRef<Register>> ArgRegs, 83 Register SwiftErrorVReg, 84 std::function<unsigned()> GetCalleeReg) const { 85 CallLoweringInfo Info; 86 const DataLayout &DL = MIRBuilder.getDataLayout(); 87 MachineFunction &MF = MIRBuilder.getMF(); 88 bool CanBeTailCalled = CB.isTailCall() && 89 isInTailCallPosition(CB, MF.getTarget()) && 90 (MF.getFunction() 91 .getFnAttribute("disable-tail-calls") 92 .getValueAsString() != "true"); 93 94 CallingConv::ID CallConv = CB.getCallingConv(); 95 Type *RetTy = CB.getType(); 96 bool IsVarArg = CB.getFunctionType()->isVarArg(); 97 98 SmallVector<BaseArgInfo, 4> SplitArgs; 99 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 100 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 101 102 if (!Info.CanLowerReturn) { 103 // Callee requires sret demotion. 104 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 105 106 // The sret demotion isn't compatible with tail-calls, since the sret 107 // argument points into the caller's stack frame. 108 CanBeTailCalled = false; 109 } 110 111 // First step is to marshall all the function's parameters into the correct 112 // physregs and memory locations. Gather the sequence of argument types that 113 // we'll pass to the assigner function. 114 unsigned i = 0; 115 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 116 for (auto &Arg : CB.args()) { 117 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 118 i < NumFixedArgs}; 119 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 120 121 // If we have an explicit sret argument that is an Instruction, (i.e., it 122 // might point to function-local memory), we can't meaningfully tail-call. 123 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 124 CanBeTailCalled = false; 125 126 Info.OrigArgs.push_back(OrigArg); 127 ++i; 128 } 129 130 // Try looking through a bitcast from one function type to another. 131 // Commonly happens with calls to objc_msgSend(). 132 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 133 if (const Function *F = dyn_cast<Function>(CalleeV)) 134 Info.Callee = MachineOperand::CreateGA(F, 0); 135 else 136 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 137 138 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 139 if (!Info.OrigRet.Ty->isVoidTy()) 140 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 141 142 Info.CB = &CB; 143 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 144 Info.CallConv = CallConv; 145 Info.SwiftErrorVReg = SwiftErrorVReg; 146 Info.IsMustTailCall = CB.isMustTailCall(); 147 Info.IsTailCall = CanBeTailCalled; 148 Info.IsVarArg = IsVarArg; 149 return lowerCall(MIRBuilder, Info); 150 } 151 152 template <typename FuncInfoTy> 153 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 154 const DataLayout &DL, 155 const FuncInfoTy &FuncInfo) const { 156 auto &Flags = Arg.Flags[0]; 157 const AttributeList &Attrs = FuncInfo.getAttributes(); 158 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 159 160 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 161 if (PtrTy) { 162 Flags.setPointer(); 163 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 164 } 165 166 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 167 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 168 assert(OpIdx >= AttributeList::FirstArgIndex); 169 Type *ElementTy = PtrTy->getElementType(); 170 171 auto Ty = 172 Attrs.getAttributeAtIndex(OpIdx, Attribute::ByVal).getValueAsType(); 173 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 174 175 // For ByVal, alignment should be passed from FE. BE will guess if 176 // this info is not there but there are cases it cannot get right. 177 if (auto ParamAlign = 178 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 179 MemAlign = *ParamAlign; 180 else if ((ParamAlign = 181 FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex))) 182 MemAlign = *ParamAlign; 183 else 184 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 185 } else if (OpIdx >= AttributeList::FirstArgIndex) { 186 if (auto ParamAlign = 187 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 188 MemAlign = *ParamAlign; 189 } 190 Flags.setMemAlign(MemAlign); 191 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 192 193 // Don't try to use the returned attribute if the argument is marked as 194 // swiftself, since it won't be passed in x0. 195 if (Flags.isSwiftSelf()) 196 Flags.setReturned(false); 197 } 198 199 template void 200 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 201 const DataLayout &DL, 202 const Function &FuncInfo) const; 203 204 template void 205 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 206 const DataLayout &DL, 207 const CallBase &FuncInfo) const; 208 209 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 210 SmallVectorImpl<ArgInfo> &SplitArgs, 211 const DataLayout &DL, 212 CallingConv::ID CallConv, 213 SmallVectorImpl<uint64_t> *Offsets) const { 214 LLVMContext &Ctx = OrigArg.Ty->getContext(); 215 216 SmallVector<EVT, 4> SplitVTs; 217 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 218 219 if (SplitVTs.size() == 0) 220 return; 221 222 if (SplitVTs.size() == 1) { 223 // No splitting to do, but we want to replace the original type (e.g. [1 x 224 // double] -> double). 225 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 226 OrigArg.OrigArgIndex, OrigArg.Flags[0], 227 OrigArg.IsFixed, OrigArg.OrigValue); 228 return; 229 } 230 231 // Create one ArgInfo for each virtual register in the original ArgInfo. 232 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 233 234 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 235 OrigArg.Ty, CallConv, false, DL); 236 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 237 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 238 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 239 OrigArg.Flags[0], OrigArg.IsFixed); 240 if (NeedsRegBlock) 241 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 242 } 243 244 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 245 } 246 247 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 248 static MachineInstrBuilder 249 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 250 ArrayRef<Register> SrcRegs) { 251 MachineRegisterInfo &MRI = *B.getMRI(); 252 LLT LLTy = MRI.getType(DstRegs[0]); 253 LLT PartLLT = MRI.getType(SrcRegs[0]); 254 255 // Deal with v3s16 split into v2s16 256 LLT LCMTy = getLCMType(LLTy, PartLLT); 257 if (LCMTy == LLTy) { 258 // Common case where no padding is needed. 259 assert(DstRegs.size() == 1); 260 return B.buildConcatVectors(DstRegs[0], SrcRegs); 261 } 262 263 // We need to create an unmerge to the result registers, which may require 264 // widening the original value. 265 Register UnmergeSrcReg; 266 if (LCMTy != PartLLT) { 267 // e.g. A <3 x s16> value was split to <2 x s16> 268 // %register_value0:_(<2 x s16>) 269 // %register_value1:_(<2 x s16>) 270 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 271 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 272 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 273 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 274 Register Undef = B.buildUndef(PartLLT).getReg(0); 275 276 // Build vector of undefs. 277 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 278 279 // Replace the first sources with the real registers. 280 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 281 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 282 } else { 283 // We don't need to widen anything if we're extracting a scalar which was 284 // promoted to a vector e.g. s8 -> v4s8 -> s8 285 assert(SrcRegs.size() == 1); 286 UnmergeSrcReg = SrcRegs[0]; 287 } 288 289 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 290 291 SmallVector<Register, 8> PadDstRegs(NumDst); 292 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 293 294 // Create the excess dead defs for the unmerge. 295 for (int I = DstRegs.size(); I != NumDst; ++I) 296 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 297 298 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 299 } 300 301 /// Create a sequence of instructions to combine pieces split into register 302 /// typed values to the original IR value. \p OrigRegs contains the destination 303 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 304 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 305 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 306 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 307 const ISD::ArgFlagsTy Flags) { 308 MachineRegisterInfo &MRI = *B.getMRI(); 309 310 if (PartLLT == LLTy) { 311 // We should have avoided introducing a new virtual register, and just 312 // directly assigned here. 313 assert(OrigRegs[0] == Regs[0]); 314 return; 315 } 316 317 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 318 Regs.size() == 1) { 319 B.buildBitcast(OrigRegs[0], Regs[0]); 320 return; 321 } 322 323 // A vector PartLLT needs extending to LLTy's element size. 324 // E.g. <2 x s64> = G_SEXT <2 x s32>. 325 if (PartLLT.isVector() == LLTy.isVector() && 326 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 327 (!PartLLT.isVector() || 328 PartLLT.getNumElements() == LLTy.getNumElements()) && 329 OrigRegs.size() == 1 && Regs.size() == 1) { 330 Register SrcReg = Regs[0]; 331 332 LLT LocTy = MRI.getType(SrcReg); 333 334 if (Flags.isSExt()) { 335 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 336 .getReg(0); 337 } else if (Flags.isZExt()) { 338 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 339 .getReg(0); 340 } 341 342 // Sometimes pointers are passed zero extended. 343 LLT OrigTy = MRI.getType(OrigRegs[0]); 344 if (OrigTy.isPointer()) { 345 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 346 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 347 return; 348 } 349 350 B.buildTrunc(OrigRegs[0], SrcReg); 351 return; 352 } 353 354 if (!LLTy.isVector() && !PartLLT.isVector()) { 355 assert(OrigRegs.size() == 1); 356 LLT OrigTy = MRI.getType(OrigRegs[0]); 357 358 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 359 if (SrcSize == OrigTy.getSizeInBits()) 360 B.buildMerge(OrigRegs[0], Regs); 361 else { 362 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 363 B.buildTrunc(OrigRegs[0], Widened); 364 } 365 366 return; 367 } 368 369 if (PartLLT.isVector()) { 370 assert(OrigRegs.size() == 1); 371 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 372 373 // If PartLLT is a mismatched vector in both number of elements and element 374 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 375 // have the same elt type, i.e. v4s32. 376 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 377 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 378 Regs.size() == 1) { 379 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 380 .changeElementCount(PartLLT.getElementCount() * 2); 381 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 382 PartLLT = NewTy; 383 } 384 385 if (LLTy.getScalarType() == PartLLT.getElementType()) { 386 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 387 } else { 388 unsigned I = 0; 389 LLT GCDTy = getGCDType(LLTy, PartLLT); 390 391 // We are both splitting a vector, and bitcasting its element types. Cast 392 // the source pieces into the appropriate number of pieces with the result 393 // element type. 394 for (Register SrcReg : CastRegs) 395 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 396 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 397 } 398 399 return; 400 } 401 402 assert(LLTy.isVector() && !PartLLT.isVector()); 403 404 LLT DstEltTy = LLTy.getElementType(); 405 406 // Pointer information was discarded. We'll need to coerce some register types 407 // to avoid violating type constraints. 408 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 409 410 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 411 412 if (DstEltTy == PartLLT) { 413 // Vector was trivially scalarized. 414 415 if (RealDstEltTy.isPointer()) { 416 for (Register Reg : Regs) 417 MRI.setType(Reg, RealDstEltTy); 418 } 419 420 B.buildBuildVector(OrigRegs[0], Regs); 421 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 422 // Deal with vector with 64-bit elements decomposed to 32-bit 423 // registers. Need to create intermediate 64-bit elements. 424 SmallVector<Register, 8> EltMerges; 425 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 426 427 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 428 429 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 430 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 431 // Fix the type in case this is really a vector of pointers. 432 MRI.setType(Merge.getReg(0), RealDstEltTy); 433 EltMerges.push_back(Merge.getReg(0)); 434 Regs = Regs.drop_front(PartsPerElt); 435 } 436 437 B.buildBuildVector(OrigRegs[0], EltMerges); 438 } else { 439 // Vector was split, and elements promoted to a wider type. 440 // FIXME: Should handle floating point promotions. 441 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 442 auto BV = B.buildBuildVector(BVType, Regs); 443 B.buildTrunc(OrigRegs[0], BV); 444 } 445 } 446 447 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 448 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 449 /// contain the type of scalar value extension if necessary. 450 /// 451 /// This is used for outgoing values (vregs to physregs) 452 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 453 Register SrcReg, LLT SrcTy, LLT PartTy, 454 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 455 // We could just insert a regular copy, but this is unreachable at the moment. 456 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 457 458 const unsigned PartSize = PartTy.getSizeInBits(); 459 460 if (PartTy.isVector() == SrcTy.isVector() && 461 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 462 assert(DstRegs.size() == 1); 463 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 464 return; 465 } 466 467 if (SrcTy.isVector() && !PartTy.isVector() && 468 PartSize > SrcTy.getElementType().getSizeInBits()) { 469 // Vector was scalarized, and the elements extended. 470 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 471 for (int i = 0, e = DstRegs.size(); i != e; ++i) 472 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 473 return; 474 } 475 476 LLT GCDTy = getGCDType(SrcTy, PartTy); 477 if (GCDTy == PartTy) { 478 // If this already evenly divisible, we can create a simple unmerge. 479 B.buildUnmerge(DstRegs, SrcReg); 480 return; 481 } 482 483 MachineRegisterInfo &MRI = *B.getMRI(); 484 LLT DstTy = MRI.getType(DstRegs[0]); 485 LLT LCMTy = getLCMType(SrcTy, PartTy); 486 487 const unsigned DstSize = DstTy.getSizeInBits(); 488 const unsigned SrcSize = SrcTy.getSizeInBits(); 489 unsigned CoveringSize = LCMTy.getSizeInBits(); 490 491 Register UnmergeSrc = SrcReg; 492 493 if (CoveringSize != SrcSize) { 494 // For scalars, it's common to be able to use a simple extension. 495 if (SrcTy.isScalar() && DstTy.isScalar()) { 496 CoveringSize = alignTo(SrcSize, DstSize); 497 LLT CoverTy = LLT::scalar(CoveringSize); 498 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 499 } else { 500 // Widen to the common type. 501 // FIXME: This should respect the extend type 502 Register Undef = B.buildUndef(SrcTy).getReg(0); 503 SmallVector<Register, 8> MergeParts(1, SrcReg); 504 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 505 MergeParts.push_back(Undef); 506 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 507 } 508 } 509 510 // Unmerge to the original registers and pad with dead defs. 511 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 512 for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize; 513 Size += DstSize) { 514 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 515 } 516 517 B.buildUnmerge(UnmergeResults, UnmergeSrc); 518 } 519 520 bool CallLowering::determineAndHandleAssignments( 521 ValueHandler &Handler, ValueAssigner &Assigner, 522 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 523 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const { 524 MachineFunction &MF = MIRBuilder.getMF(); 525 const Function &F = MF.getFunction(); 526 SmallVector<CCValAssign, 16> ArgLocs; 527 528 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 529 if (!determineAssignments(Assigner, Args, CCInfo)) 530 return false; 531 532 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 533 ThisReturnReg); 534 } 535 536 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 537 if (Flags.isSExt()) 538 return TargetOpcode::G_SEXT; 539 if (Flags.isZExt()) 540 return TargetOpcode::G_ZEXT; 541 return TargetOpcode::G_ANYEXT; 542 } 543 544 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 545 SmallVectorImpl<ArgInfo> &Args, 546 CCState &CCInfo) const { 547 LLVMContext &Ctx = CCInfo.getContext(); 548 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 549 550 unsigned NumArgs = Args.size(); 551 for (unsigned i = 0; i != NumArgs; ++i) { 552 EVT CurVT = EVT::getEVT(Args[i].Ty); 553 554 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 555 556 // If we need to split the type over multiple regs, check it's a scenario 557 // we currently support. 558 unsigned NumParts = 559 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 560 561 if (NumParts == 1) { 562 // Try to use the register type if we couldn't assign the VT. 563 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 564 Args[i].Flags[0], CCInfo)) 565 return false; 566 continue; 567 } 568 569 // For incoming arguments (physregs to vregs), we could have values in 570 // physregs (or memlocs) which we want to extract and copy to vregs. 571 // During this, we might have to deal with the LLT being split across 572 // multiple regs, so we have to record this information for later. 573 // 574 // If we have outgoing args, then we have the opposite case. We have a 575 // vreg with an LLT which we want to assign to a physical location, and 576 // we might have to record that the value has to be split later. 577 578 // We're handling an incoming arg which is split over multiple regs. 579 // E.g. passing an s128 on AArch64. 580 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 581 Args[i].Flags.clear(); 582 583 for (unsigned Part = 0; Part < NumParts; ++Part) { 584 ISD::ArgFlagsTy Flags = OrigFlags; 585 if (Part == 0) { 586 Flags.setSplit(); 587 } else { 588 Flags.setOrigAlign(Align(1)); 589 if (Part == NumParts - 1) 590 Flags.setSplitEnd(); 591 } 592 593 Args[i].Flags.push_back(Flags); 594 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 595 Args[i].Flags[Part], CCInfo)) { 596 // Still couldn't assign this smaller part type for some reason. 597 return false; 598 } 599 } 600 } 601 602 return true; 603 } 604 605 bool CallLowering::handleAssignments(ValueHandler &Handler, 606 SmallVectorImpl<ArgInfo> &Args, 607 CCState &CCInfo, 608 SmallVectorImpl<CCValAssign> &ArgLocs, 609 MachineIRBuilder &MIRBuilder, 610 Register ThisReturnReg) const { 611 MachineFunction &MF = MIRBuilder.getMF(); 612 MachineRegisterInfo &MRI = MF.getRegInfo(); 613 const Function &F = MF.getFunction(); 614 const DataLayout &DL = F.getParent()->getDataLayout(); 615 616 const unsigned NumArgs = Args.size(); 617 618 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 619 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 620 CCValAssign &VA = ArgLocs[j]; 621 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 622 623 if (VA.needsCustom()) { 624 unsigned NumArgRegs = 625 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 626 if (!NumArgRegs) 627 return false; 628 j += NumArgRegs; 629 continue; 630 } 631 632 const MVT ValVT = VA.getValVT(); 633 const MVT LocVT = VA.getLocVT(); 634 635 const LLT LocTy(LocVT); 636 const LLT ValTy(ValVT); 637 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 638 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 639 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 640 641 // Expected to be multiple regs for a single incoming arg. 642 // There should be Regs.size() ArgLocs per argument. 643 // This should be the same as getNumRegistersForCallingConv 644 const unsigned NumParts = Args[i].Flags.size(); 645 646 // Now split the registers into the assigned types. 647 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 648 649 if (NumParts != 1 || NewLLT != OrigTy) { 650 // If we can't directly assign the register, we need one or more 651 // intermediate values. 652 Args[i].Regs.resize(NumParts); 653 654 // For each split register, create and assign a vreg that will store 655 // the incoming component of the larger value. These will later be 656 // merged to form the final vreg. 657 for (unsigned Part = 0; Part < NumParts; ++Part) 658 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 659 } 660 661 assert((j + (NumParts - 1)) < ArgLocs.size() && 662 "Too many regs for number of args"); 663 664 // Coerce into outgoing value types before register assignment. 665 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 666 assert(Args[i].OrigRegs.size() == 1); 667 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 668 ValTy, extendOpFromFlags(Args[i].Flags[0])); 669 } 670 671 for (unsigned Part = 0; Part < NumParts; ++Part) { 672 Register ArgReg = Args[i].Regs[Part]; 673 // There should be Regs.size() ArgLocs per argument. 674 VA = ArgLocs[j + Part]; 675 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 676 677 if (VA.isMemLoc() && !Flags.isByVal()) { 678 // Individual pieces may have been spilled to the stack and others 679 // passed in registers. 680 681 // TODO: The memory size may be larger than the value we need to 682 // store. We may need to adjust the offset for big endian targets. 683 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 684 685 MachinePointerInfo MPO; 686 Register StackAddr = Handler.getStackAddress( 687 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 688 689 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 690 continue; 691 } 692 693 if (VA.isMemLoc() && Flags.isByVal()) { 694 assert(Args[i].Regs.size() == 1 && 695 "didn't expect split byval pointer"); 696 697 if (Handler.isIncomingArgumentHandler()) { 698 // We just need to copy the frame index value to the pointer. 699 MachinePointerInfo MPO; 700 Register StackAddr = Handler.getStackAddress( 701 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 702 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 703 } else { 704 // For outgoing byval arguments, insert the implicit copy byval 705 // implies, such that writes in the callee do not modify the caller's 706 // value. 707 uint64_t MemSize = Flags.getByValSize(); 708 int64_t Offset = VA.getLocMemOffset(); 709 710 MachinePointerInfo DstMPO; 711 Register StackAddr = 712 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 713 714 MachinePointerInfo SrcMPO(Args[i].OrigValue); 715 if (!Args[i].OrigValue) { 716 // We still need to accurately track the stack address space if we 717 // don't know the underlying value. 718 const LLT PtrTy = MRI.getType(StackAddr); 719 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 720 } 721 722 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 723 inferAlignFromPtrInfo(MF, DstMPO)); 724 725 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 726 inferAlignFromPtrInfo(MF, SrcMPO)); 727 728 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 729 DstMPO, DstAlign, SrcMPO, SrcAlign, 730 MemSize, VA); 731 } 732 continue; 733 } 734 735 assert(!VA.needsCustom() && "custom loc should have been handled already"); 736 737 if (i == 0 && ThisReturnReg.isValid() && 738 Handler.isIncomingArgumentHandler() && 739 isTypeIsValidForThisReturn(ValVT)) { 740 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 741 continue; 742 } 743 744 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 745 } 746 747 // Now that all pieces have been assigned, re-pack the register typed values 748 // into the original value typed registers. 749 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 750 // Merge the split registers into the expected larger result vregs of 751 // the original call. 752 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 753 LocTy, Args[i].Flags[0]); 754 } 755 756 j += NumParts - 1; 757 } 758 759 return true; 760 } 761 762 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 763 ArrayRef<Register> VRegs, Register DemoteReg, 764 int FI) const { 765 MachineFunction &MF = MIRBuilder.getMF(); 766 MachineRegisterInfo &MRI = MF.getRegInfo(); 767 const DataLayout &DL = MF.getDataLayout(); 768 769 SmallVector<EVT, 4> SplitVTs; 770 SmallVector<uint64_t, 4> Offsets; 771 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 772 773 assert(VRegs.size() == SplitVTs.size()); 774 775 unsigned NumValues = SplitVTs.size(); 776 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 777 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 778 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 779 780 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 781 782 for (unsigned I = 0; I < NumValues; ++I) { 783 Register Addr; 784 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 785 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 786 MRI.getType(VRegs[I]), 787 commonAlignment(BaseAlign, Offsets[I])); 788 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 789 } 790 } 791 792 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 793 ArrayRef<Register> VRegs, 794 Register DemoteReg) const { 795 MachineFunction &MF = MIRBuilder.getMF(); 796 MachineRegisterInfo &MRI = MF.getRegInfo(); 797 const DataLayout &DL = MF.getDataLayout(); 798 799 SmallVector<EVT, 4> SplitVTs; 800 SmallVector<uint64_t, 4> Offsets; 801 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 802 803 assert(VRegs.size() == SplitVTs.size()); 804 805 unsigned NumValues = SplitVTs.size(); 806 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 807 unsigned AS = DL.getAllocaAddrSpace(); 808 LLT OffsetLLTy = 809 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 810 811 MachinePointerInfo PtrInfo(AS); 812 813 for (unsigned I = 0; I < NumValues; ++I) { 814 Register Addr; 815 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 816 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 817 MRI.getType(VRegs[I]), 818 commonAlignment(BaseAlign, Offsets[I])); 819 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 820 } 821 } 822 823 void CallLowering::insertSRetIncomingArgument( 824 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 825 MachineRegisterInfo &MRI, const DataLayout &DL) const { 826 unsigned AS = DL.getAllocaAddrSpace(); 827 DemoteReg = MRI.createGenericVirtualRegister( 828 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 829 830 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 831 832 SmallVector<EVT, 1> ValueVTs; 833 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 834 835 // NOTE: Assume that a pointer won't get split into more than one VT. 836 assert(ValueVTs.size() == 1); 837 838 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 839 ArgInfo::NoArgIndex); 840 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 841 DemoteArg.Flags[0].setSRet(); 842 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 843 } 844 845 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 846 const CallBase &CB, 847 CallLoweringInfo &Info) const { 848 const DataLayout &DL = MIRBuilder.getDataLayout(); 849 Type *RetTy = CB.getType(); 850 unsigned AS = DL.getAllocaAddrSpace(); 851 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 852 853 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 854 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 855 856 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 857 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 858 ArgInfo::NoArgIndex); 859 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 860 DemoteArg.Flags[0].setSRet(); 861 862 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 863 Info.DemoteStackIndex = FI; 864 Info.DemoteRegister = DemoteReg; 865 } 866 867 bool CallLowering::checkReturn(CCState &CCInfo, 868 SmallVectorImpl<BaseArgInfo> &Outs, 869 CCAssignFn *Fn) const { 870 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 871 MVT VT = MVT::getVT(Outs[I].Ty); 872 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 873 return false; 874 } 875 return true; 876 } 877 878 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 879 AttributeList Attrs, 880 SmallVectorImpl<BaseArgInfo> &Outs, 881 const DataLayout &DL) const { 882 LLVMContext &Context = RetTy->getContext(); 883 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 884 885 SmallVector<EVT, 4> SplitVTs; 886 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 887 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 888 889 for (EVT VT : SplitVTs) { 890 unsigned NumParts = 891 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 892 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 893 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 894 895 for (unsigned I = 0; I < NumParts; ++I) { 896 Outs.emplace_back(PartTy, Flags); 897 } 898 } 899 } 900 901 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 902 const auto &F = MF.getFunction(); 903 Type *ReturnType = F.getReturnType(); 904 CallingConv::ID CallConv = F.getCallingConv(); 905 906 SmallVector<BaseArgInfo, 4> SplitArgs; 907 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 908 MF.getDataLayout()); 909 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 910 } 911 912 bool CallLowering::parametersInCSRMatch( 913 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 914 const SmallVectorImpl<CCValAssign> &OutLocs, 915 const SmallVectorImpl<ArgInfo> &OutArgs) const { 916 for (unsigned i = 0; i < OutLocs.size(); ++i) { 917 auto &ArgLoc = OutLocs[i]; 918 // If it's not a register, it's fine. 919 if (!ArgLoc.isRegLoc()) 920 continue; 921 922 MCRegister PhysReg = ArgLoc.getLocReg(); 923 924 // Only look at callee-saved registers. 925 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 926 continue; 927 928 LLVM_DEBUG( 929 dbgs() 930 << "... Call has an argument passed in a callee-saved register.\n"); 931 932 // Check if it was copied from. 933 const ArgInfo &OutInfo = OutArgs[i]; 934 935 if (OutInfo.Regs.size() > 1) { 936 LLVM_DEBUG( 937 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 938 return false; 939 } 940 941 // Check if we copy the register, walking through copies from virtual 942 // registers. Note that getDefIgnoringCopies does not ignore copies from 943 // physical registers. 944 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 945 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 946 LLVM_DEBUG( 947 dbgs() 948 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 949 return false; 950 } 951 952 // Got a copy. Verify that it's the same as the register we want. 953 Register CopyRHS = RegDef->getOperand(1).getReg(); 954 if (CopyRHS != PhysReg) { 955 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 956 "VReg, cannot tail call.\n"); 957 return false; 958 } 959 } 960 961 return true; 962 } 963 964 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 965 MachineFunction &MF, 966 SmallVectorImpl<ArgInfo> &InArgs, 967 ValueAssigner &CalleeAssigner, 968 ValueAssigner &CallerAssigner) const { 969 const Function &F = MF.getFunction(); 970 CallingConv::ID CalleeCC = Info.CallConv; 971 CallingConv::ID CallerCC = F.getCallingConv(); 972 973 if (CallerCC == CalleeCC) 974 return true; 975 976 SmallVector<CCValAssign, 16> ArgLocs1; 977 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 978 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 979 return false; 980 981 SmallVector<CCValAssign, 16> ArgLocs2; 982 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 983 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 984 return false; 985 986 // We need the argument locations to match up exactly. If there's more in 987 // one than the other, then we are done. 988 if (ArgLocs1.size() != ArgLocs2.size()) 989 return false; 990 991 // Make sure that each location is passed in exactly the same way. 992 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 993 const CCValAssign &Loc1 = ArgLocs1[i]; 994 const CCValAssign &Loc2 = ArgLocs2[i]; 995 996 // We need both of them to be the same. So if one is a register and one 997 // isn't, we're done. 998 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 999 return false; 1000 1001 if (Loc1.isRegLoc()) { 1002 // If they don't have the same register location, we're done. 1003 if (Loc1.getLocReg() != Loc2.getLocReg()) 1004 return false; 1005 1006 // They matched, so we can move to the next ArgLoc. 1007 continue; 1008 } 1009 1010 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1011 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1012 return false; 1013 } 1014 1015 return true; 1016 } 1017 1018 LLT CallLowering::ValueHandler::getStackValueStoreType( 1019 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1020 const MVT ValVT = VA.getValVT(); 1021 if (ValVT != MVT::iPTR) { 1022 LLT ValTy(ValVT); 1023 1024 // We lost the pointeriness going through CCValAssign, so try to restore it 1025 // based on the flags. 1026 if (Flags.isPointer()) { 1027 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1028 ValTy.getScalarSizeInBits()); 1029 if (ValVT.isVector()) 1030 return LLT::vector(ValTy.getElementCount(), PtrTy); 1031 return PtrTy; 1032 } 1033 1034 return ValTy; 1035 } 1036 1037 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1038 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1039 } 1040 1041 void CallLowering::ValueHandler::copyArgumentMemory( 1042 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1043 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1044 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1045 CCValAssign &VA) const { 1046 MachineFunction &MF = MIRBuilder.getMF(); 1047 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1048 SrcPtrInfo, 1049 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1050 SrcAlign); 1051 1052 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1053 DstPtrInfo, 1054 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1055 MemSize, DstAlign); 1056 1057 const LLT PtrTy = MRI.getType(DstPtr); 1058 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1059 1060 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1061 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1062 } 1063 1064 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1065 CCValAssign &VA, 1066 unsigned MaxSizeBits) { 1067 LLT LocTy{VA.getLocVT()}; 1068 LLT ValTy{VA.getValVT()}; 1069 1070 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1071 return ValReg; 1072 1073 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1074 if (MaxSizeBits <= ValTy.getSizeInBits()) 1075 return ValReg; 1076 LocTy = LLT::scalar(MaxSizeBits); 1077 } 1078 1079 const LLT ValRegTy = MRI.getType(ValReg); 1080 if (ValRegTy.isPointer()) { 1081 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1082 // we have to cast to do the extension. 1083 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1084 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1085 } 1086 1087 switch (VA.getLocInfo()) { 1088 default: break; 1089 case CCValAssign::Full: 1090 case CCValAssign::BCvt: 1091 // FIXME: bitconverting between vector types may or may not be a 1092 // nop in big-endian situations. 1093 return ValReg; 1094 case CCValAssign::AExt: { 1095 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1096 return MIB.getReg(0); 1097 } 1098 case CCValAssign::SExt: { 1099 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1100 MIRBuilder.buildSExt(NewReg, ValReg); 1101 return NewReg; 1102 } 1103 case CCValAssign::ZExt: { 1104 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1105 MIRBuilder.buildZExt(NewReg, ValReg); 1106 return NewReg; 1107 } 1108 } 1109 llvm_unreachable("unable to extend register"); 1110 } 1111 1112 void CallLowering::ValueAssigner::anchor() {} 1113 1114 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1115 Register SrcReg, 1116 LLT NarrowTy) { 1117 switch (VA.getLocInfo()) { 1118 case CCValAssign::LocInfo::ZExt: { 1119 return MIRBuilder 1120 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1121 NarrowTy.getScalarSizeInBits()) 1122 .getReg(0); 1123 } 1124 case CCValAssign::LocInfo::SExt: { 1125 return MIRBuilder 1126 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1127 NarrowTy.getScalarSizeInBits()) 1128 .getReg(0); 1129 break; 1130 } 1131 default: 1132 return SrcReg; 1133 } 1134 } 1135 1136 /// Check if we can use a basic COPY instruction between the two types. 1137 /// 1138 /// We're currently building on top of the infrastructure using MVT, which loses 1139 /// pointer information in the CCValAssign. We accept copies from physical 1140 /// registers that have been reported as integers if it's to an equivalent sized 1141 /// pointer LLT. 1142 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1143 if (SrcTy == DstTy) 1144 return true; 1145 1146 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1147 return false; 1148 1149 SrcTy = SrcTy.getScalarType(); 1150 DstTy = DstTy.getScalarType(); 1151 1152 return (SrcTy.isPointer() && DstTy.isScalar()) || 1153 (DstTy.isScalar() && SrcTy.isPointer()); 1154 } 1155 1156 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1157 Register PhysReg, 1158 CCValAssign &VA) { 1159 const MVT LocVT = VA.getLocVT(); 1160 const LLT LocTy(LocVT); 1161 const LLT RegTy = MRI.getType(ValVReg); 1162 1163 if (isCopyCompatibleType(RegTy, LocTy)) { 1164 MIRBuilder.buildCopy(ValVReg, PhysReg); 1165 return; 1166 } 1167 1168 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1169 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1170 MIRBuilder.buildTrunc(ValVReg, Hint); 1171 } 1172