xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 52e6d70c40cd57709bfe8788461db35e3a8a3a6f)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftAsync))
58     Flags.setSwiftAsync();
59   if (AttrFn(Attribute::SwiftError))
60     Flags.setSwiftError();
61 }
62 
63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
64                                                      unsigned ArgIdx) const {
65   ISD::ArgFlagsTy Flags;
66   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
67     return Call.paramHasAttr(ArgIdx, Attr);
68   });
69   return Flags;
70 }
71 
72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
73                                              const AttributeList &Attrs,
74                                              unsigned OpIdx) const {
75   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
76     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
77   });
78 }
79 
80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
81                              ArrayRef<Register> ResRegs,
82                              ArrayRef<ArrayRef<Register>> ArgRegs,
83                              Register SwiftErrorVReg,
84                              std::function<unsigned()> GetCalleeReg) const {
85   CallLoweringInfo Info;
86   const DataLayout &DL = MIRBuilder.getDataLayout();
87   MachineFunction &MF = MIRBuilder.getMF();
88   bool CanBeTailCalled = CB.isTailCall() &&
89                          isInTailCallPosition(CB, MF.getTarget()) &&
90                          (MF.getFunction()
91                               .getFnAttribute("disable-tail-calls")
92                               .getValueAsString() != "true");
93 
94   CallingConv::ID CallConv = CB.getCallingConv();
95   Type *RetTy = CB.getType();
96   bool IsVarArg = CB.getFunctionType()->isVarArg();
97 
98   SmallVector<BaseArgInfo, 4> SplitArgs;
99   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
100   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
101 
102   if (!Info.CanLowerReturn) {
103     // Callee requires sret demotion.
104     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
105 
106     // The sret demotion isn't compatible with tail-calls, since the sret
107     // argument points into the caller's stack frame.
108     CanBeTailCalled = false;
109   }
110 
111   // First step is to marshall all the function's parameters into the correct
112   // physregs and memory locations. Gather the sequence of argument types that
113   // we'll pass to the assigner function.
114   unsigned i = 0;
115   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
116   for (auto &Arg : CB.args()) {
117     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
118                     i < NumFixedArgs};
119     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
120 
121     // If we have an explicit sret argument that is an Instruction, (i.e., it
122     // might point to function-local memory), we can't meaningfully tail-call.
123     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
124       CanBeTailCalled = false;
125 
126     Info.OrigArgs.push_back(OrigArg);
127     ++i;
128   }
129 
130   // Try looking through a bitcast from one function type to another.
131   // Commonly happens with calls to objc_msgSend().
132   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
133   if (const Function *F = dyn_cast<Function>(CalleeV))
134     Info.Callee = MachineOperand::CreateGA(F, 0);
135   else
136     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
137 
138   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
139   if (!Info.OrigRet.Ty->isVoidTy())
140     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
141 
142   Info.CB = &CB;
143   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
144   Info.CallConv = CallConv;
145   Info.SwiftErrorVReg = SwiftErrorVReg;
146   Info.IsMustTailCall = CB.isMustTailCall();
147   Info.IsTailCall = CanBeTailCalled;
148   Info.IsVarArg = IsVarArg;
149   return lowerCall(MIRBuilder, Info);
150 }
151 
152 template <typename FuncInfoTy>
153 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
154                                const DataLayout &DL,
155                                const FuncInfoTy &FuncInfo) const {
156   auto &Flags = Arg.Flags[0];
157   const AttributeList &Attrs = FuncInfo.getAttributes();
158   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
159 
160   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
161   if (PtrTy) {
162     Flags.setPointer();
163     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
164   }
165 
166   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
167   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
168     assert(OpIdx >= AttributeList::FirstArgIndex);
169     Type *ElementTy = PtrTy->getElementType();
170 
171     auto Ty =
172         Attrs.getAttributeAtIndex(OpIdx, Attribute::ByVal).getValueAsType();
173     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
174 
175     // For ByVal, alignment should be passed from FE.  BE will guess if
176     // this info is not there but there are cases it cannot get right.
177     if (auto ParamAlign =
178             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
179       MemAlign = *ParamAlign;
180     else if ((ParamAlign =
181                   FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex)))
182       MemAlign = *ParamAlign;
183     else
184       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
185   } else if (OpIdx >= AttributeList::FirstArgIndex) {
186     if (auto ParamAlign =
187             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
188       MemAlign = *ParamAlign;
189   }
190   Flags.setMemAlign(MemAlign);
191   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
192 
193   // Don't try to use the returned attribute if the argument is marked as
194   // swiftself, since it won't be passed in x0.
195   if (Flags.isSwiftSelf())
196     Flags.setReturned(false);
197 }
198 
199 template void
200 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
201                                     const DataLayout &DL,
202                                     const Function &FuncInfo) const;
203 
204 template void
205 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
206                                     const DataLayout &DL,
207                                     const CallBase &FuncInfo) const;
208 
209 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
210                                      SmallVectorImpl<ArgInfo> &SplitArgs,
211                                      const DataLayout &DL,
212                                      CallingConv::ID CallConv,
213                                      SmallVectorImpl<uint64_t> *Offsets) const {
214   LLVMContext &Ctx = OrigArg.Ty->getContext();
215 
216   SmallVector<EVT, 4> SplitVTs;
217   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
218 
219   if (SplitVTs.size() == 0)
220     return;
221 
222   if (SplitVTs.size() == 1) {
223     // No splitting to do, but we want to replace the original type (e.g. [1 x
224     // double] -> double).
225     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
226                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
227                            OrigArg.IsFixed, OrigArg.OrigValue);
228     return;
229   }
230 
231   // Create one ArgInfo for each virtual register in the original ArgInfo.
232   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
233 
234   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
235       OrigArg.Ty, CallConv, false, DL);
236   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
237     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
238     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
239                            OrigArg.Flags[0], OrigArg.IsFixed);
240     if (NeedsRegBlock)
241       SplitArgs.back().Flags[0].setInConsecutiveRegs();
242   }
243 
244   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
245 }
246 
247 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
248 static MachineInstrBuilder
249 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
250                             ArrayRef<Register> SrcRegs) {
251   MachineRegisterInfo &MRI = *B.getMRI();
252   LLT LLTy = MRI.getType(DstRegs[0]);
253   LLT PartLLT = MRI.getType(SrcRegs[0]);
254 
255   // Deal with v3s16 split into v2s16
256   LLT LCMTy = getLCMType(LLTy, PartLLT);
257   if (LCMTy == LLTy) {
258     // Common case where no padding is needed.
259     assert(DstRegs.size() == 1);
260     return B.buildConcatVectors(DstRegs[0], SrcRegs);
261   }
262 
263   // We need to create an unmerge to the result registers, which may require
264   // widening the original value.
265   Register UnmergeSrcReg;
266   if (LCMTy != PartLLT) {
267     // e.g. A <3 x s16> value was split to <2 x s16>
268     // %register_value0:_(<2 x s16>)
269     // %register_value1:_(<2 x s16>)
270     // %undef:_(<2 x s16>) = G_IMPLICIT_DEF
271     // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
272     // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
273     const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
274     Register Undef = B.buildUndef(PartLLT).getReg(0);
275 
276     // Build vector of undefs.
277     SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
278 
279     // Replace the first sources with the real registers.
280     std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
281     UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
282   } else {
283     // We don't need to widen anything if we're extracting a scalar which was
284     // promoted to a vector e.g. s8 -> v4s8 -> s8
285     assert(SrcRegs.size() == 1);
286     UnmergeSrcReg = SrcRegs[0];
287   }
288 
289   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
290 
291   SmallVector<Register, 8> PadDstRegs(NumDst);
292   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
293 
294   // Create the excess dead defs for the unmerge.
295   for (int I = DstRegs.size(); I != NumDst; ++I)
296     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
297 
298   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
299 }
300 
301 /// Create a sequence of instructions to combine pieces split into register
302 /// typed values to the original IR value. \p OrigRegs contains the destination
303 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
304 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
305 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
306                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
307                               const ISD::ArgFlagsTy Flags) {
308   MachineRegisterInfo &MRI = *B.getMRI();
309 
310   if (PartLLT == LLTy) {
311     // We should have avoided introducing a new virtual register, and just
312     // directly assigned here.
313     assert(OrigRegs[0] == Regs[0]);
314     return;
315   }
316 
317   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
318       Regs.size() == 1) {
319     B.buildBitcast(OrigRegs[0], Regs[0]);
320     return;
321   }
322 
323   // A vector PartLLT needs extending to LLTy's element size.
324   // E.g. <2 x s64> = G_SEXT <2 x s32>.
325   if (PartLLT.isVector() == LLTy.isVector() &&
326       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
327       (!PartLLT.isVector() ||
328        PartLLT.getNumElements() == LLTy.getNumElements()) &&
329       OrigRegs.size() == 1 && Regs.size() == 1) {
330     Register SrcReg = Regs[0];
331 
332     LLT LocTy = MRI.getType(SrcReg);
333 
334     if (Flags.isSExt()) {
335       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
336                    .getReg(0);
337     } else if (Flags.isZExt()) {
338       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
339                    .getReg(0);
340     }
341 
342     // Sometimes pointers are passed zero extended.
343     LLT OrigTy = MRI.getType(OrigRegs[0]);
344     if (OrigTy.isPointer()) {
345       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
346       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
347       return;
348     }
349 
350     B.buildTrunc(OrigRegs[0], SrcReg);
351     return;
352   }
353 
354   if (!LLTy.isVector() && !PartLLT.isVector()) {
355     assert(OrigRegs.size() == 1);
356     LLT OrigTy = MRI.getType(OrigRegs[0]);
357 
358     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
359     if (SrcSize == OrigTy.getSizeInBits())
360       B.buildMerge(OrigRegs[0], Regs);
361     else {
362       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
363       B.buildTrunc(OrigRegs[0], Widened);
364     }
365 
366     return;
367   }
368 
369   if (PartLLT.isVector()) {
370     assert(OrigRegs.size() == 1);
371     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
372 
373     // If PartLLT is a mismatched vector in both number of elements and element
374     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
375     // have the same elt type, i.e. v4s32.
376     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
377         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
378         Regs.size() == 1) {
379       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
380                       .changeElementCount(PartLLT.getElementCount() * 2);
381       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
382       PartLLT = NewTy;
383     }
384 
385     if (LLTy.getScalarType() == PartLLT.getElementType()) {
386       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
387     } else {
388       unsigned I = 0;
389       LLT GCDTy = getGCDType(LLTy, PartLLT);
390 
391       // We are both splitting a vector, and bitcasting its element types. Cast
392       // the source pieces into the appropriate number of pieces with the result
393       // element type.
394       for (Register SrcReg : CastRegs)
395         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
396       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
397     }
398 
399     return;
400   }
401 
402   assert(LLTy.isVector() && !PartLLT.isVector());
403 
404   LLT DstEltTy = LLTy.getElementType();
405 
406   // Pointer information was discarded. We'll need to coerce some register types
407   // to avoid violating type constraints.
408   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
409 
410   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
411 
412   if (DstEltTy == PartLLT) {
413     // Vector was trivially scalarized.
414 
415     if (RealDstEltTy.isPointer()) {
416       for (Register Reg : Regs)
417         MRI.setType(Reg, RealDstEltTy);
418     }
419 
420     B.buildBuildVector(OrigRegs[0], Regs);
421   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
422     // Deal with vector with 64-bit elements decomposed to 32-bit
423     // registers. Need to create intermediate 64-bit elements.
424     SmallVector<Register, 8> EltMerges;
425     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
426 
427     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
428 
429     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
430       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
431       // Fix the type in case this is really a vector of pointers.
432       MRI.setType(Merge.getReg(0), RealDstEltTy);
433       EltMerges.push_back(Merge.getReg(0));
434       Regs = Regs.drop_front(PartsPerElt);
435     }
436 
437     B.buildBuildVector(OrigRegs[0], EltMerges);
438   } else {
439     // Vector was split, and elements promoted to a wider type.
440     // FIXME: Should handle floating point promotions.
441     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
442     auto BV = B.buildBuildVector(BVType, Regs);
443     B.buildTrunc(OrigRegs[0], BV);
444   }
445 }
446 
447 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
448 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
449 /// contain the type of scalar value extension if necessary.
450 ///
451 /// This is used for outgoing values (vregs to physregs)
452 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
453                             Register SrcReg, LLT SrcTy, LLT PartTy,
454                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
455   // We could just insert a regular copy, but this is unreachable at the moment.
456   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
457 
458   const unsigned PartSize = PartTy.getSizeInBits();
459 
460   if (PartTy.isVector() == SrcTy.isVector() &&
461       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
462     assert(DstRegs.size() == 1);
463     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
464     return;
465   }
466 
467   if (SrcTy.isVector() && !PartTy.isVector() &&
468       PartSize > SrcTy.getElementType().getSizeInBits()) {
469     // Vector was scalarized, and the elements extended.
470     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
471     for (int i = 0, e = DstRegs.size(); i != e; ++i)
472       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
473     return;
474   }
475 
476   LLT GCDTy = getGCDType(SrcTy, PartTy);
477   if (GCDTy == PartTy) {
478     // If this already evenly divisible, we can create a simple unmerge.
479     B.buildUnmerge(DstRegs, SrcReg);
480     return;
481   }
482 
483   MachineRegisterInfo &MRI = *B.getMRI();
484   LLT DstTy = MRI.getType(DstRegs[0]);
485   LLT LCMTy = getLCMType(SrcTy, PartTy);
486 
487   const unsigned DstSize = DstTy.getSizeInBits();
488   const unsigned SrcSize = SrcTy.getSizeInBits();
489   unsigned CoveringSize = LCMTy.getSizeInBits();
490 
491   Register UnmergeSrc = SrcReg;
492 
493   if (CoveringSize != SrcSize) {
494     // For scalars, it's common to be able to use a simple extension.
495     if (SrcTy.isScalar() && DstTy.isScalar()) {
496       CoveringSize = alignTo(SrcSize, DstSize);
497       LLT CoverTy = LLT::scalar(CoveringSize);
498       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
499     } else {
500       // Widen to the common type.
501       // FIXME: This should respect the extend type
502       Register Undef = B.buildUndef(SrcTy).getReg(0);
503       SmallVector<Register, 8> MergeParts(1, SrcReg);
504       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
505         MergeParts.push_back(Undef);
506       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
507     }
508   }
509 
510   // Unmerge to the original registers and pad with dead defs.
511   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
512   for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize;
513        Size += DstSize) {
514     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
515   }
516 
517   B.buildUnmerge(UnmergeResults, UnmergeSrc);
518 }
519 
520 bool CallLowering::determineAndHandleAssignments(
521     ValueHandler &Handler, ValueAssigner &Assigner,
522     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
523     CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
524   MachineFunction &MF = MIRBuilder.getMF();
525   const Function &F = MF.getFunction();
526   SmallVector<CCValAssign, 16> ArgLocs;
527 
528   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
529   if (!determineAssignments(Assigner, Args, CCInfo))
530     return false;
531 
532   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
533                            ThisReturnReg);
534 }
535 
536 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
537   if (Flags.isSExt())
538     return TargetOpcode::G_SEXT;
539   if (Flags.isZExt())
540     return TargetOpcode::G_ZEXT;
541   return TargetOpcode::G_ANYEXT;
542 }
543 
544 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
545                                         SmallVectorImpl<ArgInfo> &Args,
546                                         CCState &CCInfo) const {
547   LLVMContext &Ctx = CCInfo.getContext();
548   const CallingConv::ID CallConv = CCInfo.getCallingConv();
549 
550   unsigned NumArgs = Args.size();
551   for (unsigned i = 0; i != NumArgs; ++i) {
552     EVT CurVT = EVT::getEVT(Args[i].Ty);
553 
554     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
555 
556     // If we need to split the type over multiple regs, check it's a scenario
557     // we currently support.
558     unsigned NumParts =
559         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
560 
561     if (NumParts == 1) {
562       // Try to use the register type if we couldn't assign the VT.
563       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
564                              Args[i].Flags[0], CCInfo))
565         return false;
566       continue;
567     }
568 
569     // For incoming arguments (physregs to vregs), we could have values in
570     // physregs (or memlocs) which we want to extract and copy to vregs.
571     // During this, we might have to deal with the LLT being split across
572     // multiple regs, so we have to record this information for later.
573     //
574     // If we have outgoing args, then we have the opposite case. We have a
575     // vreg with an LLT which we want to assign to a physical location, and
576     // we might have to record that the value has to be split later.
577 
578     // We're handling an incoming arg which is split over multiple regs.
579     // E.g. passing an s128 on AArch64.
580     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
581     Args[i].Flags.clear();
582 
583     for (unsigned Part = 0; Part < NumParts; ++Part) {
584       ISD::ArgFlagsTy Flags = OrigFlags;
585       if (Part == 0) {
586         Flags.setSplit();
587       } else {
588         Flags.setOrigAlign(Align(1));
589         if (Part == NumParts - 1)
590           Flags.setSplitEnd();
591       }
592 
593       Args[i].Flags.push_back(Flags);
594       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
595                              Args[i].Flags[Part], CCInfo)) {
596         // Still couldn't assign this smaller part type for some reason.
597         return false;
598       }
599     }
600   }
601 
602   return true;
603 }
604 
605 bool CallLowering::handleAssignments(ValueHandler &Handler,
606                                      SmallVectorImpl<ArgInfo> &Args,
607                                      CCState &CCInfo,
608                                      SmallVectorImpl<CCValAssign> &ArgLocs,
609                                      MachineIRBuilder &MIRBuilder,
610                                      Register ThisReturnReg) const {
611   MachineFunction &MF = MIRBuilder.getMF();
612   MachineRegisterInfo &MRI = MF.getRegInfo();
613   const Function &F = MF.getFunction();
614   const DataLayout &DL = F.getParent()->getDataLayout();
615 
616   const unsigned NumArgs = Args.size();
617 
618   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
619     assert(j < ArgLocs.size() && "Skipped too many arg locs");
620     CCValAssign &VA = ArgLocs[j];
621     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
622 
623     if (VA.needsCustom()) {
624       unsigned NumArgRegs =
625           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
626       if (!NumArgRegs)
627         return false;
628       j += NumArgRegs;
629       continue;
630     }
631 
632     const MVT ValVT = VA.getValVT();
633     const MVT LocVT = VA.getLocVT();
634 
635     const LLT LocTy(LocVT);
636     const LLT ValTy(ValVT);
637     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
638     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
639     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
640 
641     // Expected to be multiple regs for a single incoming arg.
642     // There should be Regs.size() ArgLocs per argument.
643     // This should be the same as getNumRegistersForCallingConv
644     const unsigned NumParts = Args[i].Flags.size();
645 
646     // Now split the registers into the assigned types.
647     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
648 
649     if (NumParts != 1 || NewLLT != OrigTy) {
650       // If we can't directly assign the register, we need one or more
651       // intermediate values.
652       Args[i].Regs.resize(NumParts);
653 
654       // For each split register, create and assign a vreg that will store
655       // the incoming component of the larger value. These will later be
656       // merged to form the final vreg.
657       for (unsigned Part = 0; Part < NumParts; ++Part)
658         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
659     }
660 
661     assert((j + (NumParts - 1)) < ArgLocs.size() &&
662            "Too many regs for number of args");
663 
664     // Coerce into outgoing value types before register assignment.
665     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
666       assert(Args[i].OrigRegs.size() == 1);
667       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
668                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
669     }
670 
671     for (unsigned Part = 0; Part < NumParts; ++Part) {
672       Register ArgReg = Args[i].Regs[Part];
673       // There should be Regs.size() ArgLocs per argument.
674       VA = ArgLocs[j + Part];
675       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
676 
677       if (VA.isMemLoc() && !Flags.isByVal()) {
678         // Individual pieces may have been spilled to the stack and others
679         // passed in registers.
680 
681         // TODO: The memory size may be larger than the value we need to
682         // store. We may need to adjust the offset for big endian targets.
683         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
684 
685         MachinePointerInfo MPO;
686         Register StackAddr = Handler.getStackAddress(
687             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
688 
689         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
690         continue;
691       }
692 
693       if (VA.isMemLoc() && Flags.isByVal()) {
694         assert(Args[i].Regs.size() == 1 &&
695                "didn't expect split byval pointer");
696 
697         if (Handler.isIncomingArgumentHandler()) {
698           // We just need to copy the frame index value to the pointer.
699           MachinePointerInfo MPO;
700           Register StackAddr = Handler.getStackAddress(
701               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
702           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
703         } else {
704           // For outgoing byval arguments, insert the implicit copy byval
705           // implies, such that writes in the callee do not modify the caller's
706           // value.
707           uint64_t MemSize = Flags.getByValSize();
708           int64_t Offset = VA.getLocMemOffset();
709 
710           MachinePointerInfo DstMPO;
711           Register StackAddr =
712               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
713 
714           MachinePointerInfo SrcMPO(Args[i].OrigValue);
715           if (!Args[i].OrigValue) {
716             // We still need to accurately track the stack address space if we
717             // don't know the underlying value.
718             const LLT PtrTy = MRI.getType(StackAddr);
719             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
720           }
721 
722           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
723                                     inferAlignFromPtrInfo(MF, DstMPO));
724 
725           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
726                                     inferAlignFromPtrInfo(MF, SrcMPO));
727 
728           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
729                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
730                                      MemSize, VA);
731         }
732         continue;
733       }
734 
735       assert(!VA.needsCustom() && "custom loc should have been handled already");
736 
737       if (i == 0 && ThisReturnReg.isValid() &&
738           Handler.isIncomingArgumentHandler() &&
739           isTypeIsValidForThisReturn(ValVT)) {
740         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
741         continue;
742       }
743 
744       Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
745     }
746 
747     // Now that all pieces have been assigned, re-pack the register typed values
748     // into the original value typed registers.
749     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
750       // Merge the split registers into the expected larger result vregs of
751       // the original call.
752       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
753                         LocTy, Args[i].Flags[0]);
754     }
755 
756     j += NumParts - 1;
757   }
758 
759   return true;
760 }
761 
762 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
763                                    ArrayRef<Register> VRegs, Register DemoteReg,
764                                    int FI) const {
765   MachineFunction &MF = MIRBuilder.getMF();
766   MachineRegisterInfo &MRI = MF.getRegInfo();
767   const DataLayout &DL = MF.getDataLayout();
768 
769   SmallVector<EVT, 4> SplitVTs;
770   SmallVector<uint64_t, 4> Offsets;
771   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
772 
773   assert(VRegs.size() == SplitVTs.size());
774 
775   unsigned NumValues = SplitVTs.size();
776   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
777   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
778   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
779 
780   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
781 
782   for (unsigned I = 0; I < NumValues; ++I) {
783     Register Addr;
784     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
785     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
786                                         MRI.getType(VRegs[I]),
787                                         commonAlignment(BaseAlign, Offsets[I]));
788     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
789   }
790 }
791 
792 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
793                                     ArrayRef<Register> VRegs,
794                                     Register DemoteReg) const {
795   MachineFunction &MF = MIRBuilder.getMF();
796   MachineRegisterInfo &MRI = MF.getRegInfo();
797   const DataLayout &DL = MF.getDataLayout();
798 
799   SmallVector<EVT, 4> SplitVTs;
800   SmallVector<uint64_t, 4> Offsets;
801   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
802 
803   assert(VRegs.size() == SplitVTs.size());
804 
805   unsigned NumValues = SplitVTs.size();
806   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
807   unsigned AS = DL.getAllocaAddrSpace();
808   LLT OffsetLLTy =
809       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
810 
811   MachinePointerInfo PtrInfo(AS);
812 
813   for (unsigned I = 0; I < NumValues; ++I) {
814     Register Addr;
815     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
816     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
817                                         MRI.getType(VRegs[I]),
818                                         commonAlignment(BaseAlign, Offsets[I]));
819     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
820   }
821 }
822 
823 void CallLowering::insertSRetIncomingArgument(
824     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
825     MachineRegisterInfo &MRI, const DataLayout &DL) const {
826   unsigned AS = DL.getAllocaAddrSpace();
827   DemoteReg = MRI.createGenericVirtualRegister(
828       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
829 
830   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
831 
832   SmallVector<EVT, 1> ValueVTs;
833   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
834 
835   // NOTE: Assume that a pointer won't get split into more than one VT.
836   assert(ValueVTs.size() == 1);
837 
838   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
839                     ArgInfo::NoArgIndex);
840   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
841   DemoteArg.Flags[0].setSRet();
842   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
843 }
844 
845 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
846                                               const CallBase &CB,
847                                               CallLoweringInfo &Info) const {
848   const DataLayout &DL = MIRBuilder.getDataLayout();
849   Type *RetTy = CB.getType();
850   unsigned AS = DL.getAllocaAddrSpace();
851   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
852 
853   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
854       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
855 
856   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
857   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
858                     ArgInfo::NoArgIndex);
859   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
860   DemoteArg.Flags[0].setSRet();
861 
862   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
863   Info.DemoteStackIndex = FI;
864   Info.DemoteRegister = DemoteReg;
865 }
866 
867 bool CallLowering::checkReturn(CCState &CCInfo,
868                                SmallVectorImpl<BaseArgInfo> &Outs,
869                                CCAssignFn *Fn) const {
870   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
871     MVT VT = MVT::getVT(Outs[I].Ty);
872     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
873       return false;
874   }
875   return true;
876 }
877 
878 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
879                                  AttributeList Attrs,
880                                  SmallVectorImpl<BaseArgInfo> &Outs,
881                                  const DataLayout &DL) const {
882   LLVMContext &Context = RetTy->getContext();
883   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
884 
885   SmallVector<EVT, 4> SplitVTs;
886   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
887   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
888 
889   for (EVT VT : SplitVTs) {
890     unsigned NumParts =
891         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
892     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
893     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
894 
895     for (unsigned I = 0; I < NumParts; ++I) {
896       Outs.emplace_back(PartTy, Flags);
897     }
898   }
899 }
900 
901 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
902   const auto &F = MF.getFunction();
903   Type *ReturnType = F.getReturnType();
904   CallingConv::ID CallConv = F.getCallingConv();
905 
906   SmallVector<BaseArgInfo, 4> SplitArgs;
907   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
908                 MF.getDataLayout());
909   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
910 }
911 
912 bool CallLowering::parametersInCSRMatch(
913     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
914     const SmallVectorImpl<CCValAssign> &OutLocs,
915     const SmallVectorImpl<ArgInfo> &OutArgs) const {
916   for (unsigned i = 0; i < OutLocs.size(); ++i) {
917     auto &ArgLoc = OutLocs[i];
918     // If it's not a register, it's fine.
919     if (!ArgLoc.isRegLoc())
920       continue;
921 
922     MCRegister PhysReg = ArgLoc.getLocReg();
923 
924     // Only look at callee-saved registers.
925     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
926       continue;
927 
928     LLVM_DEBUG(
929         dbgs()
930         << "... Call has an argument passed in a callee-saved register.\n");
931 
932     // Check if it was copied from.
933     const ArgInfo &OutInfo = OutArgs[i];
934 
935     if (OutInfo.Regs.size() > 1) {
936       LLVM_DEBUG(
937           dbgs() << "... Cannot handle arguments in multiple registers.\n");
938       return false;
939     }
940 
941     // Check if we copy the register, walking through copies from virtual
942     // registers. Note that getDefIgnoringCopies does not ignore copies from
943     // physical registers.
944     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
945     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
946       LLVM_DEBUG(
947           dbgs()
948           << "... Parameter was not copied into a VReg, cannot tail call.\n");
949       return false;
950     }
951 
952     // Got a copy. Verify that it's the same as the register we want.
953     Register CopyRHS = RegDef->getOperand(1).getReg();
954     if (CopyRHS != PhysReg) {
955       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
956                            "VReg, cannot tail call.\n");
957       return false;
958     }
959   }
960 
961   return true;
962 }
963 
964 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
965                                      MachineFunction &MF,
966                                      SmallVectorImpl<ArgInfo> &InArgs,
967                                      ValueAssigner &CalleeAssigner,
968                                      ValueAssigner &CallerAssigner) const {
969   const Function &F = MF.getFunction();
970   CallingConv::ID CalleeCC = Info.CallConv;
971   CallingConv::ID CallerCC = F.getCallingConv();
972 
973   if (CallerCC == CalleeCC)
974     return true;
975 
976   SmallVector<CCValAssign, 16> ArgLocs1;
977   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
978   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
979     return false;
980 
981   SmallVector<CCValAssign, 16> ArgLocs2;
982   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
983   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
984     return false;
985 
986   // We need the argument locations to match up exactly. If there's more in
987   // one than the other, then we are done.
988   if (ArgLocs1.size() != ArgLocs2.size())
989     return false;
990 
991   // Make sure that each location is passed in exactly the same way.
992   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
993     const CCValAssign &Loc1 = ArgLocs1[i];
994     const CCValAssign &Loc2 = ArgLocs2[i];
995 
996     // We need both of them to be the same. So if one is a register and one
997     // isn't, we're done.
998     if (Loc1.isRegLoc() != Loc2.isRegLoc())
999       return false;
1000 
1001     if (Loc1.isRegLoc()) {
1002       // If they don't have the same register location, we're done.
1003       if (Loc1.getLocReg() != Loc2.getLocReg())
1004         return false;
1005 
1006       // They matched, so we can move to the next ArgLoc.
1007       continue;
1008     }
1009 
1010     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1011     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1012       return false;
1013   }
1014 
1015   return true;
1016 }
1017 
1018 LLT CallLowering::ValueHandler::getStackValueStoreType(
1019     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1020   const MVT ValVT = VA.getValVT();
1021   if (ValVT != MVT::iPTR) {
1022     LLT ValTy(ValVT);
1023 
1024     // We lost the pointeriness going through CCValAssign, so try to restore it
1025     // based on the flags.
1026     if (Flags.isPointer()) {
1027       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1028                                ValTy.getScalarSizeInBits());
1029       if (ValVT.isVector())
1030         return LLT::vector(ValTy.getElementCount(), PtrTy);
1031       return PtrTy;
1032     }
1033 
1034     return ValTy;
1035   }
1036 
1037   unsigned AddrSpace = Flags.getPointerAddrSpace();
1038   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1039 }
1040 
1041 void CallLowering::ValueHandler::copyArgumentMemory(
1042     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1043     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1044     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1045     CCValAssign &VA) const {
1046   MachineFunction &MF = MIRBuilder.getMF();
1047   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1048       SrcPtrInfo,
1049       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1050       SrcAlign);
1051 
1052   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1053       DstPtrInfo,
1054       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1055       MemSize, DstAlign);
1056 
1057   const LLT PtrTy = MRI.getType(DstPtr);
1058   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1059 
1060   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1061   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1062 }
1063 
1064 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1065                                                     CCValAssign &VA,
1066                                                     unsigned MaxSizeBits) {
1067   LLT LocTy{VA.getLocVT()};
1068   LLT ValTy{VA.getValVT()};
1069 
1070   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1071     return ValReg;
1072 
1073   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1074     if (MaxSizeBits <= ValTy.getSizeInBits())
1075       return ValReg;
1076     LocTy = LLT::scalar(MaxSizeBits);
1077   }
1078 
1079   const LLT ValRegTy = MRI.getType(ValReg);
1080   if (ValRegTy.isPointer()) {
1081     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1082     // we have to cast to do the extension.
1083     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1084     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1085   }
1086 
1087   switch (VA.getLocInfo()) {
1088   default: break;
1089   case CCValAssign::Full:
1090   case CCValAssign::BCvt:
1091     // FIXME: bitconverting between vector types may or may not be a
1092     // nop in big-endian situations.
1093     return ValReg;
1094   case CCValAssign::AExt: {
1095     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1096     return MIB.getReg(0);
1097   }
1098   case CCValAssign::SExt: {
1099     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1100     MIRBuilder.buildSExt(NewReg, ValReg);
1101     return NewReg;
1102   }
1103   case CCValAssign::ZExt: {
1104     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1105     MIRBuilder.buildZExt(NewReg, ValReg);
1106     return NewReg;
1107   }
1108   }
1109   llvm_unreachable("unable to extend register");
1110 }
1111 
1112 void CallLowering::ValueAssigner::anchor() {}
1113 
1114 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1115                                                                 Register SrcReg,
1116                                                                 LLT NarrowTy) {
1117   switch (VA.getLocInfo()) {
1118   case CCValAssign::LocInfo::ZExt: {
1119     return MIRBuilder
1120         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1121                          NarrowTy.getScalarSizeInBits())
1122         .getReg(0);
1123   }
1124   case CCValAssign::LocInfo::SExt: {
1125     return MIRBuilder
1126         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1127                          NarrowTy.getScalarSizeInBits())
1128         .getReg(0);
1129     break;
1130   }
1131   default:
1132     return SrcReg;
1133   }
1134 }
1135 
1136 /// Check if we can use a basic COPY instruction between the two types.
1137 ///
1138 /// We're currently building on top of the infrastructure using MVT, which loses
1139 /// pointer information in the CCValAssign. We accept copies from physical
1140 /// registers that have been reported as integers if it's to an equivalent sized
1141 /// pointer LLT.
1142 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1143   if (SrcTy == DstTy)
1144     return true;
1145 
1146   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1147     return false;
1148 
1149   SrcTy = SrcTy.getScalarType();
1150   DstTy = DstTy.getScalarType();
1151 
1152   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1153          (DstTy.isScalar() && SrcTy.isPointer());
1154 }
1155 
1156 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1157                                                           Register PhysReg,
1158                                                           CCValAssign &VA) {
1159   const MVT LocVT = VA.getLocVT();
1160   const LLT LocTy(LocVT);
1161   const LLT RegTy = MRI.getType(ValVReg);
1162 
1163   if (isCopyCompatibleType(RegTy, LocTy)) {
1164     MIRBuilder.buildCopy(ValVReg, PhysReg);
1165     return;
1166   }
1167 
1168   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1169   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1170   MIRBuilder.buildTrunc(ValVReg, Hint);
1171 }
1172