1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 #define DEBUG_TYPE "call-lowering" 30 31 using namespace llvm; 32 33 void CallLowering::anchor() {} 34 35 /// Helper function which updates \p Flags when \p AttrFn returns true. 36 static void 37 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 38 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 39 // TODO: There are missing flags. Add them here. 40 if (AttrFn(Attribute::SExt)) 41 Flags.setSExt(); 42 if (AttrFn(Attribute::ZExt)) 43 Flags.setZExt(); 44 if (AttrFn(Attribute::InReg)) 45 Flags.setInReg(); 46 if (AttrFn(Attribute::StructRet)) 47 Flags.setSRet(); 48 if (AttrFn(Attribute::Nest)) 49 Flags.setNest(); 50 if (AttrFn(Attribute::ByVal)) 51 Flags.setByVal(); 52 if (AttrFn(Attribute::ByRef)) 53 Flags.setByRef(); 54 if (AttrFn(Attribute::Preallocated)) 55 Flags.setPreallocated(); 56 if (AttrFn(Attribute::InAlloca)) 57 Flags.setInAlloca(); 58 if (AttrFn(Attribute::Returned)) 59 Flags.setReturned(); 60 if (AttrFn(Attribute::SwiftSelf)) 61 Flags.setSwiftSelf(); 62 if (AttrFn(Attribute::SwiftAsync)) 63 Flags.setSwiftAsync(); 64 if (AttrFn(Attribute::SwiftError)) 65 Flags.setSwiftError(); 66 } 67 68 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 69 unsigned ArgIdx) const { 70 ISD::ArgFlagsTy Flags; 71 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 72 return Call.paramHasAttr(ArgIdx, Attr); 73 }); 74 return Flags; 75 } 76 77 ISD::ArgFlagsTy 78 CallLowering::getAttributesForReturn(const CallBase &Call) const { 79 ISD::ArgFlagsTy Flags; 80 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { 81 return Call.hasRetAttr(Attr); 82 }); 83 return Flags; 84 } 85 86 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 87 const AttributeList &Attrs, 88 unsigned OpIdx) const { 89 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 90 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 91 }); 92 } 93 94 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 95 ArrayRef<Register> ResRegs, 96 ArrayRef<ArrayRef<Register>> ArgRegs, 97 Register SwiftErrorVReg, 98 std::optional<PtrAuthInfo> PAI, 99 Register ConvergenceCtrlToken, 100 std::function<unsigned()> GetCalleeReg) const { 101 CallLoweringInfo Info; 102 const DataLayout &DL = MIRBuilder.getDataLayout(); 103 MachineFunction &MF = MIRBuilder.getMF(); 104 MachineRegisterInfo &MRI = MF.getRegInfo(); 105 bool CanBeTailCalled = CB.isTailCall() && 106 isInTailCallPosition(CB, MF.getTarget()) && 107 (MF.getFunction() 108 .getFnAttribute("disable-tail-calls") 109 .getValueAsString() != "true"); 110 111 CallingConv::ID CallConv = CB.getCallingConv(); 112 Type *RetTy = CB.getType(); 113 bool IsVarArg = CB.getFunctionType()->isVarArg(); 114 115 SmallVector<BaseArgInfo, 4> SplitArgs; 116 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 117 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 118 119 Info.IsConvergent = CB.isConvergent(); 120 121 if (!Info.CanLowerReturn) { 122 // Callee requires sret demotion. 123 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 124 125 // The sret demotion isn't compatible with tail-calls, since the sret 126 // argument points into the caller's stack frame. 127 CanBeTailCalled = false; 128 } 129 130 // First step is to marshall all the function's parameters into the correct 131 // physregs and memory locations. Gather the sequence of argument types that 132 // we'll pass to the assigner function. 133 unsigned i = 0; 134 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 135 for (const auto &Arg : CB.args()) { 136 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 137 i < NumFixedArgs}; 138 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 139 140 // If we have an explicit sret argument that is an Instruction, (i.e., it 141 // might point to function-local memory), we can't meaningfully tail-call. 142 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 143 CanBeTailCalled = false; 144 145 Info.OrigArgs.push_back(OrigArg); 146 ++i; 147 } 148 149 // Try looking through a bitcast from one function type to another. 150 // Commonly happens with calls to objc_msgSend(). 151 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 152 if (const Function *F = dyn_cast<Function>(CalleeV)) { 153 if (F->hasFnAttribute(Attribute::NonLazyBind)) { 154 LLT Ty = getLLTForType(*F->getType(), DL); 155 Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0); 156 Info.Callee = MachineOperand::CreateReg(Reg, false); 157 } else { 158 Info.Callee = MachineOperand::CreateGA(F, 0); 159 } 160 } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) { 161 // IR IFuncs and Aliases can't be forward declared (only defined), so the 162 // callee must be in the same TU and therefore we can direct-call it without 163 // worrying about it being out of range. 164 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0); 165 } else 166 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 167 168 Register ReturnHintAlignReg; 169 Align ReturnHintAlign; 170 171 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; 172 173 if (!Info.OrigRet.Ty->isVoidTy()) { 174 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 175 176 if (MaybeAlign Alignment = CB.getRetAlign()) { 177 if (*Alignment > Align(1)) { 178 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 179 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 180 ReturnHintAlign = *Alignment; 181 } 182 } 183 } 184 185 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 186 if (Bundle && CB.isIndirectCall()) { 187 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 188 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 189 } 190 191 Info.CB = &CB; 192 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 193 Info.CallConv = CallConv; 194 Info.SwiftErrorVReg = SwiftErrorVReg; 195 Info.PAI = PAI; 196 Info.ConvergenceCtrlToken = ConvergenceCtrlToken; 197 Info.IsMustTailCall = CB.isMustTailCall(); 198 Info.IsTailCall = CanBeTailCalled; 199 Info.IsVarArg = IsVarArg; 200 if (!lowerCall(MIRBuilder, Info)) 201 return false; 202 203 if (ReturnHintAlignReg && !Info.LoweredTailCall) { 204 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 205 ReturnHintAlign); 206 } 207 208 return true; 209 } 210 211 template <typename FuncInfoTy> 212 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 213 const DataLayout &DL, 214 const FuncInfoTy &FuncInfo) const { 215 auto &Flags = Arg.Flags[0]; 216 const AttributeList &Attrs = FuncInfo.getAttributes(); 217 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 218 219 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 220 if (PtrTy) { 221 Flags.setPointer(); 222 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 223 } 224 225 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 226 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 227 Flags.isByRef()) { 228 assert(OpIdx >= AttributeList::FirstArgIndex); 229 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 230 231 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 232 if (!ElementTy) 233 ElementTy = FuncInfo.getParamByRefType(ParamIdx); 234 if (!ElementTy) 235 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 236 if (!ElementTy) 237 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 238 239 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 240 241 uint64_t MemSize = DL.getTypeAllocSize(ElementTy); 242 if (Flags.isByRef()) 243 Flags.setByRefSize(MemSize); 244 else 245 Flags.setByValSize(MemSize); 246 247 // For ByVal, alignment should be passed from FE. BE will guess if 248 // this info is not there but there are cases it cannot get right. 249 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 250 MemAlign = *ParamAlign; 251 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 252 MemAlign = *ParamAlign; 253 else 254 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 255 } else if (OpIdx >= AttributeList::FirstArgIndex) { 256 if (auto ParamAlign = 257 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 258 MemAlign = *ParamAlign; 259 } 260 Flags.setMemAlign(MemAlign); 261 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 262 263 // Don't try to use the returned attribute if the argument is marked as 264 // swiftself, since it won't be passed in x0. 265 if (Flags.isSwiftSelf()) 266 Flags.setReturned(false); 267 } 268 269 template void 270 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 271 const DataLayout &DL, 272 const Function &FuncInfo) const; 273 274 template void 275 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 276 const DataLayout &DL, 277 const CallBase &FuncInfo) const; 278 279 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 280 SmallVectorImpl<ArgInfo> &SplitArgs, 281 const DataLayout &DL, 282 CallingConv::ID CallConv, 283 SmallVectorImpl<uint64_t> *Offsets) const { 284 LLVMContext &Ctx = OrigArg.Ty->getContext(); 285 286 SmallVector<EVT, 4> SplitVTs; 287 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 288 289 if (SplitVTs.size() == 0) 290 return; 291 292 if (SplitVTs.size() == 1) { 293 // No splitting to do, but we want to replace the original type (e.g. [1 x 294 // double] -> double). 295 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 296 OrigArg.OrigArgIndex, OrigArg.Flags[0], 297 OrigArg.IsFixed, OrigArg.OrigValue); 298 return; 299 } 300 301 // Create one ArgInfo for each virtual register in the original ArgInfo. 302 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 303 304 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 305 OrigArg.Ty, CallConv, false, DL); 306 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 307 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 308 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 309 OrigArg.Flags[0], OrigArg.IsFixed); 310 if (NeedsRegBlock) 311 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 312 } 313 314 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 315 } 316 317 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 318 static MachineInstrBuilder 319 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 320 ArrayRef<Register> SrcRegs) { 321 MachineRegisterInfo &MRI = *B.getMRI(); 322 LLT LLTy = MRI.getType(DstRegs[0]); 323 LLT PartLLT = MRI.getType(SrcRegs[0]); 324 325 // Deal with v3s16 split into v2s16 326 LLT LCMTy = getCoverTy(LLTy, PartLLT); 327 if (LCMTy == LLTy) { 328 // Common case where no padding is needed. 329 assert(DstRegs.size() == 1); 330 return B.buildConcatVectors(DstRegs[0], SrcRegs); 331 } 332 333 // We need to create an unmerge to the result registers, which may require 334 // widening the original value. 335 Register UnmergeSrcReg; 336 if (LCMTy != PartLLT) { 337 assert(DstRegs.size() == 1); 338 return B.buildDeleteTrailingVectorElements( 339 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); 340 } else { 341 // We don't need to widen anything if we're extracting a scalar which was 342 // promoted to a vector e.g. s8 -> v4s8 -> s8 343 assert(SrcRegs.size() == 1); 344 UnmergeSrcReg = SrcRegs[0]; 345 } 346 347 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 348 349 SmallVector<Register, 8> PadDstRegs(NumDst); 350 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 351 352 // Create the excess dead defs for the unmerge. 353 for (int I = DstRegs.size(); I != NumDst; ++I) 354 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 355 356 if (PadDstRegs.size() == 1) 357 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 358 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 359 } 360 361 /// Create a sequence of instructions to combine pieces split into register 362 /// typed values to the original IR value. \p OrigRegs contains the destination 363 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 364 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 365 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 366 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 367 const ISD::ArgFlagsTy Flags) { 368 MachineRegisterInfo &MRI = *B.getMRI(); 369 370 if (PartLLT == LLTy) { 371 // We should have avoided introducing a new virtual register, and just 372 // directly assigned here. 373 assert(OrigRegs[0] == Regs[0]); 374 return; 375 } 376 377 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 378 Regs.size() == 1) { 379 B.buildBitcast(OrigRegs[0], Regs[0]); 380 return; 381 } 382 383 // A vector PartLLT needs extending to LLTy's element size. 384 // E.g. <2 x s64> = G_SEXT <2 x s32>. 385 if (PartLLT.isVector() == LLTy.isVector() && 386 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 387 (!PartLLT.isVector() || 388 PartLLT.getElementCount() == LLTy.getElementCount()) && 389 OrigRegs.size() == 1 && Regs.size() == 1) { 390 Register SrcReg = Regs[0]; 391 392 LLT LocTy = MRI.getType(SrcReg); 393 394 if (Flags.isSExt()) { 395 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 396 .getReg(0); 397 } else if (Flags.isZExt()) { 398 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 399 .getReg(0); 400 } 401 402 // Sometimes pointers are passed zero extended. 403 LLT OrigTy = MRI.getType(OrigRegs[0]); 404 if (OrigTy.isPointer()) { 405 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 406 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 407 return; 408 } 409 410 B.buildTrunc(OrigRegs[0], SrcReg); 411 return; 412 } 413 414 if (!LLTy.isVector() && !PartLLT.isVector()) { 415 assert(OrigRegs.size() == 1); 416 LLT OrigTy = MRI.getType(OrigRegs[0]); 417 418 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); 419 if (SrcSize == OrigTy.getSizeInBits()) 420 B.buildMergeValues(OrigRegs[0], Regs); 421 else { 422 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); 423 B.buildTrunc(OrigRegs[0], Widened); 424 } 425 426 return; 427 } 428 429 if (PartLLT.isVector()) { 430 assert(OrigRegs.size() == 1); 431 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 432 433 // If PartLLT is a mismatched vector in both number of elements and element 434 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 435 // have the same elt type, i.e. v4s32. 436 // TODO: Extend this coersion to element multiples other than just 2. 437 if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) && 438 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 439 Regs.size() == 1) { 440 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 441 .changeElementCount(PartLLT.getElementCount() * 2); 442 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 443 PartLLT = NewTy; 444 } 445 446 if (LLTy.getScalarType() == PartLLT.getElementType()) { 447 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 448 } else { 449 unsigned I = 0; 450 LLT GCDTy = getGCDType(LLTy, PartLLT); 451 452 // We are both splitting a vector, and bitcasting its element types. Cast 453 // the source pieces into the appropriate number of pieces with the result 454 // element type. 455 for (Register SrcReg : CastRegs) 456 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 457 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 458 } 459 460 return; 461 } 462 463 assert(LLTy.isVector() && !PartLLT.isVector()); 464 465 LLT DstEltTy = LLTy.getElementType(); 466 467 // Pointer information was discarded. We'll need to coerce some register types 468 // to avoid violating type constraints. 469 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 470 471 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 472 473 if (DstEltTy == PartLLT) { 474 // Vector was trivially scalarized. 475 476 if (RealDstEltTy.isPointer()) { 477 for (Register Reg : Regs) 478 MRI.setType(Reg, RealDstEltTy); 479 } 480 481 B.buildBuildVector(OrigRegs[0], Regs); 482 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 483 // Deal with vector with 64-bit elements decomposed to 32-bit 484 // registers. Need to create intermediate 64-bit elements. 485 SmallVector<Register, 8> EltMerges; 486 int PartsPerElt = 487 divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits()); 488 LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt); 489 490 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 491 auto Merge = 492 B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt)); 493 if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits()) 494 Merge = B.buildTrunc(RealDstEltTy, Merge); 495 // Fix the type in case this is really a vector of pointers. 496 MRI.setType(Merge.getReg(0), RealDstEltTy); 497 EltMerges.push_back(Merge.getReg(0)); 498 Regs = Regs.drop_front(PartsPerElt); 499 } 500 501 B.buildBuildVector(OrigRegs[0], EltMerges); 502 } else { 503 // Vector was split, and elements promoted to a wider type. 504 // FIXME: Should handle floating point promotions. 505 unsigned NumElts = LLTy.getNumElements(); 506 LLT BVType = LLT::fixed_vector(NumElts, PartLLT); 507 508 Register BuildVec; 509 if (NumElts == Regs.size()) 510 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0); 511 else { 512 // Vector elements are packed in the inputs. 513 // e.g. we have a <4 x s16> but 2 x s32 in regs. 514 assert(NumElts > Regs.size()); 515 LLT SrcEltTy = MRI.getType(Regs[0]); 516 517 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType(); 518 519 // Input registers contain packed elements. 520 // Determine how many elements per reg. 521 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0); 522 unsigned EltPerReg = 523 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits()); 524 525 SmallVector<Register, 0> BVRegs; 526 BVRegs.reserve(Regs.size() * EltPerReg); 527 for (Register R : Regs) { 528 auto Unmerge = B.buildUnmerge(OriginalEltTy, R); 529 for (unsigned K = 0; K < EltPerReg; ++K) 530 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0)); 531 } 532 533 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces 534 // for a <3 x s16> vector. We should have less than EltPerReg extra items. 535 if (BVRegs.size() > NumElts) { 536 assert((BVRegs.size() - NumElts) < EltPerReg); 537 BVRegs.truncate(NumElts); 538 } 539 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0); 540 } 541 B.buildTrunc(OrigRegs[0], BuildVec); 542 } 543 } 544 545 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 546 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 547 /// contain the type of scalar value extension if necessary. 548 /// 549 /// This is used for outgoing values (vregs to physregs) 550 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 551 Register SrcReg, LLT SrcTy, LLT PartTy, 552 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 553 // We could just insert a regular copy, but this is unreachable at the moment. 554 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 555 556 const TypeSize PartSize = PartTy.getSizeInBits(); 557 558 if (PartTy.isVector() == SrcTy.isVector() && 559 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 560 assert(DstRegs.size() == 1); 561 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 562 return; 563 } 564 565 if (SrcTy.isVector() && !PartTy.isVector() && 566 TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) { 567 // Vector was scalarized, and the elements extended. 568 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 569 for (int i = 0, e = DstRegs.size(); i != e; ++i) 570 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 571 return; 572 } 573 574 if (SrcTy.isVector() && PartTy.isVector() && 575 PartTy.getSizeInBits() == SrcTy.getSizeInBits() && 576 ElementCount::isKnownLT(SrcTy.getElementCount(), 577 PartTy.getElementCount())) { 578 // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32 579 Register DstReg = DstRegs.front(); 580 B.buildPadVectorWithUndefElements(DstReg, SrcReg); 581 return; 582 } 583 584 LLT GCDTy = getGCDType(SrcTy, PartTy); 585 if (GCDTy == PartTy) { 586 // If this already evenly divisible, we can create a simple unmerge. 587 B.buildUnmerge(DstRegs, SrcReg); 588 return; 589 } 590 591 if (SrcTy.isVector() && !PartTy.isVector() && 592 SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) { 593 LLT ExtTy = 594 LLT::vector(SrcTy.getElementCount(), 595 LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() / 596 SrcTy.getNumElements())); 597 auto Ext = B.buildAnyExt(ExtTy, SrcReg); 598 B.buildUnmerge(DstRegs, Ext); 599 return; 600 } 601 602 MachineRegisterInfo &MRI = *B.getMRI(); 603 LLT DstTy = MRI.getType(DstRegs[0]); 604 LLT LCMTy = getCoverTy(SrcTy, PartTy); 605 606 if (PartTy.isVector() && LCMTy == PartTy) { 607 assert(DstRegs.size() == 1); 608 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 609 return; 610 } 611 612 const unsigned DstSize = DstTy.getSizeInBits(); 613 const unsigned SrcSize = SrcTy.getSizeInBits(); 614 unsigned CoveringSize = LCMTy.getSizeInBits(); 615 616 Register UnmergeSrc = SrcReg; 617 618 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 619 // For scalars, it's common to be able to use a simple extension. 620 if (SrcTy.isScalar() && DstTy.isScalar()) { 621 CoveringSize = alignTo(SrcSize, DstSize); 622 LLT CoverTy = LLT::scalar(CoveringSize); 623 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 624 } else { 625 // Widen to the common type. 626 // FIXME: This should respect the extend type 627 Register Undef = B.buildUndef(SrcTy).getReg(0); 628 SmallVector<Register, 8> MergeParts(1, SrcReg); 629 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 630 MergeParts.push_back(Undef); 631 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); 632 } 633 } 634 635 if (LCMTy.isVector() && CoveringSize != SrcSize) 636 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 637 638 B.buildUnmerge(DstRegs, UnmergeSrc); 639 } 640 641 bool CallLowering::determineAndHandleAssignments( 642 ValueHandler &Handler, ValueAssigner &Assigner, 643 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 644 CallingConv::ID CallConv, bool IsVarArg, 645 ArrayRef<Register> ThisReturnRegs) const { 646 MachineFunction &MF = MIRBuilder.getMF(); 647 const Function &F = MF.getFunction(); 648 SmallVector<CCValAssign, 16> ArgLocs; 649 650 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 651 if (!determineAssignments(Assigner, Args, CCInfo)) 652 return false; 653 654 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 655 ThisReturnRegs); 656 } 657 658 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 659 if (Flags.isSExt()) 660 return TargetOpcode::G_SEXT; 661 if (Flags.isZExt()) 662 return TargetOpcode::G_ZEXT; 663 return TargetOpcode::G_ANYEXT; 664 } 665 666 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 667 SmallVectorImpl<ArgInfo> &Args, 668 CCState &CCInfo) const { 669 LLVMContext &Ctx = CCInfo.getContext(); 670 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 671 672 unsigned NumArgs = Args.size(); 673 for (unsigned i = 0; i != NumArgs; ++i) { 674 EVT CurVT = EVT::getEVT(Args[i].Ty); 675 676 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 677 678 // If we need to split the type over multiple regs, check it's a scenario 679 // we currently support. 680 unsigned NumParts = 681 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 682 683 if (NumParts == 1) { 684 // Try to use the register type if we couldn't assign the VT. 685 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 686 Args[i].Flags[0], CCInfo)) 687 return false; 688 continue; 689 } 690 691 // For incoming arguments (physregs to vregs), we could have values in 692 // physregs (or memlocs) which we want to extract and copy to vregs. 693 // During this, we might have to deal with the LLT being split across 694 // multiple regs, so we have to record this information for later. 695 // 696 // If we have outgoing args, then we have the opposite case. We have a 697 // vreg with an LLT which we want to assign to a physical location, and 698 // we might have to record that the value has to be split later. 699 700 // We're handling an incoming arg which is split over multiple regs. 701 // E.g. passing an s128 on AArch64. 702 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 703 Args[i].Flags.clear(); 704 705 for (unsigned Part = 0; Part < NumParts; ++Part) { 706 ISD::ArgFlagsTy Flags = OrigFlags; 707 if (Part == 0) { 708 Flags.setSplit(); 709 } else { 710 Flags.setOrigAlign(Align(1)); 711 if (Part == NumParts - 1) 712 Flags.setSplitEnd(); 713 } 714 715 Args[i].Flags.push_back(Flags); 716 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 717 Args[i].Flags[Part], CCInfo)) { 718 // Still couldn't assign this smaller part type for some reason. 719 return false; 720 } 721 } 722 } 723 724 return true; 725 } 726 727 bool CallLowering::handleAssignments(ValueHandler &Handler, 728 SmallVectorImpl<ArgInfo> &Args, 729 CCState &CCInfo, 730 SmallVectorImpl<CCValAssign> &ArgLocs, 731 MachineIRBuilder &MIRBuilder, 732 ArrayRef<Register> ThisReturnRegs) const { 733 MachineFunction &MF = MIRBuilder.getMF(); 734 MachineRegisterInfo &MRI = MF.getRegInfo(); 735 const Function &F = MF.getFunction(); 736 const DataLayout &DL = F.getParent()->getDataLayout(); 737 738 const unsigned NumArgs = Args.size(); 739 740 // Stores thunks for outgoing register assignments. This is used so we delay 741 // generating register copies until mem loc assignments are done. We do this 742 // so that if the target is using the delayed stack protector feature, we can 743 // find the split point of the block accurately. E.g. if we have: 744 // G_STORE %val, %memloc 745 // $x0 = COPY %foo 746 // $x1 = COPY %bar 747 // CALL func 748 // ... then the split point for the block will correctly be at, and including, 749 // the copy to $x0. If instead the G_STORE instruction immediately precedes 750 // the CALL, then we'd prematurely choose the CALL as the split point, thus 751 // generating a split block with a CALL that uses undefined physregs. 752 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 753 754 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 755 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 756 CCValAssign &VA = ArgLocs[j]; 757 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 758 759 if (VA.needsCustom()) { 760 std::function<void()> Thunk; 761 unsigned NumArgRegs = Handler.assignCustomValue( 762 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); 763 if (Thunk) 764 DelayedOutgoingRegAssignments.emplace_back(Thunk); 765 if (!NumArgRegs) 766 return false; 767 j += (NumArgRegs - 1); 768 continue; 769 } 770 771 auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace(); 772 773 const MVT ValVT = VA.getValVT(); 774 const MVT LocVT = VA.getLocVT(); 775 776 const LLT LocTy(LocVT); 777 const LLT ValTy(ValVT); 778 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 779 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 780 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 781 const LLT PointerTy = LLT::pointer( 782 AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace)); 783 784 // Expected to be multiple regs for a single incoming arg. 785 // There should be Regs.size() ArgLocs per argument. 786 // This should be the same as getNumRegistersForCallingConv 787 const unsigned NumParts = Args[i].Flags.size(); 788 789 // Now split the registers into the assigned types. 790 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 791 792 if (NumParts != 1 || NewLLT != OrigTy) { 793 // If we can't directly assign the register, we need one or more 794 // intermediate values. 795 Args[i].Regs.resize(NumParts); 796 797 // When we have indirect parameter passing we are receiving a pointer, 798 // that points to the actual value, so we need one "temporary" pointer. 799 if (VA.getLocInfo() == CCValAssign::Indirect) { 800 if (Handler.isIncomingArgumentHandler()) 801 Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy); 802 } else { 803 // For each split register, create and assign a vreg that will store 804 // the incoming component of the larger value. These will later be 805 // merged to form the final vreg. 806 for (unsigned Part = 0; Part < NumParts; ++Part) 807 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 808 } 809 } 810 811 assert((j + (NumParts - 1)) < ArgLocs.size() && 812 "Too many regs for number of args"); 813 814 // Coerce into outgoing value types before register assignment. 815 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy && 816 VA.getLocInfo() != CCValAssign::Indirect) { 817 assert(Args[i].OrigRegs.size() == 1); 818 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 819 ValTy, extendOpFromFlags(Args[i].Flags[0])); 820 } 821 822 bool IndirectParameterPassingHandled = false; 823 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 824 for (unsigned Part = 0; Part < NumParts; ++Part) { 825 assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) && 826 "Only the first parameter should be processed when " 827 "handling indirect passing!"); 828 Register ArgReg = Args[i].Regs[Part]; 829 // There should be Regs.size() ArgLocs per argument. 830 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 831 CCValAssign &VA = ArgLocs[j + Idx]; 832 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 833 834 // We found an indirect parameter passing, and we have an 835 // OutgoingValueHandler as our handler (so we are at the call site or the 836 // return value). In this case, start the construction of the following 837 // GMIR, that is responsible for the preparation of indirect parameter 838 // passing: 839 // 840 // %1(indirectly passed type) = The value to pass 841 // %3(pointer) = G_FRAME_INDEX %stack.0 842 // G_STORE %1, %3 :: (store (s128), align 8) 843 // 844 // After this GMIR, the remaining part of the loop body will decide how 845 // to get the value to the caller and we break out of the loop. 846 if (VA.getLocInfo() == CCValAssign::Indirect && 847 !Handler.isIncomingArgumentHandler()) { 848 Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty); 849 MachineFrameInfo &MFI = MF.getFrameInfo(); 850 // Get some space on the stack for the value, so later we can pass it 851 // as a reference. 852 int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(), 853 AlignmentForStored, false); 854 Register PointerToStackReg = 855 MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0); 856 MachinePointerInfo StackPointerMPO = 857 MachinePointerInfo::getFixedStack(MF, FrameIdx); 858 // Store the value in the previously created stack space. 859 MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg, 860 StackPointerMPO, 861 inferAlignFromPtrInfo(MF, StackPointerMPO)); 862 863 ArgReg = PointerToStackReg; 864 IndirectParameterPassingHandled = true; 865 } 866 867 if (VA.isMemLoc() && !Flags.isByVal()) { 868 // Individual pieces may have been spilled to the stack and others 869 // passed in registers. 870 871 // TODO: The memory size may be larger than the value we need to 872 // store. We may need to adjust the offset for big endian targets. 873 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 874 875 MachinePointerInfo MPO; 876 Register StackAddr = 877 Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect 878 ? PointerTy.getSizeInBytes() 879 : MemTy.getSizeInBytes(), 880 VA.getLocMemOffset(), MPO, Flags); 881 882 // Finish the handling of indirect passing from the passers 883 // (OutgoingParameterHandler) side. 884 // This branch is needed, so the pointer to the value is loaded onto the 885 // stack. 886 if (VA.getLocInfo() == CCValAssign::Indirect) 887 Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA); 888 else 889 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 890 } else if (VA.isMemLoc() && Flags.isByVal()) { 891 assert(Args[i].Regs.size() == 1 && 892 "didn't expect split byval pointer"); 893 894 if (Handler.isIncomingArgumentHandler()) { 895 // We just need to copy the frame index value to the pointer. 896 MachinePointerInfo MPO; 897 Register StackAddr = Handler.getStackAddress( 898 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 899 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 900 } else { 901 // For outgoing byval arguments, insert the implicit copy byval 902 // implies, such that writes in the callee do not modify the caller's 903 // value. 904 uint64_t MemSize = Flags.getByValSize(); 905 int64_t Offset = VA.getLocMemOffset(); 906 907 MachinePointerInfo DstMPO; 908 Register StackAddr = 909 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 910 911 MachinePointerInfo SrcMPO(Args[i].OrigValue); 912 if (!Args[i].OrigValue) { 913 // We still need to accurately track the stack address space if we 914 // don't know the underlying value. 915 const LLT PtrTy = MRI.getType(StackAddr); 916 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 917 } 918 919 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 920 inferAlignFromPtrInfo(MF, DstMPO)); 921 922 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 923 inferAlignFromPtrInfo(MF, SrcMPO)); 924 925 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 926 DstMPO, DstAlign, SrcMPO, SrcAlign, 927 MemSize, VA); 928 } 929 } else if (i == 0 && !ThisReturnRegs.empty() && 930 Handler.isIncomingArgumentHandler() && 931 isTypeIsValidForThisReturn(ValVT)) { 932 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 933 } else if (Handler.isIncomingArgumentHandler()) { 934 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 935 } else { 936 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 937 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 938 }); 939 } 940 941 // Finish the handling of indirect parameter passing when receiving 942 // the value (we are in the called function or the caller when receiving 943 // the return value). 944 if (VA.getLocInfo() == CCValAssign::Indirect && 945 Handler.isIncomingArgumentHandler()) { 946 Align Alignment = DL.getABITypeAlign(Args[i].Ty); 947 MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF); 948 949 // Since we are doing indirect parameter passing, we know that the value 950 // in the temporary register is not the value passed to the function, 951 // but rather a pointer to that value. Let's load that value into the 952 // virtual register where the parameter should go. 953 MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO, 954 Alignment); 955 956 IndirectParameterPassingHandled = true; 957 } 958 959 if (IndirectParameterPassingHandled) 960 break; 961 } 962 963 // Now that all pieces have been assigned, re-pack the register typed values 964 // into the original value typed registers. This is only necessary, when 965 // the value was passed in multiple registers, not indirectly. 966 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT && 967 !IndirectParameterPassingHandled) { 968 // Merge the split registers into the expected larger result vregs of 969 // the original call. 970 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 971 LocTy, Args[i].Flags[0]); 972 } 973 974 j += NumParts - 1; 975 } 976 for (auto &Fn : DelayedOutgoingRegAssignments) 977 Fn(); 978 979 return true; 980 } 981 982 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 983 ArrayRef<Register> VRegs, Register DemoteReg, 984 int FI) const { 985 MachineFunction &MF = MIRBuilder.getMF(); 986 MachineRegisterInfo &MRI = MF.getRegInfo(); 987 const DataLayout &DL = MF.getDataLayout(); 988 989 SmallVector<EVT, 4> SplitVTs; 990 SmallVector<uint64_t, 4> Offsets; 991 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 992 993 assert(VRegs.size() == SplitVTs.size()); 994 995 unsigned NumValues = SplitVTs.size(); 996 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 997 Type *RetPtrTy = 998 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); 999 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); 1000 1001 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 1002 1003 for (unsigned I = 0; I < NumValues; ++I) { 1004 Register Addr; 1005 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 1006 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1007 MRI.getType(VRegs[I]), 1008 commonAlignment(BaseAlign, Offsets[I])); 1009 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 1010 } 1011 } 1012 1013 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 1014 ArrayRef<Register> VRegs, 1015 Register DemoteReg) const { 1016 MachineFunction &MF = MIRBuilder.getMF(); 1017 MachineRegisterInfo &MRI = MF.getRegInfo(); 1018 const DataLayout &DL = MF.getDataLayout(); 1019 1020 SmallVector<EVT, 4> SplitVTs; 1021 SmallVector<uint64_t, 4> Offsets; 1022 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 1023 1024 assert(VRegs.size() == SplitVTs.size()); 1025 1026 unsigned NumValues = SplitVTs.size(); 1027 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 1028 unsigned AS = DL.getAllocaAddrSpace(); 1029 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL); 1030 1031 MachinePointerInfo PtrInfo(AS); 1032 1033 for (unsigned I = 0; I < NumValues; ++I) { 1034 Register Addr; 1035 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 1036 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 1037 MRI.getType(VRegs[I]), 1038 commonAlignment(BaseAlign, Offsets[I])); 1039 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 1040 } 1041 } 1042 1043 void CallLowering::insertSRetIncomingArgument( 1044 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 1045 MachineRegisterInfo &MRI, const DataLayout &DL) const { 1046 unsigned AS = DL.getAllocaAddrSpace(); 1047 DemoteReg = MRI.createGenericVirtualRegister( 1048 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 1049 1050 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 1051 1052 SmallVector<EVT, 1> ValueVTs; 1053 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 1054 1055 // NOTE: Assume that a pointer won't get split into more than one VT. 1056 assert(ValueVTs.size() == 1); 1057 1058 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 1059 ArgInfo::NoArgIndex); 1060 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 1061 DemoteArg.Flags[0].setSRet(); 1062 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 1063 } 1064 1065 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 1066 const CallBase &CB, 1067 CallLoweringInfo &Info) const { 1068 const DataLayout &DL = MIRBuilder.getDataLayout(); 1069 Type *RetTy = CB.getType(); 1070 unsigned AS = DL.getAllocaAddrSpace(); 1071 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1072 1073 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 1074 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 1075 1076 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 1077 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 1078 ArgInfo::NoArgIndex); 1079 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 1080 DemoteArg.Flags[0].setSRet(); 1081 1082 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 1083 Info.DemoteStackIndex = FI; 1084 Info.DemoteRegister = DemoteReg; 1085 } 1086 1087 bool CallLowering::checkReturn(CCState &CCInfo, 1088 SmallVectorImpl<BaseArgInfo> &Outs, 1089 CCAssignFn *Fn) const { 1090 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 1091 MVT VT = MVT::getVT(Outs[I].Ty); 1092 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 1093 return false; 1094 } 1095 return true; 1096 } 1097 1098 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 1099 AttributeList Attrs, 1100 SmallVectorImpl<BaseArgInfo> &Outs, 1101 const DataLayout &DL) const { 1102 LLVMContext &Context = RetTy->getContext(); 1103 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1104 1105 SmallVector<EVT, 4> SplitVTs; 1106 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 1107 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 1108 1109 for (EVT VT : SplitVTs) { 1110 unsigned NumParts = 1111 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 1112 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 1113 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 1114 1115 for (unsigned I = 0; I < NumParts; ++I) { 1116 Outs.emplace_back(PartTy, Flags); 1117 } 1118 } 1119 } 1120 1121 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 1122 const auto &F = MF.getFunction(); 1123 Type *ReturnType = F.getReturnType(); 1124 CallingConv::ID CallConv = F.getCallingConv(); 1125 1126 SmallVector<BaseArgInfo, 4> SplitArgs; 1127 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 1128 MF.getDataLayout()); 1129 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 1130 } 1131 1132 bool CallLowering::parametersInCSRMatch( 1133 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 1134 const SmallVectorImpl<CCValAssign> &OutLocs, 1135 const SmallVectorImpl<ArgInfo> &OutArgs) const { 1136 for (unsigned i = 0; i < OutLocs.size(); ++i) { 1137 const auto &ArgLoc = OutLocs[i]; 1138 // If it's not a register, it's fine. 1139 if (!ArgLoc.isRegLoc()) 1140 continue; 1141 1142 MCRegister PhysReg = ArgLoc.getLocReg(); 1143 1144 // Only look at callee-saved registers. 1145 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 1146 continue; 1147 1148 LLVM_DEBUG( 1149 dbgs() 1150 << "... Call has an argument passed in a callee-saved register.\n"); 1151 1152 // Check if it was copied from. 1153 const ArgInfo &OutInfo = OutArgs[i]; 1154 1155 if (OutInfo.Regs.size() > 1) { 1156 LLVM_DEBUG( 1157 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 1158 return false; 1159 } 1160 1161 // Check if we copy the register, walking through copies from virtual 1162 // registers. Note that getDefIgnoringCopies does not ignore copies from 1163 // physical registers. 1164 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 1165 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 1166 LLVM_DEBUG( 1167 dbgs() 1168 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1169 return false; 1170 } 1171 1172 // Got a copy. Verify that it's the same as the register we want. 1173 Register CopyRHS = RegDef->getOperand(1).getReg(); 1174 if (CopyRHS != PhysReg) { 1175 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1176 "VReg, cannot tail call.\n"); 1177 return false; 1178 } 1179 } 1180 1181 return true; 1182 } 1183 1184 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1185 MachineFunction &MF, 1186 SmallVectorImpl<ArgInfo> &InArgs, 1187 ValueAssigner &CalleeAssigner, 1188 ValueAssigner &CallerAssigner) const { 1189 const Function &F = MF.getFunction(); 1190 CallingConv::ID CalleeCC = Info.CallConv; 1191 CallingConv::ID CallerCC = F.getCallingConv(); 1192 1193 if (CallerCC == CalleeCC) 1194 return true; 1195 1196 SmallVector<CCValAssign, 16> ArgLocs1; 1197 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1198 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1199 return false; 1200 1201 SmallVector<CCValAssign, 16> ArgLocs2; 1202 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1203 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1204 return false; 1205 1206 // We need the argument locations to match up exactly. If there's more in 1207 // one than the other, then we are done. 1208 if (ArgLocs1.size() != ArgLocs2.size()) 1209 return false; 1210 1211 // Make sure that each location is passed in exactly the same way. 1212 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1213 const CCValAssign &Loc1 = ArgLocs1[i]; 1214 const CCValAssign &Loc2 = ArgLocs2[i]; 1215 1216 // We need both of them to be the same. So if one is a register and one 1217 // isn't, we're done. 1218 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1219 return false; 1220 1221 if (Loc1.isRegLoc()) { 1222 // If they don't have the same register location, we're done. 1223 if (Loc1.getLocReg() != Loc2.getLocReg()) 1224 return false; 1225 1226 // They matched, so we can move to the next ArgLoc. 1227 continue; 1228 } 1229 1230 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1231 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1232 return false; 1233 } 1234 1235 return true; 1236 } 1237 1238 LLT CallLowering::ValueHandler::getStackValueStoreType( 1239 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1240 const MVT ValVT = VA.getValVT(); 1241 if (ValVT != MVT::iPTR) { 1242 LLT ValTy(ValVT); 1243 1244 // We lost the pointeriness going through CCValAssign, so try to restore it 1245 // based on the flags. 1246 if (Flags.isPointer()) { 1247 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1248 ValTy.getScalarSizeInBits()); 1249 if (ValVT.isVector()) 1250 return LLT::vector(ValTy.getElementCount(), PtrTy); 1251 return PtrTy; 1252 } 1253 1254 return ValTy; 1255 } 1256 1257 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1258 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1259 } 1260 1261 void CallLowering::ValueHandler::copyArgumentMemory( 1262 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1263 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1264 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1265 CCValAssign &VA) const { 1266 MachineFunction &MF = MIRBuilder.getMF(); 1267 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1268 SrcPtrInfo, 1269 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1270 SrcAlign); 1271 1272 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1273 DstPtrInfo, 1274 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1275 MemSize, DstAlign); 1276 1277 const LLT PtrTy = MRI.getType(DstPtr); 1278 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1279 1280 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1281 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1282 } 1283 1284 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1285 const CCValAssign &VA, 1286 unsigned MaxSizeBits) { 1287 LLT LocTy{VA.getLocVT()}; 1288 LLT ValTy{VA.getValVT()}; 1289 1290 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1291 return ValReg; 1292 1293 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1294 if (MaxSizeBits <= ValTy.getSizeInBits()) 1295 return ValReg; 1296 LocTy = LLT::scalar(MaxSizeBits); 1297 } 1298 1299 const LLT ValRegTy = MRI.getType(ValReg); 1300 if (ValRegTy.isPointer()) { 1301 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1302 // we have to cast to do the extension. 1303 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1304 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1305 } 1306 1307 switch (VA.getLocInfo()) { 1308 default: break; 1309 case CCValAssign::Full: 1310 case CCValAssign::BCvt: 1311 // FIXME: bitconverting between vector types may or may not be a 1312 // nop in big-endian situations. 1313 return ValReg; 1314 case CCValAssign::AExt: { 1315 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1316 return MIB.getReg(0); 1317 } 1318 case CCValAssign::SExt: { 1319 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1320 MIRBuilder.buildSExt(NewReg, ValReg); 1321 return NewReg; 1322 } 1323 case CCValAssign::ZExt: { 1324 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1325 MIRBuilder.buildZExt(NewReg, ValReg); 1326 return NewReg; 1327 } 1328 } 1329 llvm_unreachable("unable to extend register"); 1330 } 1331 1332 void CallLowering::ValueAssigner::anchor() {} 1333 1334 Register CallLowering::IncomingValueHandler::buildExtensionHint( 1335 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { 1336 switch (VA.getLocInfo()) { 1337 case CCValAssign::LocInfo::ZExt: { 1338 return MIRBuilder 1339 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1340 NarrowTy.getScalarSizeInBits()) 1341 .getReg(0); 1342 } 1343 case CCValAssign::LocInfo::SExt: { 1344 return MIRBuilder 1345 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1346 NarrowTy.getScalarSizeInBits()) 1347 .getReg(0); 1348 break; 1349 } 1350 default: 1351 return SrcReg; 1352 } 1353 } 1354 1355 /// Check if we can use a basic COPY instruction between the two types. 1356 /// 1357 /// We're currently building on top of the infrastructure using MVT, which loses 1358 /// pointer information in the CCValAssign. We accept copies from physical 1359 /// registers that have been reported as integers if it's to an equivalent sized 1360 /// pointer LLT. 1361 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1362 if (SrcTy == DstTy) 1363 return true; 1364 1365 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1366 return false; 1367 1368 SrcTy = SrcTy.getScalarType(); 1369 DstTy = DstTy.getScalarType(); 1370 1371 return (SrcTy.isPointer() && DstTy.isScalar()) || 1372 (DstTy.isPointer() && SrcTy.isScalar()); 1373 } 1374 1375 void CallLowering::IncomingValueHandler::assignValueToReg( 1376 Register ValVReg, Register PhysReg, const CCValAssign &VA) { 1377 const MVT LocVT = VA.getLocVT(); 1378 const LLT LocTy(LocVT); 1379 const LLT RegTy = MRI.getType(ValVReg); 1380 1381 if (isCopyCompatibleType(RegTy, LocTy)) { 1382 MIRBuilder.buildCopy(ValVReg, PhysReg); 1383 return; 1384 } 1385 1386 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1387 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1388 MIRBuilder.buildTrunc(ValVReg, Hint); 1389 } 1390