xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 3e1ebd77e4e9a772e4f06f12d19c64860fb1f070)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Target/TargetMachine.h"
28 
29 #define DEBUG_TYPE "call-lowering"
30 
31 using namespace llvm;
32 
33 void CallLowering::anchor() {}
34 
35 /// Helper function which updates \p Flags when \p AttrFn returns true.
36 static void
37 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
38                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
39   // TODO: There are missing flags. Add them here.
40   if (AttrFn(Attribute::SExt))
41     Flags.setSExt();
42   if (AttrFn(Attribute::ZExt))
43     Flags.setZExt();
44   if (AttrFn(Attribute::InReg))
45     Flags.setInReg();
46   if (AttrFn(Attribute::StructRet))
47     Flags.setSRet();
48   if (AttrFn(Attribute::Nest))
49     Flags.setNest();
50   if (AttrFn(Attribute::ByVal))
51     Flags.setByVal();
52   if (AttrFn(Attribute::ByRef))
53     Flags.setByRef();
54   if (AttrFn(Attribute::Preallocated))
55     Flags.setPreallocated();
56   if (AttrFn(Attribute::InAlloca))
57     Flags.setInAlloca();
58   if (AttrFn(Attribute::Returned))
59     Flags.setReturned();
60   if (AttrFn(Attribute::SwiftSelf))
61     Flags.setSwiftSelf();
62   if (AttrFn(Attribute::SwiftAsync))
63     Flags.setSwiftAsync();
64   if (AttrFn(Attribute::SwiftError))
65     Flags.setSwiftError();
66 }
67 
68 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
69                                                      unsigned ArgIdx) const {
70   ISD::ArgFlagsTy Flags;
71   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
72     return Call.paramHasAttr(ArgIdx, Attr);
73   });
74   return Flags;
75 }
76 
77 ISD::ArgFlagsTy
78 CallLowering::getAttributesForReturn(const CallBase &Call) const {
79   ISD::ArgFlagsTy Flags;
80   addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
81     return Call.hasRetAttr(Attr);
82   });
83   return Flags;
84 }
85 
86 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
87                                              const AttributeList &Attrs,
88                                              unsigned OpIdx) const {
89   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
90     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
91   });
92 }
93 
94 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
95                              ArrayRef<Register> ResRegs,
96                              ArrayRef<ArrayRef<Register>> ArgRegs,
97                              Register SwiftErrorVReg,
98                              std::optional<PtrAuthInfo> PAI,
99                              Register ConvergenceCtrlToken,
100                              std::function<unsigned()> GetCalleeReg) const {
101   CallLoweringInfo Info;
102   const DataLayout &DL = MIRBuilder.getDataLayout();
103   MachineFunction &MF = MIRBuilder.getMF();
104   MachineRegisterInfo &MRI = MF.getRegInfo();
105   bool CanBeTailCalled = CB.isTailCall() &&
106                          isInTailCallPosition(CB, MF.getTarget()) &&
107                          (MF.getFunction()
108                               .getFnAttribute("disable-tail-calls")
109                               .getValueAsString() != "true");
110 
111   CallingConv::ID CallConv = CB.getCallingConv();
112   Type *RetTy = CB.getType();
113   bool IsVarArg = CB.getFunctionType()->isVarArg();
114 
115   SmallVector<BaseArgInfo, 4> SplitArgs;
116   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
117   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
118 
119   Info.IsConvergent = CB.isConvergent();
120 
121   if (!Info.CanLowerReturn) {
122     // Callee requires sret demotion.
123     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
124 
125     // The sret demotion isn't compatible with tail-calls, since the sret
126     // argument points into the caller's stack frame.
127     CanBeTailCalled = false;
128   }
129 
130   // First step is to marshall all the function's parameters into the correct
131   // physregs and memory locations. Gather the sequence of argument types that
132   // we'll pass to the assigner function.
133   unsigned i = 0;
134   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
135   for (const auto &Arg : CB.args()) {
136     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
137                     i < NumFixedArgs};
138     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
139 
140     // If we have an explicit sret argument that is an Instruction, (i.e., it
141     // might point to function-local memory), we can't meaningfully tail-call.
142     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
143       CanBeTailCalled = false;
144 
145     Info.OrigArgs.push_back(OrigArg);
146     ++i;
147   }
148 
149   // Try looking through a bitcast from one function type to another.
150   // Commonly happens with calls to objc_msgSend().
151   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
152   if (const Function *F = dyn_cast<Function>(CalleeV)) {
153     if (F->hasFnAttribute(Attribute::NonLazyBind)) {
154       LLT Ty = getLLTForType(*F->getType(), DL);
155       Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0);
156       Info.Callee = MachineOperand::CreateReg(Reg, false);
157     } else {
158       Info.Callee = MachineOperand::CreateGA(F, 0);
159     }
160   } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
161     // IR IFuncs and Aliases can't be forward declared (only defined), so the
162     // callee must be in the same TU and therefore we can direct-call it without
163     // worrying about it being out of range.
164     Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
165   } else
166     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
167 
168   Register ReturnHintAlignReg;
169   Align ReturnHintAlign;
170 
171   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
172 
173   if (!Info.OrigRet.Ty->isVoidTy()) {
174     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
175 
176     if (MaybeAlign Alignment = CB.getRetAlign()) {
177       if (*Alignment > Align(1)) {
178         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
179         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
180         ReturnHintAlign = *Alignment;
181       }
182     }
183   }
184 
185   auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
186   if (Bundle && CB.isIndirectCall()) {
187     Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
188     assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
189   }
190 
191   Info.CB = &CB;
192   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
193   Info.CallConv = CallConv;
194   Info.SwiftErrorVReg = SwiftErrorVReg;
195   Info.PAI = PAI;
196   Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
197   Info.IsMustTailCall = CB.isMustTailCall();
198   Info.IsTailCall = CanBeTailCalled;
199   Info.IsVarArg = IsVarArg;
200   if (!lowerCall(MIRBuilder, Info))
201     return false;
202 
203   if (ReturnHintAlignReg && !Info.LoweredTailCall) {
204     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
205                                 ReturnHintAlign);
206   }
207 
208   return true;
209 }
210 
211 template <typename FuncInfoTy>
212 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
213                                const DataLayout &DL,
214                                const FuncInfoTy &FuncInfo) const {
215   auto &Flags = Arg.Flags[0];
216   const AttributeList &Attrs = FuncInfo.getAttributes();
217   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
218 
219   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
220   if (PtrTy) {
221     Flags.setPointer();
222     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
223   }
224 
225   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
226   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
227       Flags.isByRef()) {
228     assert(OpIdx >= AttributeList::FirstArgIndex);
229     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
230 
231     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
232     if (!ElementTy)
233       ElementTy = FuncInfo.getParamByRefType(ParamIdx);
234     if (!ElementTy)
235       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
236     if (!ElementTy)
237       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
238 
239     assert(ElementTy && "Must have byval, inalloca or preallocated type");
240 
241     uint64_t MemSize = DL.getTypeAllocSize(ElementTy);
242     if (Flags.isByRef())
243       Flags.setByRefSize(MemSize);
244     else
245       Flags.setByValSize(MemSize);
246 
247     // For ByVal, alignment should be passed from FE.  BE will guess if
248     // this info is not there but there are cases it cannot get right.
249     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
250       MemAlign = *ParamAlign;
251     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
252       MemAlign = *ParamAlign;
253     else
254       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
255   } else if (OpIdx >= AttributeList::FirstArgIndex) {
256     if (auto ParamAlign =
257             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
258       MemAlign = *ParamAlign;
259   }
260   Flags.setMemAlign(MemAlign);
261   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
262 
263   // Don't try to use the returned attribute if the argument is marked as
264   // swiftself, since it won't be passed in x0.
265   if (Flags.isSwiftSelf())
266     Flags.setReturned(false);
267 }
268 
269 template void
270 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
271                                     const DataLayout &DL,
272                                     const Function &FuncInfo) const;
273 
274 template void
275 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
276                                     const DataLayout &DL,
277                                     const CallBase &FuncInfo) const;
278 
279 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
280                                      SmallVectorImpl<ArgInfo> &SplitArgs,
281                                      const DataLayout &DL,
282                                      CallingConv::ID CallConv,
283                                      SmallVectorImpl<uint64_t> *Offsets) const {
284   LLVMContext &Ctx = OrigArg.Ty->getContext();
285 
286   SmallVector<EVT, 4> SplitVTs;
287   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
288 
289   if (SplitVTs.size() == 0)
290     return;
291 
292   if (SplitVTs.size() == 1) {
293     // No splitting to do, but we want to replace the original type (e.g. [1 x
294     // double] -> double).
295     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
296                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
297                            OrigArg.IsFixed, OrigArg.OrigValue);
298     return;
299   }
300 
301   // Create one ArgInfo for each virtual register in the original ArgInfo.
302   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
303 
304   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
305       OrigArg.Ty, CallConv, false, DL);
306   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
307     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
308     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
309                            OrigArg.Flags[0], OrigArg.IsFixed);
310     if (NeedsRegBlock)
311       SplitArgs.back().Flags[0].setInConsecutiveRegs();
312   }
313 
314   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
315 }
316 
317 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
318 static MachineInstrBuilder
319 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
320                             ArrayRef<Register> SrcRegs) {
321   MachineRegisterInfo &MRI = *B.getMRI();
322   LLT LLTy = MRI.getType(DstRegs[0]);
323   LLT PartLLT = MRI.getType(SrcRegs[0]);
324 
325   // Deal with v3s16 split into v2s16
326   LLT LCMTy = getCoverTy(LLTy, PartLLT);
327   if (LCMTy == LLTy) {
328     // Common case where no padding is needed.
329     assert(DstRegs.size() == 1);
330     return B.buildConcatVectors(DstRegs[0], SrcRegs);
331   }
332 
333   // We need to create an unmerge to the result registers, which may require
334   // widening the original value.
335   Register UnmergeSrcReg;
336   if (LCMTy != PartLLT) {
337     assert(DstRegs.size() == 1);
338     return B.buildDeleteTrailingVectorElements(
339         DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
340   } else {
341     // We don't need to widen anything if we're extracting a scalar which was
342     // promoted to a vector e.g. s8 -> v4s8 -> s8
343     assert(SrcRegs.size() == 1);
344     UnmergeSrcReg = SrcRegs[0];
345   }
346 
347   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
348 
349   SmallVector<Register, 8> PadDstRegs(NumDst);
350   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
351 
352   // Create the excess dead defs for the unmerge.
353   for (int I = DstRegs.size(); I != NumDst; ++I)
354     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
355 
356   if (PadDstRegs.size() == 1)
357     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
358   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
359 }
360 
361 /// Create a sequence of instructions to combine pieces split into register
362 /// typed values to the original IR value. \p OrigRegs contains the destination
363 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
364 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
365 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
366                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
367                               const ISD::ArgFlagsTy Flags) {
368   MachineRegisterInfo &MRI = *B.getMRI();
369 
370   if (PartLLT == LLTy) {
371     // We should have avoided introducing a new virtual register, and just
372     // directly assigned here.
373     assert(OrigRegs[0] == Regs[0]);
374     return;
375   }
376 
377   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
378       Regs.size() == 1) {
379     B.buildBitcast(OrigRegs[0], Regs[0]);
380     return;
381   }
382 
383   // A vector PartLLT needs extending to LLTy's element size.
384   // E.g. <2 x s64> = G_SEXT <2 x s32>.
385   if (PartLLT.isVector() == LLTy.isVector() &&
386       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
387       (!PartLLT.isVector() ||
388        PartLLT.getElementCount() == LLTy.getElementCount()) &&
389       OrigRegs.size() == 1 && Regs.size() == 1) {
390     Register SrcReg = Regs[0];
391 
392     LLT LocTy = MRI.getType(SrcReg);
393 
394     if (Flags.isSExt()) {
395       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
396                    .getReg(0);
397     } else if (Flags.isZExt()) {
398       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
399                    .getReg(0);
400     }
401 
402     // Sometimes pointers are passed zero extended.
403     LLT OrigTy = MRI.getType(OrigRegs[0]);
404     if (OrigTy.isPointer()) {
405       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
406       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
407       return;
408     }
409 
410     B.buildTrunc(OrigRegs[0], SrcReg);
411     return;
412   }
413 
414   if (!LLTy.isVector() && !PartLLT.isVector()) {
415     assert(OrigRegs.size() == 1);
416     LLT OrigTy = MRI.getType(OrigRegs[0]);
417 
418     unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
419     if (SrcSize == OrigTy.getSizeInBits())
420       B.buildMergeValues(OrigRegs[0], Regs);
421     else {
422       auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
423       B.buildTrunc(OrigRegs[0], Widened);
424     }
425 
426     return;
427   }
428 
429   if (PartLLT.isVector()) {
430     assert(OrigRegs.size() == 1);
431     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
432 
433     // If PartLLT is a mismatched vector in both number of elements and element
434     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
435     // have the same elt type, i.e. v4s32.
436     // TODO: Extend this coersion to element multiples other than just 2.
437     if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
438         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
439         Regs.size() == 1) {
440       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
441                       .changeElementCount(PartLLT.getElementCount() * 2);
442       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
443       PartLLT = NewTy;
444     }
445 
446     if (LLTy.getScalarType() == PartLLT.getElementType()) {
447       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
448     } else {
449       unsigned I = 0;
450       LLT GCDTy = getGCDType(LLTy, PartLLT);
451 
452       // We are both splitting a vector, and bitcasting its element types. Cast
453       // the source pieces into the appropriate number of pieces with the result
454       // element type.
455       for (Register SrcReg : CastRegs)
456         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
457       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
458     }
459 
460     return;
461   }
462 
463   assert(LLTy.isVector() && !PartLLT.isVector());
464 
465   LLT DstEltTy = LLTy.getElementType();
466 
467   // Pointer information was discarded. We'll need to coerce some register types
468   // to avoid violating type constraints.
469   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
470 
471   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
472 
473   if (DstEltTy == PartLLT) {
474     // Vector was trivially scalarized.
475 
476     if (RealDstEltTy.isPointer()) {
477       for (Register Reg : Regs)
478         MRI.setType(Reg, RealDstEltTy);
479     }
480 
481     B.buildBuildVector(OrigRegs[0], Regs);
482   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
483     // Deal with vector with 64-bit elements decomposed to 32-bit
484     // registers. Need to create intermediate 64-bit elements.
485     SmallVector<Register, 8> EltMerges;
486     int PartsPerElt =
487         divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits());
488     LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt);
489 
490     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
491       auto Merge =
492           B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt));
493       if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits())
494         Merge = B.buildTrunc(RealDstEltTy, Merge);
495       // Fix the type in case this is really a vector of pointers.
496       MRI.setType(Merge.getReg(0), RealDstEltTy);
497       EltMerges.push_back(Merge.getReg(0));
498       Regs = Regs.drop_front(PartsPerElt);
499     }
500 
501     B.buildBuildVector(OrigRegs[0], EltMerges);
502   } else {
503     // Vector was split, and elements promoted to a wider type.
504     // FIXME: Should handle floating point promotions.
505     unsigned NumElts = LLTy.getNumElements();
506     LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
507 
508     Register BuildVec;
509     if (NumElts == Regs.size())
510       BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
511     else {
512       // Vector elements are packed in the inputs.
513       // e.g. we have a <4 x s16> but 2 x s32 in regs.
514       assert(NumElts > Regs.size());
515       LLT SrcEltTy = MRI.getType(Regs[0]);
516 
517       LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
518 
519       // Input registers contain packed elements.
520       // Determine how many elements per reg.
521       assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
522       unsigned EltPerReg =
523           (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
524 
525       SmallVector<Register, 0> BVRegs;
526       BVRegs.reserve(Regs.size() * EltPerReg);
527       for (Register R : Regs) {
528         auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
529         for (unsigned K = 0; K < EltPerReg; ++K)
530           BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
531       }
532 
533       // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
534       // for a <3 x s16> vector. We should have less than EltPerReg extra items.
535       if (BVRegs.size() > NumElts) {
536         assert((BVRegs.size() - NumElts) < EltPerReg);
537         BVRegs.truncate(NumElts);
538       }
539       BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
540     }
541     B.buildTrunc(OrigRegs[0], BuildVec);
542   }
543 }
544 
545 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
546 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
547 /// contain the type of scalar value extension if necessary.
548 ///
549 /// This is used for outgoing values (vregs to physregs)
550 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
551                             Register SrcReg, LLT SrcTy, LLT PartTy,
552                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
553   // We could just insert a regular copy, but this is unreachable at the moment.
554   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
555 
556   const TypeSize PartSize = PartTy.getSizeInBits();
557 
558   if (PartTy.isVector() == SrcTy.isVector() &&
559       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
560     assert(DstRegs.size() == 1);
561     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
562     return;
563   }
564 
565   if (SrcTy.isVector() && !PartTy.isVector() &&
566       TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
567     // Vector was scalarized, and the elements extended.
568     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
569     for (int i = 0, e = DstRegs.size(); i != e; ++i)
570       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
571     return;
572   }
573 
574   if (SrcTy.isVector() && PartTy.isVector() &&
575       PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
576       ElementCount::isKnownLT(SrcTy.getElementCount(),
577                               PartTy.getElementCount())) {
578     // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
579     Register DstReg = DstRegs.front();
580     B.buildPadVectorWithUndefElements(DstReg, SrcReg);
581     return;
582   }
583 
584   LLT GCDTy = getGCDType(SrcTy, PartTy);
585   if (GCDTy == PartTy) {
586     // If this already evenly divisible, we can create a simple unmerge.
587     B.buildUnmerge(DstRegs, SrcReg);
588     return;
589   }
590 
591   if (SrcTy.isVector() && !PartTy.isVector() &&
592       SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) {
593     LLT ExtTy =
594         LLT::vector(SrcTy.getElementCount(),
595                     LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() /
596                                 SrcTy.getNumElements()));
597     auto Ext = B.buildAnyExt(ExtTy, SrcReg);
598     B.buildUnmerge(DstRegs, Ext);
599     return;
600   }
601 
602   MachineRegisterInfo &MRI = *B.getMRI();
603   LLT DstTy = MRI.getType(DstRegs[0]);
604   LLT LCMTy = getCoverTy(SrcTy, PartTy);
605 
606   if (PartTy.isVector() && LCMTy == PartTy) {
607     assert(DstRegs.size() == 1);
608     B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
609     return;
610   }
611 
612   const unsigned DstSize = DstTy.getSizeInBits();
613   const unsigned SrcSize = SrcTy.getSizeInBits();
614   unsigned CoveringSize = LCMTy.getSizeInBits();
615 
616   Register UnmergeSrc = SrcReg;
617 
618   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
619     // For scalars, it's common to be able to use a simple extension.
620     if (SrcTy.isScalar() && DstTy.isScalar()) {
621       CoveringSize = alignTo(SrcSize, DstSize);
622       LLT CoverTy = LLT::scalar(CoveringSize);
623       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
624     } else {
625       // Widen to the common type.
626       // FIXME: This should respect the extend type
627       Register Undef = B.buildUndef(SrcTy).getReg(0);
628       SmallVector<Register, 8> MergeParts(1, SrcReg);
629       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
630         MergeParts.push_back(Undef);
631       UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
632     }
633   }
634 
635   if (LCMTy.isVector() && CoveringSize != SrcSize)
636     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
637 
638   B.buildUnmerge(DstRegs, UnmergeSrc);
639 }
640 
641 bool CallLowering::determineAndHandleAssignments(
642     ValueHandler &Handler, ValueAssigner &Assigner,
643     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
644     CallingConv::ID CallConv, bool IsVarArg,
645     ArrayRef<Register> ThisReturnRegs) const {
646   MachineFunction &MF = MIRBuilder.getMF();
647   const Function &F = MF.getFunction();
648   SmallVector<CCValAssign, 16> ArgLocs;
649 
650   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
651   if (!determineAssignments(Assigner, Args, CCInfo))
652     return false;
653 
654   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
655                            ThisReturnRegs);
656 }
657 
658 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
659   if (Flags.isSExt())
660     return TargetOpcode::G_SEXT;
661   if (Flags.isZExt())
662     return TargetOpcode::G_ZEXT;
663   return TargetOpcode::G_ANYEXT;
664 }
665 
666 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
667                                         SmallVectorImpl<ArgInfo> &Args,
668                                         CCState &CCInfo) const {
669   LLVMContext &Ctx = CCInfo.getContext();
670   const CallingConv::ID CallConv = CCInfo.getCallingConv();
671 
672   unsigned NumArgs = Args.size();
673   for (unsigned i = 0; i != NumArgs; ++i) {
674     EVT CurVT = EVT::getEVT(Args[i].Ty);
675 
676     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
677 
678     // If we need to split the type over multiple regs, check it's a scenario
679     // we currently support.
680     unsigned NumParts =
681         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
682 
683     if (NumParts == 1) {
684       // Try to use the register type if we couldn't assign the VT.
685       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
686                              Args[i].Flags[0], CCInfo))
687         return false;
688       continue;
689     }
690 
691     // For incoming arguments (physregs to vregs), we could have values in
692     // physregs (or memlocs) which we want to extract and copy to vregs.
693     // During this, we might have to deal with the LLT being split across
694     // multiple regs, so we have to record this information for later.
695     //
696     // If we have outgoing args, then we have the opposite case. We have a
697     // vreg with an LLT which we want to assign to a physical location, and
698     // we might have to record that the value has to be split later.
699 
700     // We're handling an incoming arg which is split over multiple regs.
701     // E.g. passing an s128 on AArch64.
702     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
703     Args[i].Flags.clear();
704 
705     for (unsigned Part = 0; Part < NumParts; ++Part) {
706       ISD::ArgFlagsTy Flags = OrigFlags;
707       if (Part == 0) {
708         Flags.setSplit();
709       } else {
710         Flags.setOrigAlign(Align(1));
711         if (Part == NumParts - 1)
712           Flags.setSplitEnd();
713       }
714 
715       Args[i].Flags.push_back(Flags);
716       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
717                              Args[i].Flags[Part], CCInfo)) {
718         // Still couldn't assign this smaller part type for some reason.
719         return false;
720       }
721     }
722   }
723 
724   return true;
725 }
726 
727 bool CallLowering::handleAssignments(ValueHandler &Handler,
728                                      SmallVectorImpl<ArgInfo> &Args,
729                                      CCState &CCInfo,
730                                      SmallVectorImpl<CCValAssign> &ArgLocs,
731                                      MachineIRBuilder &MIRBuilder,
732                                      ArrayRef<Register> ThisReturnRegs) const {
733   MachineFunction &MF = MIRBuilder.getMF();
734   MachineRegisterInfo &MRI = MF.getRegInfo();
735   const Function &F = MF.getFunction();
736   const DataLayout &DL = F.getParent()->getDataLayout();
737 
738   const unsigned NumArgs = Args.size();
739 
740   // Stores thunks for outgoing register assignments. This is used so we delay
741   // generating register copies until mem loc assignments are done. We do this
742   // so that if the target is using the delayed stack protector feature, we can
743   // find the split point of the block accurately. E.g. if we have:
744   // G_STORE %val, %memloc
745   // $x0 = COPY %foo
746   // $x1 = COPY %bar
747   // CALL func
748   // ... then the split point for the block will correctly be at, and including,
749   // the copy to $x0. If instead the G_STORE instruction immediately precedes
750   // the CALL, then we'd prematurely choose the CALL as the split point, thus
751   // generating a split block with a CALL that uses undefined physregs.
752   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
753 
754   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
755     assert(j < ArgLocs.size() && "Skipped too many arg locs");
756     CCValAssign &VA = ArgLocs[j];
757     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
758 
759     if (VA.needsCustom()) {
760       std::function<void()> Thunk;
761       unsigned NumArgRegs = Handler.assignCustomValue(
762           Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
763       if (Thunk)
764         DelayedOutgoingRegAssignments.emplace_back(Thunk);
765       if (!NumArgRegs)
766         return false;
767       j += (NumArgRegs - 1);
768       continue;
769     }
770 
771     auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace();
772 
773     const MVT ValVT = VA.getValVT();
774     const MVT LocVT = VA.getLocVT();
775 
776     const LLT LocTy(LocVT);
777     const LLT ValTy(ValVT);
778     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
779     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
780     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
781     const LLT PointerTy = LLT::pointer(
782         AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace));
783 
784     // Expected to be multiple regs for a single incoming arg.
785     // There should be Regs.size() ArgLocs per argument.
786     // This should be the same as getNumRegistersForCallingConv
787     const unsigned NumParts = Args[i].Flags.size();
788 
789     // Now split the registers into the assigned types.
790     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
791 
792     if (NumParts != 1 || NewLLT != OrigTy) {
793       // If we can't directly assign the register, we need one or more
794       // intermediate values.
795       Args[i].Regs.resize(NumParts);
796 
797       // When we have indirect parameter passing we are receiving a pointer,
798       // that points to the actual value, so we need one "temporary" pointer.
799       if (VA.getLocInfo() == CCValAssign::Indirect) {
800         if (Handler.isIncomingArgumentHandler())
801           Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy);
802       } else {
803         // For each split register, create and assign a vreg that will store
804         // the incoming component of the larger value. These will later be
805         // merged to form the final vreg.
806         for (unsigned Part = 0; Part < NumParts; ++Part)
807           Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
808       }
809     }
810 
811     assert((j + (NumParts - 1)) < ArgLocs.size() &&
812            "Too many regs for number of args");
813 
814     // Coerce into outgoing value types before register assignment.
815     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy &&
816         VA.getLocInfo() != CCValAssign::Indirect) {
817       assert(Args[i].OrigRegs.size() == 1);
818       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
819                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
820     }
821 
822     bool IndirectParameterPassingHandled = false;
823     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
824     for (unsigned Part = 0; Part < NumParts; ++Part) {
825       assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) &&
826              "Only the first parameter should be processed when "
827              "handling indirect passing!");
828       Register ArgReg = Args[i].Regs[Part];
829       // There should be Regs.size() ArgLocs per argument.
830       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
831       CCValAssign &VA = ArgLocs[j + Idx];
832       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
833 
834       // We found an indirect parameter passing, and we have an
835       // OutgoingValueHandler as our handler (so we are at the call site or the
836       // return value). In this case, start the construction of the following
837       // GMIR, that is responsible for the preparation of indirect parameter
838       // passing:
839       //
840       // %1(indirectly passed type) = The value to pass
841       // %3(pointer) = G_FRAME_INDEX %stack.0
842       // G_STORE %1, %3 :: (store (s128), align 8)
843       //
844       // After this GMIR, the remaining part of the loop body will decide how
845       // to get the value to the caller and we break out of the loop.
846       if (VA.getLocInfo() == CCValAssign::Indirect &&
847           !Handler.isIncomingArgumentHandler()) {
848         Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty);
849         MachineFrameInfo &MFI = MF.getFrameInfo();
850         // Get some space on the stack for the value, so later we can pass it
851         // as a reference.
852         int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(),
853                                              AlignmentForStored, false);
854         Register PointerToStackReg =
855             MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0);
856         MachinePointerInfo StackPointerMPO =
857             MachinePointerInfo::getFixedStack(MF, FrameIdx);
858         // Store the value in the previously created stack space.
859         MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
860                               StackPointerMPO,
861                               inferAlignFromPtrInfo(MF, StackPointerMPO));
862 
863         ArgReg = PointerToStackReg;
864         IndirectParameterPassingHandled = true;
865       }
866 
867       if (VA.isMemLoc() && !Flags.isByVal()) {
868         // Individual pieces may have been spilled to the stack and others
869         // passed in registers.
870 
871         // TODO: The memory size may be larger than the value we need to
872         // store. We may need to adjust the offset for big endian targets.
873         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
874 
875         MachinePointerInfo MPO;
876         Register StackAddr =
877             Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect
878                                         ? PointerTy.getSizeInBytes()
879                                         : MemTy.getSizeInBytes(),
880                                     VA.getLocMemOffset(), MPO, Flags);
881 
882         // Finish the handling of indirect passing from the passers
883         // (OutgoingParameterHandler) side.
884         // This branch is needed, so the pointer to the value is loaded onto the
885         // stack.
886         if (VA.getLocInfo() == CCValAssign::Indirect)
887           Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA);
888         else
889           Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
890       } else if (VA.isMemLoc() && Flags.isByVal()) {
891         assert(Args[i].Regs.size() == 1 &&
892                "didn't expect split byval pointer");
893 
894         if (Handler.isIncomingArgumentHandler()) {
895           // We just need to copy the frame index value to the pointer.
896           MachinePointerInfo MPO;
897           Register StackAddr = Handler.getStackAddress(
898               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
899           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
900         } else {
901           // For outgoing byval arguments, insert the implicit copy byval
902           // implies, such that writes in the callee do not modify the caller's
903           // value.
904           uint64_t MemSize = Flags.getByValSize();
905           int64_t Offset = VA.getLocMemOffset();
906 
907           MachinePointerInfo DstMPO;
908           Register StackAddr =
909               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
910 
911           MachinePointerInfo SrcMPO(Args[i].OrigValue);
912           if (!Args[i].OrigValue) {
913             // We still need to accurately track the stack address space if we
914             // don't know the underlying value.
915             const LLT PtrTy = MRI.getType(StackAddr);
916             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
917           }
918 
919           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
920                                     inferAlignFromPtrInfo(MF, DstMPO));
921 
922           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
923                                     inferAlignFromPtrInfo(MF, SrcMPO));
924 
925           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
926                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
927                                      MemSize, VA);
928         }
929       } else if (i == 0 && !ThisReturnRegs.empty() &&
930                  Handler.isIncomingArgumentHandler() &&
931                  isTypeIsValidForThisReturn(ValVT)) {
932         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
933       } else if (Handler.isIncomingArgumentHandler()) {
934         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
935       } else {
936         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
937           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
938         });
939       }
940 
941       // Finish the handling of indirect parameter passing when receiving
942       // the value (we are in the called function or the caller when receiving
943       // the return value).
944       if (VA.getLocInfo() == CCValAssign::Indirect &&
945           Handler.isIncomingArgumentHandler()) {
946         Align Alignment = DL.getABITypeAlign(Args[i].Ty);
947         MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF);
948 
949         // Since we are doing indirect parameter passing, we know that the value
950         // in the temporary register is not the value passed to the function,
951         // but rather a pointer to that value. Let's load that value into the
952         // virtual register where the parameter should go.
953         MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
954                              Alignment);
955 
956         IndirectParameterPassingHandled = true;
957       }
958 
959       if (IndirectParameterPassingHandled)
960         break;
961     }
962 
963     // Now that all pieces have been assigned, re-pack the register typed values
964     // into the original value typed registers. This is only necessary, when
965     // the value was passed in multiple registers, not indirectly.
966     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT &&
967         !IndirectParameterPassingHandled) {
968       // Merge the split registers into the expected larger result vregs of
969       // the original call.
970       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
971                         LocTy, Args[i].Flags[0]);
972     }
973 
974     j += NumParts - 1;
975   }
976   for (auto &Fn : DelayedOutgoingRegAssignments)
977     Fn();
978 
979   return true;
980 }
981 
982 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
983                                    ArrayRef<Register> VRegs, Register DemoteReg,
984                                    int FI) const {
985   MachineFunction &MF = MIRBuilder.getMF();
986   MachineRegisterInfo &MRI = MF.getRegInfo();
987   const DataLayout &DL = MF.getDataLayout();
988 
989   SmallVector<EVT, 4> SplitVTs;
990   SmallVector<uint64_t, 4> Offsets;
991   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
992 
993   assert(VRegs.size() == SplitVTs.size());
994 
995   unsigned NumValues = SplitVTs.size();
996   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
997   Type *RetPtrTy =
998       PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
999   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
1000 
1001   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
1002 
1003   for (unsigned I = 0; I < NumValues; ++I) {
1004     Register Addr;
1005     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1006     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1007                                         MRI.getType(VRegs[I]),
1008                                         commonAlignment(BaseAlign, Offsets[I]));
1009     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
1010   }
1011 }
1012 
1013 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
1014                                     ArrayRef<Register> VRegs,
1015                                     Register DemoteReg) const {
1016   MachineFunction &MF = MIRBuilder.getMF();
1017   MachineRegisterInfo &MRI = MF.getRegInfo();
1018   const DataLayout &DL = MF.getDataLayout();
1019 
1020   SmallVector<EVT, 4> SplitVTs;
1021   SmallVector<uint64_t, 4> Offsets;
1022   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1023 
1024   assert(VRegs.size() == SplitVTs.size());
1025 
1026   unsigned NumValues = SplitVTs.size();
1027   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
1028   unsigned AS = DL.getAllocaAddrSpace();
1029   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
1030 
1031   MachinePointerInfo PtrInfo(AS);
1032 
1033   for (unsigned I = 0; I < NumValues; ++I) {
1034     Register Addr;
1035     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1036     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
1037                                         MRI.getType(VRegs[I]),
1038                                         commonAlignment(BaseAlign, Offsets[I]));
1039     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
1040   }
1041 }
1042 
1043 void CallLowering::insertSRetIncomingArgument(
1044     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
1045     MachineRegisterInfo &MRI, const DataLayout &DL) const {
1046   unsigned AS = DL.getAllocaAddrSpace();
1047   DemoteReg = MRI.createGenericVirtualRegister(
1048       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
1049 
1050   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
1051 
1052   SmallVector<EVT, 1> ValueVTs;
1053   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
1054 
1055   // NOTE: Assume that a pointer won't get split into more than one VT.
1056   assert(ValueVTs.size() == 1);
1057 
1058   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
1059                     ArgInfo::NoArgIndex);
1060   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
1061   DemoteArg.Flags[0].setSRet();
1062   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
1063 }
1064 
1065 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
1066                                               const CallBase &CB,
1067                                               CallLoweringInfo &Info) const {
1068   const DataLayout &DL = MIRBuilder.getDataLayout();
1069   Type *RetTy = CB.getType();
1070   unsigned AS = DL.getAllocaAddrSpace();
1071   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1072 
1073   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
1074       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
1075 
1076   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
1077   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
1078                     ArgInfo::NoArgIndex);
1079   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
1080   DemoteArg.Flags[0].setSRet();
1081 
1082   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
1083   Info.DemoteStackIndex = FI;
1084   Info.DemoteRegister = DemoteReg;
1085 }
1086 
1087 bool CallLowering::checkReturn(CCState &CCInfo,
1088                                SmallVectorImpl<BaseArgInfo> &Outs,
1089                                CCAssignFn *Fn) const {
1090   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
1091     MVT VT = MVT::getVT(Outs[I].Ty);
1092     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
1093       return false;
1094   }
1095   return true;
1096 }
1097 
1098 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
1099                                  AttributeList Attrs,
1100                                  SmallVectorImpl<BaseArgInfo> &Outs,
1101                                  const DataLayout &DL) const {
1102   LLVMContext &Context = RetTy->getContext();
1103   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1104 
1105   SmallVector<EVT, 4> SplitVTs;
1106   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1107   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1108 
1109   for (EVT VT : SplitVTs) {
1110     unsigned NumParts =
1111         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1112     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1113     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1114 
1115     for (unsigned I = 0; I < NumParts; ++I) {
1116       Outs.emplace_back(PartTy, Flags);
1117     }
1118   }
1119 }
1120 
1121 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
1122   const auto &F = MF.getFunction();
1123   Type *ReturnType = F.getReturnType();
1124   CallingConv::ID CallConv = F.getCallingConv();
1125 
1126   SmallVector<BaseArgInfo, 4> SplitArgs;
1127   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1128                 MF.getDataLayout());
1129   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1130 }
1131 
1132 bool CallLowering::parametersInCSRMatch(
1133     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1134     const SmallVectorImpl<CCValAssign> &OutLocs,
1135     const SmallVectorImpl<ArgInfo> &OutArgs) const {
1136   for (unsigned i = 0; i < OutLocs.size(); ++i) {
1137     const auto &ArgLoc = OutLocs[i];
1138     // If it's not a register, it's fine.
1139     if (!ArgLoc.isRegLoc())
1140       continue;
1141 
1142     MCRegister PhysReg = ArgLoc.getLocReg();
1143 
1144     // Only look at callee-saved registers.
1145     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1146       continue;
1147 
1148     LLVM_DEBUG(
1149         dbgs()
1150         << "... Call has an argument passed in a callee-saved register.\n");
1151 
1152     // Check if it was copied from.
1153     const ArgInfo &OutInfo = OutArgs[i];
1154 
1155     if (OutInfo.Regs.size() > 1) {
1156       LLVM_DEBUG(
1157           dbgs() << "... Cannot handle arguments in multiple registers.\n");
1158       return false;
1159     }
1160 
1161     // Check if we copy the register, walking through copies from virtual
1162     // registers. Note that getDefIgnoringCopies does not ignore copies from
1163     // physical registers.
1164     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1165     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1166       LLVM_DEBUG(
1167           dbgs()
1168           << "... Parameter was not copied into a VReg, cannot tail call.\n");
1169       return false;
1170     }
1171 
1172     // Got a copy. Verify that it's the same as the register we want.
1173     Register CopyRHS = RegDef->getOperand(1).getReg();
1174     if (CopyRHS != PhysReg) {
1175       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1176                            "VReg, cannot tail call.\n");
1177       return false;
1178     }
1179   }
1180 
1181   return true;
1182 }
1183 
1184 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1185                                      MachineFunction &MF,
1186                                      SmallVectorImpl<ArgInfo> &InArgs,
1187                                      ValueAssigner &CalleeAssigner,
1188                                      ValueAssigner &CallerAssigner) const {
1189   const Function &F = MF.getFunction();
1190   CallingConv::ID CalleeCC = Info.CallConv;
1191   CallingConv::ID CallerCC = F.getCallingConv();
1192 
1193   if (CallerCC == CalleeCC)
1194     return true;
1195 
1196   SmallVector<CCValAssign, 16> ArgLocs1;
1197   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1198   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1199     return false;
1200 
1201   SmallVector<CCValAssign, 16> ArgLocs2;
1202   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1203   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1204     return false;
1205 
1206   // We need the argument locations to match up exactly. If there's more in
1207   // one than the other, then we are done.
1208   if (ArgLocs1.size() != ArgLocs2.size())
1209     return false;
1210 
1211   // Make sure that each location is passed in exactly the same way.
1212   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1213     const CCValAssign &Loc1 = ArgLocs1[i];
1214     const CCValAssign &Loc2 = ArgLocs2[i];
1215 
1216     // We need both of them to be the same. So if one is a register and one
1217     // isn't, we're done.
1218     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1219       return false;
1220 
1221     if (Loc1.isRegLoc()) {
1222       // If they don't have the same register location, we're done.
1223       if (Loc1.getLocReg() != Loc2.getLocReg())
1224         return false;
1225 
1226       // They matched, so we can move to the next ArgLoc.
1227       continue;
1228     }
1229 
1230     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1231     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1232       return false;
1233   }
1234 
1235   return true;
1236 }
1237 
1238 LLT CallLowering::ValueHandler::getStackValueStoreType(
1239     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1240   const MVT ValVT = VA.getValVT();
1241   if (ValVT != MVT::iPTR) {
1242     LLT ValTy(ValVT);
1243 
1244     // We lost the pointeriness going through CCValAssign, so try to restore it
1245     // based on the flags.
1246     if (Flags.isPointer()) {
1247       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1248                                ValTy.getScalarSizeInBits());
1249       if (ValVT.isVector())
1250         return LLT::vector(ValTy.getElementCount(), PtrTy);
1251       return PtrTy;
1252     }
1253 
1254     return ValTy;
1255   }
1256 
1257   unsigned AddrSpace = Flags.getPointerAddrSpace();
1258   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1259 }
1260 
1261 void CallLowering::ValueHandler::copyArgumentMemory(
1262     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1263     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1264     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1265     CCValAssign &VA) const {
1266   MachineFunction &MF = MIRBuilder.getMF();
1267   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1268       SrcPtrInfo,
1269       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1270       SrcAlign);
1271 
1272   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1273       DstPtrInfo,
1274       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1275       MemSize, DstAlign);
1276 
1277   const LLT PtrTy = MRI.getType(DstPtr);
1278   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1279 
1280   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1281   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1282 }
1283 
1284 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1285                                                     const CCValAssign &VA,
1286                                                     unsigned MaxSizeBits) {
1287   LLT LocTy{VA.getLocVT()};
1288   LLT ValTy{VA.getValVT()};
1289 
1290   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1291     return ValReg;
1292 
1293   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1294     if (MaxSizeBits <= ValTy.getSizeInBits())
1295       return ValReg;
1296     LocTy = LLT::scalar(MaxSizeBits);
1297   }
1298 
1299   const LLT ValRegTy = MRI.getType(ValReg);
1300   if (ValRegTy.isPointer()) {
1301     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1302     // we have to cast to do the extension.
1303     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1304     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1305   }
1306 
1307   switch (VA.getLocInfo()) {
1308   default: break;
1309   case CCValAssign::Full:
1310   case CCValAssign::BCvt:
1311     // FIXME: bitconverting between vector types may or may not be a
1312     // nop in big-endian situations.
1313     return ValReg;
1314   case CCValAssign::AExt: {
1315     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1316     return MIB.getReg(0);
1317   }
1318   case CCValAssign::SExt: {
1319     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1320     MIRBuilder.buildSExt(NewReg, ValReg);
1321     return NewReg;
1322   }
1323   case CCValAssign::ZExt: {
1324     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1325     MIRBuilder.buildZExt(NewReg, ValReg);
1326     return NewReg;
1327   }
1328   }
1329   llvm_unreachable("unable to extend register");
1330 }
1331 
1332 void CallLowering::ValueAssigner::anchor() {}
1333 
1334 Register CallLowering::IncomingValueHandler::buildExtensionHint(
1335     const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1336   switch (VA.getLocInfo()) {
1337   case CCValAssign::LocInfo::ZExt: {
1338     return MIRBuilder
1339         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1340                          NarrowTy.getScalarSizeInBits())
1341         .getReg(0);
1342   }
1343   case CCValAssign::LocInfo::SExt: {
1344     return MIRBuilder
1345         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1346                          NarrowTy.getScalarSizeInBits())
1347         .getReg(0);
1348     break;
1349   }
1350   default:
1351     return SrcReg;
1352   }
1353 }
1354 
1355 /// Check if we can use a basic COPY instruction between the two types.
1356 ///
1357 /// We're currently building on top of the infrastructure using MVT, which loses
1358 /// pointer information in the CCValAssign. We accept copies from physical
1359 /// registers that have been reported as integers if it's to an equivalent sized
1360 /// pointer LLT.
1361 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1362   if (SrcTy == DstTy)
1363     return true;
1364 
1365   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1366     return false;
1367 
1368   SrcTy = SrcTy.getScalarType();
1369   DstTy = DstTy.getScalarType();
1370 
1371   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1372          (DstTy.isPointer() && SrcTy.isScalar());
1373 }
1374 
1375 void CallLowering::IncomingValueHandler::assignValueToReg(
1376     Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1377   const MVT LocVT = VA.getLocVT();
1378   const LLT LocTy(LocVT);
1379   const LLT RegTy = MRI.getType(ValVReg);
1380 
1381   if (isCopyCompatibleType(RegTy, LocTy)) {
1382     MIRBuilder.buildCopy(ValVReg, PhysReg);
1383     return;
1384   }
1385 
1386   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1387   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1388   MIRBuilder.buildTrunc(ValVReg, Hint);
1389 }
1390