1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftError)) 58 Flags.setSwiftError(); 59 } 60 61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 62 unsigned ArgIdx) const { 63 ISD::ArgFlagsTy Flags; 64 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 65 return Call.paramHasAttr(ArgIdx, Attr); 66 }); 67 return Flags; 68 } 69 70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 71 const AttributeList &Attrs, 72 unsigned OpIdx) const { 73 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 74 return Attrs.hasAttribute(OpIdx, Attr); 75 }); 76 } 77 78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 79 ArrayRef<Register> ResRegs, 80 ArrayRef<ArrayRef<Register>> ArgRegs, 81 Register SwiftErrorVReg, 82 std::function<unsigned()> GetCalleeReg) const { 83 CallLoweringInfo Info; 84 const DataLayout &DL = MIRBuilder.getDataLayout(); 85 MachineFunction &MF = MIRBuilder.getMF(); 86 bool CanBeTailCalled = CB.isTailCall() && 87 isInTailCallPosition(CB, MF.getTarget()) && 88 (MF.getFunction() 89 .getFnAttribute("disable-tail-calls") 90 .getValueAsString() != "true"); 91 92 CallingConv::ID CallConv = CB.getCallingConv(); 93 Type *RetTy = CB.getType(); 94 bool IsVarArg = CB.getFunctionType()->isVarArg(); 95 96 SmallVector<BaseArgInfo, 4> SplitArgs; 97 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 98 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 99 100 if (!Info.CanLowerReturn) { 101 // Callee requires sret demotion. 102 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 103 104 // The sret demotion isn't compatible with tail-calls, since the sret 105 // argument points into the caller's stack frame. 106 CanBeTailCalled = false; 107 } 108 109 // First step is to marshall all the function's parameters into the correct 110 // physregs and memory locations. Gather the sequence of argument types that 111 // we'll pass to the assigner function. 112 unsigned i = 0; 113 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 114 for (auto &Arg : CB.args()) { 115 ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i), 116 i < NumFixedArgs}; 117 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 118 119 // If we have an explicit sret argument that is an Instruction, (i.e., it 120 // might point to function-local memory), we can't meaningfully tail-call. 121 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 122 CanBeTailCalled = false; 123 124 Info.OrigArgs.push_back(OrigArg); 125 ++i; 126 } 127 128 // Try looking through a bitcast from one function type to another. 129 // Commonly happens with calls to objc_msgSend(). 130 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 131 if (const Function *F = dyn_cast<Function>(CalleeV)) 132 Info.Callee = MachineOperand::CreateGA(F, 0); 133 else 134 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 135 136 Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}}; 137 if (!Info.OrigRet.Ty->isVoidTy()) 138 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 139 140 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 141 Info.CallConv = CallConv; 142 Info.SwiftErrorVReg = SwiftErrorVReg; 143 Info.IsMustTailCall = CB.isMustTailCall(); 144 Info.IsTailCall = CanBeTailCalled; 145 Info.IsVarArg = IsVarArg; 146 return lowerCall(MIRBuilder, Info); 147 } 148 149 template <typename FuncInfoTy> 150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 151 const DataLayout &DL, 152 const FuncInfoTy &FuncInfo) const { 153 auto &Flags = Arg.Flags[0]; 154 const AttributeList &Attrs = FuncInfo.getAttributes(); 155 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 156 157 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 158 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType(); 159 160 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 161 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 162 163 // For ByVal, alignment should be passed from FE. BE will guess if 164 // this info is not there but there are cases it cannot get right. 165 Align FrameAlign; 166 if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2)) 167 FrameAlign = *ParamAlign; 168 else 169 FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 170 Flags.setByValAlign(FrameAlign); 171 } 172 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 173 174 // Don't try to use the returned attribute if the argument is marked as 175 // swiftself, since it won't be passed in x0. 176 if (Flags.isSwiftSelf()) 177 Flags.setReturned(false); 178 } 179 180 template void 181 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 182 const DataLayout &DL, 183 const Function &FuncInfo) const; 184 185 template void 186 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 187 const DataLayout &DL, 188 const CallBase &FuncInfo) const; 189 190 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy, 191 MachineIRBuilder &MIRBuilder) const { 192 assert(SrcRegs.size() > 1 && "Nothing to pack"); 193 194 const DataLayout &DL = MIRBuilder.getMF().getDataLayout(); 195 MachineRegisterInfo *MRI = MIRBuilder.getMRI(); 196 197 LLT PackedLLT = getLLTForType(*PackedTy, DL); 198 199 SmallVector<LLT, 8> LLTs; 200 SmallVector<uint64_t, 8> Offsets; 201 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 202 assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch"); 203 204 Register Dst = MRI->createGenericVirtualRegister(PackedLLT); 205 MIRBuilder.buildUndef(Dst); 206 for (unsigned i = 0; i < SrcRegs.size(); ++i) { 207 Register NewDst = MRI->createGenericVirtualRegister(PackedLLT); 208 MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]); 209 Dst = NewDst; 210 } 211 212 return Dst; 213 } 214 215 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 216 Type *PackedTy, 217 MachineIRBuilder &MIRBuilder) const { 218 assert(DstRegs.size() > 1 && "Nothing to unpack"); 219 220 const DataLayout &DL = MIRBuilder.getDataLayout(); 221 222 SmallVector<LLT, 8> LLTs; 223 SmallVector<uint64_t, 8> Offsets; 224 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 225 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 226 227 for (unsigned i = 0; i < DstRegs.size(); ++i) 228 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 229 } 230 231 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 232 static MachineInstrBuilder 233 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 234 ArrayRef<Register> SrcRegs) { 235 MachineRegisterInfo &MRI = *B.getMRI(); 236 LLT LLTy = MRI.getType(DstRegs[0]); 237 LLT PartLLT = MRI.getType(SrcRegs[0]); 238 239 // Deal with v3s16 split into v2s16 240 LLT LCMTy = getLCMType(LLTy, PartLLT); 241 if (LCMTy == LLTy) { 242 // Common case where no padding is needed. 243 assert(DstRegs.size() == 1); 244 return B.buildConcatVectors(DstRegs[0], SrcRegs); 245 } 246 247 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 248 Register Undef = B.buildUndef(PartLLT).getReg(0); 249 250 // Build vector of undefs. 251 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 252 253 // Replace the first sources with the real registers. 254 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 255 256 auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs); 257 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 258 259 SmallVector<Register, 8> PadDstRegs(NumDst); 260 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 261 262 // Create the excess dead defs for the unmerge. 263 for (int I = DstRegs.size(); I != NumDst; ++I) 264 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 265 266 return B.buildUnmerge(PadDstRegs, Widened); 267 } 268 269 /// Create a sequence of instructions to combine pieces split into register 270 /// typed values to the original IR value. \p OrigRegs contains the destination 271 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 272 /// with type \p PartLLT. 273 static void buildCopyToParts(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 274 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) { 275 MachineRegisterInfo &MRI = *B.getMRI(); 276 277 if (!LLTy.isVector() && !PartLLT.isVector()) { 278 assert(OrigRegs.size() == 1); 279 LLT OrigTy = MRI.getType(OrigRegs[0]); 280 281 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size(); 282 if (SrcSize == OrigTy.getSizeInBits()) 283 B.buildMerge(OrigRegs[0], Regs); 284 else { 285 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 286 B.buildTrunc(OrigRegs[0], Widened); 287 } 288 289 return; 290 } 291 292 if (LLTy.isVector() && PartLLT.isVector()) { 293 assert(OrigRegs.size() == 1); 294 assert(LLTy.getElementType() == PartLLT.getElementType()); 295 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 296 return; 297 } 298 299 assert(LLTy.isVector() && !PartLLT.isVector()); 300 301 LLT DstEltTy = LLTy.getElementType(); 302 303 // Pointer information was discarded. We'll need to coerce some register types 304 // to avoid violating type constraints. 305 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 306 307 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 308 309 if (DstEltTy == PartLLT) { 310 // Vector was trivially scalarized. 311 312 if (RealDstEltTy.isPointer()) { 313 for (Register Reg : Regs) 314 MRI.setType(Reg, RealDstEltTy); 315 } 316 317 B.buildBuildVector(OrigRegs[0], Regs); 318 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 319 // Deal with vector with 64-bit elements decomposed to 32-bit 320 // registers. Need to create intermediate 64-bit elements. 321 SmallVector<Register, 8> EltMerges; 322 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 323 324 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 325 326 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 327 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 328 // Fix the type in case this is really a vector of pointers. 329 MRI.setType(Merge.getReg(0), RealDstEltTy); 330 EltMerges.push_back(Merge.getReg(0)); 331 Regs = Regs.drop_front(PartsPerElt); 332 } 333 334 B.buildBuildVector(OrigRegs[0], EltMerges); 335 } else { 336 // Vector was split, and elements promoted to a wider type. 337 // FIXME: Should handle floating point promotions. 338 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 339 auto BV = B.buildBuildVector(BVType, Regs); 340 B.buildTrunc(OrigRegs[0], BV); 341 } 342 } 343 344 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder, 345 SmallVectorImpl<ArgInfo> &Args, 346 ValueHandler &Handler, 347 CallingConv::ID CallConv, bool IsVarArg, 348 Register ThisReturnReg) const { 349 MachineFunction &MF = MIRBuilder.getMF(); 350 const Function &F = MF.getFunction(); 351 SmallVector<CCValAssign, 16> ArgLocs; 352 353 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 354 return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler, 355 ThisReturnReg); 356 } 357 358 bool CallLowering::handleAssignments(CCState &CCInfo, 359 SmallVectorImpl<CCValAssign> &ArgLocs, 360 MachineIRBuilder &MIRBuilder, 361 SmallVectorImpl<ArgInfo> &Args, 362 ValueHandler &Handler, 363 Register ThisReturnReg) const { 364 MachineFunction &MF = MIRBuilder.getMF(); 365 const Function &F = MF.getFunction(); 366 const DataLayout &DL = F.getParent()->getDataLayout(); 367 368 unsigned NumArgs = Args.size(); 369 for (unsigned i = 0; i != NumArgs; ++i) { 370 EVT CurVT = EVT::getEVT(Args[i].Ty); 371 if (CurVT.isSimple() && 372 !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(), 373 CCValAssign::Full, Args[i], Args[i].Flags[0], 374 CCInfo)) 375 continue; 376 377 MVT NewVT = TLI->getRegisterTypeForCallingConv( 378 F.getContext(), CCInfo.getCallingConv(), EVT(CurVT)); 379 380 // If we need to split the type over multiple regs, check it's a scenario 381 // we currently support. 382 unsigned NumParts = TLI->getNumRegistersForCallingConv( 383 F.getContext(), CCInfo.getCallingConv(), CurVT); 384 385 if (NumParts == 1) { 386 // Try to use the register type if we couldn't assign the VT. 387 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 388 Args[i].Flags[0], CCInfo)) 389 return false; 390 continue; 391 } 392 393 assert(NumParts > 1); 394 395 // For incoming arguments (physregs to vregs), we could have values in 396 // physregs (or memlocs) which we want to extract and copy to vregs. 397 // During this, we might have to deal with the LLT being split across 398 // multiple regs, so we have to record this information for later. 399 // 400 // If we have outgoing args, then we have the opposite case. We have a 401 // vreg with an LLT which we want to assign to a physical location, and 402 // we might have to record that the value has to be split later. 403 if (Handler.isIncomingArgumentHandler()) { 404 // We're handling an incoming arg which is split over multiple regs. 405 // E.g. passing an s128 on AArch64. 406 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 407 Args[i].OrigRegs.push_back(Args[i].Regs[0]); 408 Args[i].Regs.clear(); 409 Args[i].Flags.clear(); 410 LLT NewLLT = getLLTForMVT(NewVT); 411 // For each split register, create and assign a vreg that will store 412 // the incoming component of the larger value. These will later be 413 // merged to form the final vreg. 414 for (unsigned Part = 0; Part < NumParts; ++Part) { 415 Register Reg = 416 MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT); 417 ISD::ArgFlagsTy Flags = OrigFlags; 418 if (Part == 0) { 419 Flags.setSplit(); 420 } else { 421 Flags.setOrigAlign(Align(1)); 422 if (Part == NumParts - 1) 423 Flags.setSplitEnd(); 424 } 425 Args[i].Regs.push_back(Reg); 426 Args[i].Flags.push_back(Flags); 427 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 428 Args[i].Flags[Part], CCInfo)) { 429 // Still couldn't assign this smaller part type for some reason. 430 return false; 431 } 432 } 433 } else { 434 // This type is passed via multiple registers in the calling convention. 435 // We need to extract the individual parts. 436 Register LargeReg = Args[i].Regs[0]; 437 LLT SmallTy = LLT::scalar(NewVT.getSizeInBits()); 438 auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg); 439 assert(Unmerge->getNumOperands() == NumParts + 1); 440 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 441 // We're going to replace the regs and flags with the split ones. 442 Args[i].Regs.clear(); 443 Args[i].Flags.clear(); 444 for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) { 445 ISD::ArgFlagsTy Flags = OrigFlags; 446 if (PartIdx == 0) { 447 Flags.setSplit(); 448 } else { 449 Flags.setOrigAlign(Align(1)); 450 if (PartIdx == NumParts - 1) 451 Flags.setSplitEnd(); 452 } 453 454 // TODO: Also check if there is a valid extension that preserves the 455 // bits. However currently this call lowering doesn't support non-exact 456 // split parts, so that can't be tested. 457 if (OrigFlags.isReturned() && 458 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 459 Flags.setReturned(false); 460 } 461 462 Args[i].Regs.push_back(Unmerge.getReg(PartIdx)); 463 Args[i].Flags.push_back(Flags); 464 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, 465 Args[i], Args[i].Flags[PartIdx], CCInfo)) 466 return false; 467 } 468 } 469 } 470 471 for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) { 472 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 473 474 CCValAssign &VA = ArgLocs[j]; 475 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 476 477 if (VA.needsCustom()) { 478 unsigned NumArgRegs = 479 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 480 if (!NumArgRegs) 481 return false; 482 j += NumArgRegs; 483 continue; 484 } 485 486 EVT OrigVT = EVT::getEVT(Args[i].Ty); 487 EVT VAVT = VA.getValVT(); 488 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 489 const LLT VATy(VAVT.getSimpleVT()); 490 491 // Expected to be multiple regs for a single incoming arg. 492 // There should be Regs.size() ArgLocs per argument. 493 unsigned NumArgRegs = Args[i].Regs.size(); 494 MachineRegisterInfo &MRI = MF.getRegInfo(); 495 assert((j + (NumArgRegs - 1)) < ArgLocs.size() && 496 "Too many regs for number of args"); 497 for (unsigned Part = 0; Part < NumArgRegs; ++Part) { 498 Register ArgReg = Args[i].Regs[Part]; 499 LLT ArgRegTy = MRI.getType(ArgReg); 500 // There should be Regs.size() ArgLocs per argument. 501 VA = ArgLocs[j + Part]; 502 if (VA.isMemLoc()) { 503 // Individual pieces may have been spilled to the stack and others 504 // passed in registers. 505 506 // FIXME: Use correct address space for pointer size 507 EVT LocVT = VA.getValVT(); 508 unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize() 509 : LocVT.getStoreSize(); 510 unsigned Offset = VA.getLocMemOffset(); 511 MachinePointerInfo MPO; 512 Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO); 513 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO, 514 VA); 515 continue; 516 } 517 518 assert(VA.isRegLoc() && "custom loc should have been handled already"); 519 520 if (i == 0 && ThisReturnReg.isValid() && 521 Handler.isIncomingArgumentHandler() && 522 isTypeIsValidForThisReturn(VAVT)) { 523 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 524 continue; 525 } 526 527 // GlobalISel does not currently work for scalable vectors. 528 if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() || 529 !Handler.isIncomingArgumentHandler()) { 530 // This is an argument that might have been split. There should be 531 // Regs.size() ArgLocs per argument. 532 533 // Insert the argument copies. If VAVT < OrigVT, we'll insert the merge 534 // to the original register after handling all of the parts. 535 Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA); 536 continue; 537 } 538 539 // This ArgLoc covers multiple pieces, so we need to split it. 540 Register NewReg = MRI.createGenericVirtualRegister(VATy); 541 Handler.assignValueToReg(NewReg, VA.getLocReg(), VA); 542 // If it's a vector type, we either need to truncate the elements 543 // or do an unmerge to get the lower block of elements. 544 if (VATy.isVector() && 545 VATy.getNumElements() > OrigVT.getVectorNumElements()) { 546 // Just handle the case where the VA type is a multiple of original 547 // type. 548 if (VATy.getNumElements() % OrigVT.getVectorNumElements() != 0) { 549 LLVM_DEBUG(dbgs() << "Incoming promoted vector arg elts is not a " 550 "multiple of orig type elt: " 551 << VATy << " vs " << OrigTy); 552 return false; 553 } 554 SmallVector<Register, 4> DstRegs = {ArgReg}; 555 unsigned NumParts = 556 VATy.getNumElements() / OrigVT.getVectorNumElements() - 1; 557 for (unsigned Idx = 0; Idx < NumParts; ++Idx) 558 DstRegs.push_back( 559 MIRBuilder.getMRI()->createGenericVirtualRegister(OrigTy)); 560 MIRBuilder.buildUnmerge(DstRegs, {NewReg}); 561 } else if (VATy.getScalarSizeInBits() > ArgRegTy.getScalarSizeInBits()) { 562 MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0); 563 } else { 564 MIRBuilder.buildCopy(ArgReg, NewReg); 565 } 566 } 567 568 // Now that all pieces have been handled, re-pack any arguments into any 569 // wider, original registers. 570 if (Handler.isIncomingArgumentHandler()) { 571 // Merge the split registers into the expected larger result vregs of 572 // the original call. 573 574 if (OrigTy != VATy && !Args[i].OrigRegs.empty()) { 575 buildCopyToParts(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 576 VATy); 577 } 578 } 579 580 j += NumArgRegs - 1; 581 } 582 583 return true; 584 } 585 586 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 587 ArrayRef<Register> VRegs, Register DemoteReg, 588 int FI) const { 589 MachineFunction &MF = MIRBuilder.getMF(); 590 MachineRegisterInfo &MRI = MF.getRegInfo(); 591 const DataLayout &DL = MF.getDataLayout(); 592 593 SmallVector<EVT, 4> SplitVTs; 594 SmallVector<uint64_t, 4> Offsets; 595 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 596 597 assert(VRegs.size() == SplitVTs.size()); 598 599 unsigned NumValues = SplitVTs.size(); 600 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 601 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 602 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 603 604 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 605 606 for (unsigned I = 0; I < NumValues; ++I) { 607 Register Addr; 608 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 609 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 610 MRI.getType(VRegs[I]).getSizeInBytes(), 611 commonAlignment(BaseAlign, Offsets[I])); 612 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 613 } 614 } 615 616 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 617 ArrayRef<Register> VRegs, 618 Register DemoteReg) const { 619 MachineFunction &MF = MIRBuilder.getMF(); 620 MachineRegisterInfo &MRI = MF.getRegInfo(); 621 const DataLayout &DL = MF.getDataLayout(); 622 623 SmallVector<EVT, 4> SplitVTs; 624 SmallVector<uint64_t, 4> Offsets; 625 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 626 627 assert(VRegs.size() == SplitVTs.size()); 628 629 unsigned NumValues = SplitVTs.size(); 630 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 631 unsigned AS = DL.getAllocaAddrSpace(); 632 LLT OffsetLLTy = 633 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 634 635 MachinePointerInfo PtrInfo(AS); 636 637 for (unsigned I = 0; I < NumValues; ++I) { 638 Register Addr; 639 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 640 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 641 MRI.getType(VRegs[I]).getSizeInBytes(), 642 commonAlignment(BaseAlign, Offsets[I])); 643 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 644 } 645 } 646 647 void CallLowering::insertSRetIncomingArgument( 648 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 649 MachineRegisterInfo &MRI, const DataLayout &DL) const { 650 unsigned AS = DL.getAllocaAddrSpace(); 651 DemoteReg = MRI.createGenericVirtualRegister( 652 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 653 654 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 655 656 SmallVector<EVT, 1> ValueVTs; 657 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 658 659 // NOTE: Assume that a pointer won't get split into more than one VT. 660 assert(ValueVTs.size() == 1); 661 662 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext())); 663 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 664 DemoteArg.Flags[0].setSRet(); 665 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 666 } 667 668 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 669 const CallBase &CB, 670 CallLoweringInfo &Info) const { 671 const DataLayout &DL = MIRBuilder.getDataLayout(); 672 Type *RetTy = CB.getType(); 673 unsigned AS = DL.getAllocaAddrSpace(); 674 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 675 676 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 677 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 678 679 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 680 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS)); 681 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 682 DemoteArg.Flags[0].setSRet(); 683 684 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 685 Info.DemoteStackIndex = FI; 686 Info.DemoteRegister = DemoteReg; 687 } 688 689 bool CallLowering::checkReturn(CCState &CCInfo, 690 SmallVectorImpl<BaseArgInfo> &Outs, 691 CCAssignFn *Fn) const { 692 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 693 MVT VT = MVT::getVT(Outs[I].Ty); 694 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 695 return false; 696 } 697 return true; 698 } 699 700 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 701 AttributeList Attrs, 702 SmallVectorImpl<BaseArgInfo> &Outs, 703 const DataLayout &DL) const { 704 LLVMContext &Context = RetTy->getContext(); 705 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 706 707 SmallVector<EVT, 4> SplitVTs; 708 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 709 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 710 711 for (EVT VT : SplitVTs) { 712 unsigned NumParts = 713 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 714 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 715 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 716 717 for (unsigned I = 0; I < NumParts; ++I) { 718 Outs.emplace_back(PartTy, Flags); 719 } 720 } 721 } 722 723 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 724 const auto &F = MF.getFunction(); 725 Type *ReturnType = F.getReturnType(); 726 CallingConv::ID CallConv = F.getCallingConv(); 727 728 SmallVector<BaseArgInfo, 4> SplitArgs; 729 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 730 MF.getDataLayout()); 731 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 732 } 733 734 bool CallLowering::analyzeArgInfo(CCState &CCState, 735 SmallVectorImpl<ArgInfo> &Args, 736 CCAssignFn &AssignFnFixed, 737 CCAssignFn &AssignFnVarArg) const { 738 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 739 MVT VT = MVT::getVT(Args[i].Ty); 740 CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg; 741 if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) { 742 // Bail out on anything we can't handle. 743 LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString() 744 << " (arg number = " << i << "\n"); 745 return false; 746 } 747 } 748 return true; 749 } 750 751 bool CallLowering::parametersInCSRMatch( 752 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 753 const SmallVectorImpl<CCValAssign> &OutLocs, 754 const SmallVectorImpl<ArgInfo> &OutArgs) const { 755 for (unsigned i = 0; i < OutLocs.size(); ++i) { 756 auto &ArgLoc = OutLocs[i]; 757 // If it's not a register, it's fine. 758 if (!ArgLoc.isRegLoc()) 759 continue; 760 761 MCRegister PhysReg = ArgLoc.getLocReg(); 762 763 // Only look at callee-saved registers. 764 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 765 continue; 766 767 LLVM_DEBUG( 768 dbgs() 769 << "... Call has an argument passed in a callee-saved register.\n"); 770 771 // Check if it was copied from. 772 const ArgInfo &OutInfo = OutArgs[i]; 773 774 if (OutInfo.Regs.size() > 1) { 775 LLVM_DEBUG( 776 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 777 return false; 778 } 779 780 // Check if we copy the register, walking through copies from virtual 781 // registers. Note that getDefIgnoringCopies does not ignore copies from 782 // physical registers. 783 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 784 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 785 LLVM_DEBUG( 786 dbgs() 787 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 788 return false; 789 } 790 791 // Got a copy. Verify that it's the same as the register we want. 792 Register CopyRHS = RegDef->getOperand(1).getReg(); 793 if (CopyRHS != PhysReg) { 794 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 795 "VReg, cannot tail call.\n"); 796 return false; 797 } 798 } 799 800 return true; 801 } 802 803 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 804 MachineFunction &MF, 805 SmallVectorImpl<ArgInfo> &InArgs, 806 CCAssignFn &CalleeAssignFnFixed, 807 CCAssignFn &CalleeAssignFnVarArg, 808 CCAssignFn &CallerAssignFnFixed, 809 CCAssignFn &CallerAssignFnVarArg) const { 810 const Function &F = MF.getFunction(); 811 CallingConv::ID CalleeCC = Info.CallConv; 812 CallingConv::ID CallerCC = F.getCallingConv(); 813 814 if (CallerCC == CalleeCC) 815 return true; 816 817 SmallVector<CCValAssign, 16> ArgLocs1; 818 CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext()); 819 if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed, 820 CalleeAssignFnVarArg)) 821 return false; 822 823 SmallVector<CCValAssign, 16> ArgLocs2; 824 CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext()); 825 if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed, 826 CalleeAssignFnVarArg)) 827 return false; 828 829 // We need the argument locations to match up exactly. If there's more in 830 // one than the other, then we are done. 831 if (ArgLocs1.size() != ArgLocs2.size()) 832 return false; 833 834 // Make sure that each location is passed in exactly the same way. 835 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 836 const CCValAssign &Loc1 = ArgLocs1[i]; 837 const CCValAssign &Loc2 = ArgLocs2[i]; 838 839 // We need both of them to be the same. So if one is a register and one 840 // isn't, we're done. 841 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 842 return false; 843 844 if (Loc1.isRegLoc()) { 845 // If they don't have the same register location, we're done. 846 if (Loc1.getLocReg() != Loc2.getLocReg()) 847 return false; 848 849 // They matched, so we can move to the next ArgLoc. 850 continue; 851 } 852 853 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 854 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 855 return false; 856 } 857 858 return true; 859 } 860 861 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 862 CCValAssign &VA, 863 unsigned MaxSizeBits) { 864 LLT LocTy{VA.getLocVT()}; 865 LLT ValTy = MRI.getType(ValReg); 866 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 867 return ValReg; 868 869 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 870 if (MaxSizeBits <= ValTy.getSizeInBits()) 871 return ValReg; 872 LocTy = LLT::scalar(MaxSizeBits); 873 } 874 875 switch (VA.getLocInfo()) { 876 default: break; 877 case CCValAssign::Full: 878 case CCValAssign::BCvt: 879 // FIXME: bitconverting between vector types may or may not be a 880 // nop in big-endian situations. 881 return ValReg; 882 case CCValAssign::AExt: { 883 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 884 return MIB.getReg(0); 885 } 886 case CCValAssign::SExt: { 887 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 888 MIRBuilder.buildSExt(NewReg, ValReg); 889 return NewReg; 890 } 891 case CCValAssign::ZExt: { 892 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 893 MIRBuilder.buildZExt(NewReg, ValReg); 894 return NewReg; 895 } 896 } 897 llvm_unreachable("unable to extend register"); 898 } 899 900 void CallLowering::ValueHandler::anchor() {} 901