xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 212d6a95abe67f038a6d9a26d2226f07c3132d0e)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftError))
58     Flags.setSwiftError();
59 }
60 
61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
62                                                      unsigned ArgIdx) const {
63   ISD::ArgFlagsTy Flags;
64   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
65     return Call.paramHasAttr(ArgIdx, Attr);
66   });
67   return Flags;
68 }
69 
70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
71                                              const AttributeList &Attrs,
72                                              unsigned OpIdx) const {
73   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
74     return Attrs.hasAttribute(OpIdx, Attr);
75   });
76 }
77 
78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
79                              ArrayRef<Register> ResRegs,
80                              ArrayRef<ArrayRef<Register>> ArgRegs,
81                              Register SwiftErrorVReg,
82                              std::function<unsigned()> GetCalleeReg) const {
83   CallLoweringInfo Info;
84   const DataLayout &DL = MIRBuilder.getDataLayout();
85   MachineFunction &MF = MIRBuilder.getMF();
86   bool CanBeTailCalled = CB.isTailCall() &&
87                          isInTailCallPosition(CB, MF.getTarget()) &&
88                          (MF.getFunction()
89                               .getFnAttribute("disable-tail-calls")
90                               .getValueAsString() != "true");
91 
92   CallingConv::ID CallConv = CB.getCallingConv();
93   Type *RetTy = CB.getType();
94   bool IsVarArg = CB.getFunctionType()->isVarArg();
95 
96   SmallVector<BaseArgInfo, 4> SplitArgs;
97   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
98   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
99 
100   if (!Info.CanLowerReturn) {
101     // Callee requires sret demotion.
102     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
103 
104     // The sret demotion isn't compatible with tail-calls, since the sret
105     // argument points into the caller's stack frame.
106     CanBeTailCalled = false;
107   }
108 
109   // First step is to marshall all the function's parameters into the correct
110   // physregs and memory locations. Gather the sequence of argument types that
111   // we'll pass to the assigner function.
112   unsigned i = 0;
113   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
114   for (auto &Arg : CB.args()) {
115     ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i),
116                     i < NumFixedArgs};
117     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
118 
119     // If we have an explicit sret argument that is an Instruction, (i.e., it
120     // might point to function-local memory), we can't meaningfully tail-call.
121     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
122       CanBeTailCalled = false;
123 
124     Info.OrigArgs.push_back(OrigArg);
125     ++i;
126   }
127 
128   // Try looking through a bitcast from one function type to another.
129   // Commonly happens with calls to objc_msgSend().
130   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
131   if (const Function *F = dyn_cast<Function>(CalleeV))
132     Info.Callee = MachineOperand::CreateGA(F, 0);
133   else
134     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
135 
136   Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
137   if (!Info.OrigRet.Ty->isVoidTy())
138     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
139 
140   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
141   Info.CallConv = CallConv;
142   Info.SwiftErrorVReg = SwiftErrorVReg;
143   Info.IsMustTailCall = CB.isMustTailCall();
144   Info.IsTailCall = CanBeTailCalled;
145   Info.IsVarArg = IsVarArg;
146   return lowerCall(MIRBuilder, Info);
147 }
148 
149 template <typename FuncInfoTy>
150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
151                                const DataLayout &DL,
152                                const FuncInfoTy &FuncInfo) const {
153   auto &Flags = Arg.Flags[0];
154   const AttributeList &Attrs = FuncInfo.getAttributes();
155   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
156 
157   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
158     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
159 
160     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
161     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
162 
163     // For ByVal, alignment should be passed from FE.  BE will guess if
164     // this info is not there but there are cases it cannot get right.
165     Align FrameAlign;
166     if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2))
167       FrameAlign = *ParamAlign;
168     else
169       FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
170     Flags.setByValAlign(FrameAlign);
171   }
172   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
173 
174   // Don't try to use the returned attribute if the argument is marked as
175   // swiftself, since it won't be passed in x0.
176   if (Flags.isSwiftSelf())
177     Flags.setReturned(false);
178 }
179 
180 template void
181 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
182                                     const DataLayout &DL,
183                                     const Function &FuncInfo) const;
184 
185 template void
186 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
187                                     const DataLayout &DL,
188                                     const CallBase &FuncInfo) const;
189 
190 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
191                                 MachineIRBuilder &MIRBuilder) const {
192   assert(SrcRegs.size() > 1 && "Nothing to pack");
193 
194   const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
195   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
196 
197   LLT PackedLLT = getLLTForType(*PackedTy, DL);
198 
199   SmallVector<LLT, 8> LLTs;
200   SmallVector<uint64_t, 8> Offsets;
201   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
202   assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
203 
204   Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
205   MIRBuilder.buildUndef(Dst);
206   for (unsigned i = 0; i < SrcRegs.size(); ++i) {
207     Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
208     MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
209     Dst = NewDst;
210   }
211 
212   return Dst;
213 }
214 
215 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
216                               Type *PackedTy,
217                               MachineIRBuilder &MIRBuilder) const {
218   assert(DstRegs.size() > 1 && "Nothing to unpack");
219 
220   const DataLayout &DL = MIRBuilder.getDataLayout();
221 
222   SmallVector<LLT, 8> LLTs;
223   SmallVector<uint64_t, 8> Offsets;
224   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
225   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
226 
227   for (unsigned i = 0; i < DstRegs.size(); ++i)
228     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
229 }
230 
231 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
232 static MachineInstrBuilder
233 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
234                             ArrayRef<Register> SrcRegs) {
235   MachineRegisterInfo &MRI = *B.getMRI();
236   LLT LLTy = MRI.getType(DstRegs[0]);
237   LLT PartLLT = MRI.getType(SrcRegs[0]);
238 
239   // Deal with v3s16 split into v2s16
240   LLT LCMTy = getLCMType(LLTy, PartLLT);
241   if (LCMTy == LLTy) {
242     // Common case where no padding is needed.
243     assert(DstRegs.size() == 1);
244     return B.buildConcatVectors(DstRegs[0], SrcRegs);
245   }
246 
247   const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
248   Register Undef = B.buildUndef(PartLLT).getReg(0);
249 
250   // Build vector of undefs.
251   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
252 
253   // Replace the first sources with the real registers.
254   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
255 
256   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
257   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
258 
259   SmallVector<Register, 8> PadDstRegs(NumDst);
260   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
261 
262   // Create the excess dead defs for the unmerge.
263   for (int I = DstRegs.size(); I != NumDst; ++I)
264     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
265 
266   return B.buildUnmerge(PadDstRegs, Widened);
267 }
268 
269 /// Create a sequence of instructions to combine pieces split into register
270 /// typed values to the original IR value. \p OrigRegs contains the destination
271 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
272 /// with type \p PartLLT.
273 static void buildCopyToParts(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
274                              ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) {
275   MachineRegisterInfo &MRI = *B.getMRI();
276 
277   if (!LLTy.isVector() && !PartLLT.isVector()) {
278     assert(OrigRegs.size() == 1);
279     LLT OrigTy = MRI.getType(OrigRegs[0]);
280 
281     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
282     if (SrcSize == OrigTy.getSizeInBits())
283       B.buildMerge(OrigRegs[0], Regs);
284     else {
285       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
286       B.buildTrunc(OrigRegs[0], Widened);
287     }
288 
289     return;
290   }
291 
292   if (LLTy.isVector() && PartLLT.isVector()) {
293     assert(OrigRegs.size() == 1);
294     assert(LLTy.getElementType() == PartLLT.getElementType());
295     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
296     return;
297   }
298 
299   assert(LLTy.isVector() && !PartLLT.isVector());
300 
301   LLT DstEltTy = LLTy.getElementType();
302 
303   // Pointer information was discarded. We'll need to coerce some register types
304   // to avoid violating type constraints.
305   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
306 
307   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
308 
309   if (DstEltTy == PartLLT) {
310     // Vector was trivially scalarized.
311 
312     if (RealDstEltTy.isPointer()) {
313       for (Register Reg : Regs)
314         MRI.setType(Reg, RealDstEltTy);
315     }
316 
317     B.buildBuildVector(OrigRegs[0], Regs);
318   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
319     // Deal with vector with 64-bit elements decomposed to 32-bit
320     // registers. Need to create intermediate 64-bit elements.
321     SmallVector<Register, 8> EltMerges;
322     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
323 
324     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
325 
326     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
327       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
328       // Fix the type in case this is really a vector of pointers.
329       MRI.setType(Merge.getReg(0), RealDstEltTy);
330       EltMerges.push_back(Merge.getReg(0));
331       Regs = Regs.drop_front(PartsPerElt);
332     }
333 
334     B.buildBuildVector(OrigRegs[0], EltMerges);
335   } else {
336     // Vector was split, and elements promoted to a wider type.
337     // FIXME: Should handle floating point promotions.
338     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
339     auto BV = B.buildBuildVector(BVType, Regs);
340     B.buildTrunc(OrigRegs[0], BV);
341   }
342 }
343 
344 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
345                                      SmallVectorImpl<ArgInfo> &Args,
346                                      ValueHandler &Handler,
347                                      CallingConv::ID CallConv, bool IsVarArg,
348                                      Register ThisReturnReg) const {
349   MachineFunction &MF = MIRBuilder.getMF();
350   const Function &F = MF.getFunction();
351   SmallVector<CCValAssign, 16> ArgLocs;
352 
353   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
354   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler,
355                            ThisReturnReg);
356 }
357 
358 bool CallLowering::handleAssignments(CCState &CCInfo,
359                                      SmallVectorImpl<CCValAssign> &ArgLocs,
360                                      MachineIRBuilder &MIRBuilder,
361                                      SmallVectorImpl<ArgInfo> &Args,
362                                      ValueHandler &Handler,
363                                      Register ThisReturnReg) const {
364   MachineFunction &MF = MIRBuilder.getMF();
365   const Function &F = MF.getFunction();
366   const DataLayout &DL = F.getParent()->getDataLayout();
367 
368   unsigned NumArgs = Args.size();
369   for (unsigned i = 0; i != NumArgs; ++i) {
370     EVT CurVT = EVT::getEVT(Args[i].Ty);
371     if (CurVT.isSimple() &&
372         !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(),
373                            CCValAssign::Full, Args[i], Args[i].Flags[0],
374                            CCInfo))
375       continue;
376 
377     MVT NewVT = TLI->getRegisterTypeForCallingConv(
378         F.getContext(), CCInfo.getCallingConv(), EVT(CurVT));
379 
380     // If we need to split the type over multiple regs, check it's a scenario
381     // we currently support.
382     unsigned NumParts = TLI->getNumRegistersForCallingConv(
383         F.getContext(), CCInfo.getCallingConv(), CurVT);
384 
385     if (NumParts == 1) {
386       // Try to use the register type if we couldn't assign the VT.
387       if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
388                             Args[i].Flags[0], CCInfo))
389         return false;
390       continue;
391     }
392 
393     assert(NumParts > 1);
394 
395     // For incoming arguments (physregs to vregs), we could have values in
396     // physregs (or memlocs) which we want to extract and copy to vregs.
397     // During this, we might have to deal with the LLT being split across
398     // multiple regs, so we have to record this information for later.
399     //
400     // If we have outgoing args, then we have the opposite case. We have a
401     // vreg with an LLT which we want to assign to a physical location, and
402     // we might have to record that the value has to be split later.
403     if (Handler.isIncomingArgumentHandler()) {
404       // We're handling an incoming arg which is split over multiple regs.
405       // E.g. passing an s128 on AArch64.
406       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
407       Args[i].OrigRegs.push_back(Args[i].Regs[0]);
408       Args[i].Regs.clear();
409       Args[i].Flags.clear();
410       LLT NewLLT = getLLTForMVT(NewVT);
411       // For each split register, create and assign a vreg that will store
412       // the incoming component of the larger value. These will later be
413       // merged to form the final vreg.
414       for (unsigned Part = 0; Part < NumParts; ++Part) {
415         Register Reg =
416             MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
417         ISD::ArgFlagsTy Flags = OrigFlags;
418         if (Part == 0) {
419           Flags.setSplit();
420         } else {
421           Flags.setOrigAlign(Align(1));
422           if (Part == NumParts - 1)
423             Flags.setSplitEnd();
424         }
425         Args[i].Regs.push_back(Reg);
426         Args[i].Flags.push_back(Flags);
427         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
428                               Args[i].Flags[Part], CCInfo)) {
429           // Still couldn't assign this smaller part type for some reason.
430           return false;
431         }
432       }
433     } else {
434       // This type is passed via multiple registers in the calling convention.
435       // We need to extract the individual parts.
436       Register LargeReg = Args[i].Regs[0];
437       LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
438       auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
439       assert(Unmerge->getNumOperands() == NumParts + 1);
440       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
441       // We're going to replace the regs and flags with the split ones.
442       Args[i].Regs.clear();
443       Args[i].Flags.clear();
444       for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
445         ISD::ArgFlagsTy Flags = OrigFlags;
446         if (PartIdx == 0) {
447           Flags.setSplit();
448         } else {
449           Flags.setOrigAlign(Align(1));
450           if (PartIdx == NumParts - 1)
451             Flags.setSplitEnd();
452         }
453 
454         // TODO: Also check if there is a valid extension that preserves the
455         // bits. However currently this call lowering doesn't support non-exact
456         // split parts, so that can't be tested.
457         if (OrigFlags.isReturned() &&
458             (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) {
459           Flags.setReturned(false);
460         }
461 
462         Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
463         Args[i].Flags.push_back(Flags);
464         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full,
465                               Args[i], Args[i].Flags[PartIdx], CCInfo))
466           return false;
467       }
468     }
469   }
470 
471   for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
472     assert(j < ArgLocs.size() && "Skipped too many arg locs");
473 
474     CCValAssign &VA = ArgLocs[j];
475     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
476 
477     if (VA.needsCustom()) {
478       unsigned NumArgRegs =
479           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
480       if (!NumArgRegs)
481         return false;
482       j += NumArgRegs;
483       continue;
484     }
485 
486     EVT OrigVT = EVT::getEVT(Args[i].Ty);
487     EVT VAVT = VA.getValVT();
488     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
489     const LLT VATy(VAVT.getSimpleVT());
490 
491     // Expected to be multiple regs for a single incoming arg.
492     // There should be Regs.size() ArgLocs per argument.
493     unsigned NumArgRegs = Args[i].Regs.size();
494     MachineRegisterInfo &MRI = MF.getRegInfo();
495     assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
496            "Too many regs for number of args");
497     for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
498       Register ArgReg = Args[i].Regs[Part];
499       LLT ArgRegTy = MRI.getType(ArgReg);
500       // There should be Regs.size() ArgLocs per argument.
501       VA = ArgLocs[j + Part];
502       if (VA.isMemLoc()) {
503         // Individual pieces may have been spilled to the stack and others
504         // passed in registers.
505 
506         // FIXME: Use correct address space for pointer size
507         EVT LocVT = VA.getValVT();
508         unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize()
509                                               : LocVT.getStoreSize();
510         unsigned Offset = VA.getLocMemOffset();
511         MachinePointerInfo MPO;
512         Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO);
513         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO,
514                                      VA);
515         continue;
516       }
517 
518       assert(VA.isRegLoc() && "custom loc should have been handled already");
519 
520       if (i == 0 && ThisReturnReg.isValid() &&
521           Handler.isIncomingArgumentHandler() &&
522           isTypeIsValidForThisReturn(VAVT)) {
523         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
524         continue;
525       }
526 
527       // GlobalISel does not currently work for scalable vectors.
528       if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() ||
529           !Handler.isIncomingArgumentHandler()) {
530         // This is an argument that might have been split. There should be
531         // Regs.size() ArgLocs per argument.
532 
533         // Insert the argument copies. If VAVT < OrigVT, we'll insert the merge
534         // to the original register after handling all of the parts.
535         Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
536         continue;
537       }
538 
539       // This ArgLoc covers multiple pieces, so we need to split it.
540       Register NewReg = MRI.createGenericVirtualRegister(VATy);
541       Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
542       // If it's a vector type, we either need to truncate the elements
543       // or do an unmerge to get the lower block of elements.
544       if (VATy.isVector() &&
545           VATy.getNumElements() > OrigVT.getVectorNumElements()) {
546         // Just handle the case where the VA type is a multiple of original
547         // type.
548         if (VATy.getNumElements() % OrigVT.getVectorNumElements() != 0) {
549           LLVM_DEBUG(dbgs() << "Incoming promoted vector arg elts is not a "
550                                "multiple of orig type elt: "
551                             << VATy << " vs " << OrigTy);
552           return false;
553         }
554         SmallVector<Register, 4> DstRegs = {ArgReg};
555         unsigned NumParts =
556             VATy.getNumElements() / OrigVT.getVectorNumElements() - 1;
557         for (unsigned Idx = 0; Idx < NumParts; ++Idx)
558           DstRegs.push_back(
559               MIRBuilder.getMRI()->createGenericVirtualRegister(OrigTy));
560         MIRBuilder.buildUnmerge(DstRegs, {NewReg});
561       } else if (VATy.getScalarSizeInBits() > ArgRegTy.getScalarSizeInBits()) {
562         MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
563       } else {
564         MIRBuilder.buildCopy(ArgReg, NewReg);
565       }
566     }
567 
568     // Now that all pieces have been handled, re-pack any arguments into any
569     // wider, original registers.
570     if (Handler.isIncomingArgumentHandler()) {
571       // Merge the split registers into the expected larger result vregs of
572       // the original call.
573 
574       if (OrigTy != VATy && !Args[i].OrigRegs.empty()) {
575         buildCopyToParts(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
576                          VATy);
577       }
578     }
579 
580     j += NumArgRegs - 1;
581   }
582 
583   return true;
584 }
585 
586 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
587                                    ArrayRef<Register> VRegs, Register DemoteReg,
588                                    int FI) const {
589   MachineFunction &MF = MIRBuilder.getMF();
590   MachineRegisterInfo &MRI = MF.getRegInfo();
591   const DataLayout &DL = MF.getDataLayout();
592 
593   SmallVector<EVT, 4> SplitVTs;
594   SmallVector<uint64_t, 4> Offsets;
595   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
596 
597   assert(VRegs.size() == SplitVTs.size());
598 
599   unsigned NumValues = SplitVTs.size();
600   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
601   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
602   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
603 
604   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
605 
606   for (unsigned I = 0; I < NumValues; ++I) {
607     Register Addr;
608     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
609     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
610                                         MRI.getType(VRegs[I]).getSizeInBytes(),
611                                         commonAlignment(BaseAlign, Offsets[I]));
612     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
613   }
614 }
615 
616 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
617                                     ArrayRef<Register> VRegs,
618                                     Register DemoteReg) const {
619   MachineFunction &MF = MIRBuilder.getMF();
620   MachineRegisterInfo &MRI = MF.getRegInfo();
621   const DataLayout &DL = MF.getDataLayout();
622 
623   SmallVector<EVT, 4> SplitVTs;
624   SmallVector<uint64_t, 4> Offsets;
625   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
626 
627   assert(VRegs.size() == SplitVTs.size());
628 
629   unsigned NumValues = SplitVTs.size();
630   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
631   unsigned AS = DL.getAllocaAddrSpace();
632   LLT OffsetLLTy =
633       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
634 
635   MachinePointerInfo PtrInfo(AS);
636 
637   for (unsigned I = 0; I < NumValues; ++I) {
638     Register Addr;
639     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
640     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
641                                         MRI.getType(VRegs[I]).getSizeInBytes(),
642                                         commonAlignment(BaseAlign, Offsets[I]));
643     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
644   }
645 }
646 
647 void CallLowering::insertSRetIncomingArgument(
648     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
649     MachineRegisterInfo &MRI, const DataLayout &DL) const {
650   unsigned AS = DL.getAllocaAddrSpace();
651   DemoteReg = MRI.createGenericVirtualRegister(
652       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
653 
654   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
655 
656   SmallVector<EVT, 1> ValueVTs;
657   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
658 
659   // NOTE: Assume that a pointer won't get split into more than one VT.
660   assert(ValueVTs.size() == 1);
661 
662   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
663   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
664   DemoteArg.Flags[0].setSRet();
665   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
666 }
667 
668 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
669                                               const CallBase &CB,
670                                               CallLoweringInfo &Info) const {
671   const DataLayout &DL = MIRBuilder.getDataLayout();
672   Type *RetTy = CB.getType();
673   unsigned AS = DL.getAllocaAddrSpace();
674   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
675 
676   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
677       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
678 
679   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
680   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
681   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
682   DemoteArg.Flags[0].setSRet();
683 
684   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
685   Info.DemoteStackIndex = FI;
686   Info.DemoteRegister = DemoteReg;
687 }
688 
689 bool CallLowering::checkReturn(CCState &CCInfo,
690                                SmallVectorImpl<BaseArgInfo> &Outs,
691                                CCAssignFn *Fn) const {
692   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
693     MVT VT = MVT::getVT(Outs[I].Ty);
694     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
695       return false;
696   }
697   return true;
698 }
699 
700 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
701                                  AttributeList Attrs,
702                                  SmallVectorImpl<BaseArgInfo> &Outs,
703                                  const DataLayout &DL) const {
704   LLVMContext &Context = RetTy->getContext();
705   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
706 
707   SmallVector<EVT, 4> SplitVTs;
708   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
709   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
710 
711   for (EVT VT : SplitVTs) {
712     unsigned NumParts =
713         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
714     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
715     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
716 
717     for (unsigned I = 0; I < NumParts; ++I) {
718       Outs.emplace_back(PartTy, Flags);
719     }
720   }
721 }
722 
723 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
724   const auto &F = MF.getFunction();
725   Type *ReturnType = F.getReturnType();
726   CallingConv::ID CallConv = F.getCallingConv();
727 
728   SmallVector<BaseArgInfo, 4> SplitArgs;
729   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
730                 MF.getDataLayout());
731   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
732 }
733 
734 bool CallLowering::analyzeArgInfo(CCState &CCState,
735                                   SmallVectorImpl<ArgInfo> &Args,
736                                   CCAssignFn &AssignFnFixed,
737                                   CCAssignFn &AssignFnVarArg) const {
738   for (unsigned i = 0, e = Args.size(); i < e; ++i) {
739     MVT VT = MVT::getVT(Args[i].Ty);
740     CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
741     if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
742       // Bail out on anything we can't handle.
743       LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
744                         << " (arg number = " << i << "\n");
745       return false;
746     }
747   }
748   return true;
749 }
750 
751 bool CallLowering::parametersInCSRMatch(
752     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
753     const SmallVectorImpl<CCValAssign> &OutLocs,
754     const SmallVectorImpl<ArgInfo> &OutArgs) const {
755   for (unsigned i = 0; i < OutLocs.size(); ++i) {
756     auto &ArgLoc = OutLocs[i];
757     // If it's not a register, it's fine.
758     if (!ArgLoc.isRegLoc())
759       continue;
760 
761     MCRegister PhysReg = ArgLoc.getLocReg();
762 
763     // Only look at callee-saved registers.
764     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
765       continue;
766 
767     LLVM_DEBUG(
768         dbgs()
769         << "... Call has an argument passed in a callee-saved register.\n");
770 
771     // Check if it was copied from.
772     const ArgInfo &OutInfo = OutArgs[i];
773 
774     if (OutInfo.Regs.size() > 1) {
775       LLVM_DEBUG(
776           dbgs() << "... Cannot handle arguments in multiple registers.\n");
777       return false;
778     }
779 
780     // Check if we copy the register, walking through copies from virtual
781     // registers. Note that getDefIgnoringCopies does not ignore copies from
782     // physical registers.
783     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
784     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
785       LLVM_DEBUG(
786           dbgs()
787           << "... Parameter was not copied into a VReg, cannot tail call.\n");
788       return false;
789     }
790 
791     // Got a copy. Verify that it's the same as the register we want.
792     Register CopyRHS = RegDef->getOperand(1).getReg();
793     if (CopyRHS != PhysReg) {
794       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
795                            "VReg, cannot tail call.\n");
796       return false;
797     }
798   }
799 
800   return true;
801 }
802 
803 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
804                                      MachineFunction &MF,
805                                      SmallVectorImpl<ArgInfo> &InArgs,
806                                      CCAssignFn &CalleeAssignFnFixed,
807                                      CCAssignFn &CalleeAssignFnVarArg,
808                                      CCAssignFn &CallerAssignFnFixed,
809                                      CCAssignFn &CallerAssignFnVarArg) const {
810   const Function &F = MF.getFunction();
811   CallingConv::ID CalleeCC = Info.CallConv;
812   CallingConv::ID CallerCC = F.getCallingConv();
813 
814   if (CallerCC == CalleeCC)
815     return true;
816 
817   SmallVector<CCValAssign, 16> ArgLocs1;
818   CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
819   if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
820                       CalleeAssignFnVarArg))
821     return false;
822 
823   SmallVector<CCValAssign, 16> ArgLocs2;
824   CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
825   if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
826                       CalleeAssignFnVarArg))
827     return false;
828 
829   // We need the argument locations to match up exactly. If there's more in
830   // one than the other, then we are done.
831   if (ArgLocs1.size() != ArgLocs2.size())
832     return false;
833 
834   // Make sure that each location is passed in exactly the same way.
835   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
836     const CCValAssign &Loc1 = ArgLocs1[i];
837     const CCValAssign &Loc2 = ArgLocs2[i];
838 
839     // We need both of them to be the same. So if one is a register and one
840     // isn't, we're done.
841     if (Loc1.isRegLoc() != Loc2.isRegLoc())
842       return false;
843 
844     if (Loc1.isRegLoc()) {
845       // If they don't have the same register location, we're done.
846       if (Loc1.getLocReg() != Loc2.getLocReg())
847         return false;
848 
849       // They matched, so we can move to the next ArgLoc.
850       continue;
851     }
852 
853     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
854     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
855       return false;
856   }
857 
858   return true;
859 }
860 
861 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
862                                                     CCValAssign &VA,
863                                                     unsigned MaxSizeBits) {
864   LLT LocTy{VA.getLocVT()};
865   LLT ValTy = MRI.getType(ValReg);
866   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
867     return ValReg;
868 
869   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
870     if (MaxSizeBits <= ValTy.getSizeInBits())
871       return ValReg;
872     LocTy = LLT::scalar(MaxSizeBits);
873   }
874 
875   switch (VA.getLocInfo()) {
876   default: break;
877   case CCValAssign::Full:
878   case CCValAssign::BCvt:
879     // FIXME: bitconverting between vector types may or may not be a
880     // nop in big-endian situations.
881     return ValReg;
882   case CCValAssign::AExt: {
883     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
884     return MIB.getReg(0);
885   }
886   case CCValAssign::SExt: {
887     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
888     MIRBuilder.buildSExt(NewReg, ValReg);
889     return NewReg;
890   }
891   case CCValAssign::ZExt: {
892     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
893     MIRBuilder.buildZExt(NewReg, ValReg);
894     return NewReg;
895   }
896   }
897   llvm_unreachable("unable to extend register");
898 }
899 
900 void CallLowering::ValueHandler::anchor() {}
901