xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 20e866709882dbad73d9cbb99f056cd6ea113498)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 
26 #define DEBUG_TYPE "call-lowering"
27 
28 using namespace llvm;
29 
30 void CallLowering::anchor() {}
31 
32 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, ImmutableCallSite CS,
33                              ArrayRef<Register> ResRegs,
34                              ArrayRef<ArrayRef<Register>> ArgRegs,
35                              Register SwiftErrorVReg,
36                              std::function<unsigned()> GetCalleeReg) const {
37   CallLoweringInfo Info;
38   auto &DL = CS.getParent()->getParent()->getParent()->getDataLayout();
39 
40   // First step is to marshall all the function's parameters into the correct
41   // physregs and memory locations. Gather the sequence of argument types that
42   // we'll pass to the assigner function.
43   unsigned i = 0;
44   unsigned NumFixedArgs = CS.getFunctionType()->getNumParams();
45   for (auto &Arg : CS.args()) {
46     ArgInfo OrigArg{ArgRegs[i], Arg->getType(), ISD::ArgFlagsTy{},
47                     i < NumFixedArgs};
48     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CS);
49     Info.OrigArgs.push_back(OrigArg);
50     ++i;
51   }
52 
53   if (const Function *F = CS.getCalledFunction())
54     Info.Callee = MachineOperand::CreateGA(F, 0);
55   else
56     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
57 
58   Info.OrigRet = ArgInfo{ResRegs, CS.getType(), ISD::ArgFlagsTy{}};
59   if (!Info.OrigRet.Ty->isVoidTy())
60     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CS);
61 
62   Info.KnownCallees =
63       CS.getInstruction()->getMetadata(LLVMContext::MD_callees);
64   Info.CallConv = CS.getCallingConv();
65   Info.SwiftErrorVReg = SwiftErrorVReg;
66   Info.IsMustTailCall = CS.isMustTailCall();
67   Info.IsTailCall = CS.isTailCall() &&
68                     isInTailCallPosition(CS, MIRBuilder.getMF().getTarget());
69   Info.IsVarArg = CS.getFunctionType()->isVarArg();
70   return lowerCall(MIRBuilder, Info);
71 }
72 
73 template <typename FuncInfoTy>
74 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
75                                const DataLayout &DL,
76                                const FuncInfoTy &FuncInfo) const {
77   auto &Flags = Arg.Flags[0];
78   const AttributeList &Attrs = FuncInfo.getAttributes();
79   if (Attrs.hasAttribute(OpIdx, Attribute::ZExt))
80     Flags.setZExt();
81   if (Attrs.hasAttribute(OpIdx, Attribute::SExt))
82     Flags.setSExt();
83   if (Attrs.hasAttribute(OpIdx, Attribute::InReg))
84     Flags.setInReg();
85   if (Attrs.hasAttribute(OpIdx, Attribute::StructRet))
86     Flags.setSRet();
87   if (Attrs.hasAttribute(OpIdx, Attribute::SwiftSelf))
88     Flags.setSwiftSelf();
89   if (Attrs.hasAttribute(OpIdx, Attribute::SwiftError))
90     Flags.setSwiftError();
91   if (Attrs.hasAttribute(OpIdx, Attribute::ByVal))
92     Flags.setByVal();
93   if (Attrs.hasAttribute(OpIdx, Attribute::InAlloca))
94     Flags.setInAlloca();
95 
96   if (Flags.isByVal() || Flags.isInAlloca()) {
97     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
98 
99     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
100     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
101 
102     // For ByVal, alignment should be passed from FE.  BE will guess if
103     // this info is not there but there are cases it cannot get right.
104     unsigned FrameAlign;
105     if (FuncInfo.getParamAlignment(OpIdx - 2))
106       FrameAlign = FuncInfo.getParamAlignment(OpIdx - 2);
107     else
108       FrameAlign = getTLI()->getByValTypeAlignment(ElementTy, DL);
109     Flags.setByValAlign(FrameAlign);
110   }
111   if (Attrs.hasAttribute(OpIdx, Attribute::Nest))
112     Flags.setNest();
113   Flags.setOrigAlign(DL.getABITypeAlignment(Arg.Ty));
114 }
115 
116 template void
117 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
118                                     const DataLayout &DL,
119                                     const Function &FuncInfo) const;
120 
121 template void
122 CallLowering::setArgFlags<CallInst>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
123                                     const DataLayout &DL,
124                                     const CallInst &FuncInfo) const;
125 
126 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
127                                 MachineIRBuilder &MIRBuilder) const {
128   assert(SrcRegs.size() > 1 && "Nothing to pack");
129 
130   const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
131   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
132 
133   LLT PackedLLT = getLLTForType(*PackedTy, DL);
134 
135   SmallVector<LLT, 8> LLTs;
136   SmallVector<uint64_t, 8> Offsets;
137   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
138   assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
139 
140   Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
141   MIRBuilder.buildUndef(Dst);
142   for (unsigned i = 0; i < SrcRegs.size(); ++i) {
143     Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
144     MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
145     Dst = NewDst;
146   }
147 
148   return Dst;
149 }
150 
151 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
152                               Type *PackedTy,
153                               MachineIRBuilder &MIRBuilder) const {
154   assert(DstRegs.size() > 1 && "Nothing to unpack");
155 
156   const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
157 
158   SmallVector<LLT, 8> LLTs;
159   SmallVector<uint64_t, 8> Offsets;
160   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
161   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
162 
163   for (unsigned i = 0; i < DstRegs.size(); ++i)
164     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
165 }
166 
167 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
168                                      SmallVectorImpl<ArgInfo> &Args,
169                                      ValueHandler &Handler) const {
170   MachineFunction &MF = MIRBuilder.getMF();
171   const Function &F = MF.getFunction();
172   SmallVector<CCValAssign, 16> ArgLocs;
173   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
174   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler);
175 }
176 
177 bool CallLowering::handleAssignments(CCState &CCInfo,
178                                      SmallVectorImpl<CCValAssign> &ArgLocs,
179                                      MachineIRBuilder &MIRBuilder,
180                                      SmallVectorImpl<ArgInfo> &Args,
181                                      ValueHandler &Handler) const {
182   MachineFunction &MF = MIRBuilder.getMF();
183   const Function &F = MF.getFunction();
184   const DataLayout &DL = F.getParent()->getDataLayout();
185 
186   unsigned NumArgs = Args.size();
187   for (unsigned i = 0; i != NumArgs; ++i) {
188     MVT CurVT = MVT::getVT(Args[i].Ty);
189     if (Handler.assignArg(i, CurVT, CurVT, CCValAssign::Full, Args[i],
190                           Args[i].Flags[0], CCInfo)) {
191       if (!CurVT.isValid())
192         return false;
193       MVT NewVT = TLI->getRegisterTypeForCallingConv(
194           F.getContext(), F.getCallingConv(), EVT(CurVT));
195 
196       // If we need to split the type over multiple regs, check it's a scenario
197       // we currently support.
198       unsigned NumParts = TLI->getNumRegistersForCallingConv(
199           F.getContext(), F.getCallingConv(), CurVT);
200       if (NumParts > 1) {
201         if (CurVT.isVector())
202           return false;
203         // For now only handle exact splits.
204         if (NewVT.getSizeInBits() * NumParts != CurVT.getSizeInBits())
205           return false;
206       }
207 
208       // For incoming arguments (return values), we could have values in
209       // physregs (or memlocs) which we want to extract and copy to vregs.
210       // During this, we might have to deal with the LLT being split across
211       // multiple regs, so we have to record this information for later.
212       //
213       // If we have outgoing args, then we have the opposite case. We have a
214       // vreg with an LLT which we want to assign to a physical location, and
215       // we might have to record that the value has to be split later.
216       if (Handler.isIncomingArgumentHandler()) {
217         if (NumParts == 1) {
218           // Try to use the register type if we couldn't assign the VT.
219           if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
220                                 Args[i].Flags[0], CCInfo))
221             return false;
222         } else {
223           // We're handling an incoming arg which is split over multiple regs.
224           // E.g. returning an s128 on AArch64.
225           ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
226           Args[i].OrigRegs.push_back(Args[i].Regs[0]);
227           Args[i].Regs.clear();
228           Args[i].Flags.clear();
229           LLT NewLLT = getLLTForMVT(NewVT);
230           // For each split register, create and assign a vreg that will store
231           // the incoming component of the larger value. These will later be
232           // merged to form the final vreg.
233           for (unsigned Part = 0; Part < NumParts; ++Part) {
234             Register Reg =
235                 MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
236             ISD::ArgFlagsTy Flags = OrigFlags;
237             if (Part == 0) {
238               Flags.setSplit();
239             } else {
240               Flags.setOrigAlign(1);
241               if (Part == NumParts - 1)
242                 Flags.setSplitEnd();
243             }
244             Args[i].Regs.push_back(Reg);
245             Args[i].Flags.push_back(Flags);
246             if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
247                                   Args[i].Flags[Part], CCInfo)) {
248               // Still couldn't assign this smaller part type for some reason.
249               return false;
250             }
251           }
252         }
253       } else {
254         // Handling an outgoing arg that might need to be split.
255         if (NumParts < 2)
256           return false; // Don't know how to deal with this type combination.
257 
258         // This type is passed via multiple registers in the calling convention.
259         // We need to extract the individual parts.
260         Register LargeReg = Args[i].Regs[0];
261         LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
262         auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
263         assert(Unmerge->getNumOperands() == NumParts + 1);
264         ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
265         // We're going to replace the regs and flags with the split ones.
266         Args[i].Regs.clear();
267         Args[i].Flags.clear();
268         for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
269           ISD::ArgFlagsTy Flags = OrigFlags;
270           if (PartIdx == 0) {
271             Flags.setSplit();
272           } else {
273             Flags.setOrigAlign(1);
274             if (PartIdx == NumParts - 1)
275               Flags.setSplitEnd();
276           }
277           Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
278           Args[i].Flags.push_back(Flags);
279           if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
280                                 Args[i].Flags[PartIdx], CCInfo))
281             return false;
282         }
283       }
284     }
285   }
286 
287   for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
288     assert(j < ArgLocs.size() && "Skipped too many arg locs");
289 
290     CCValAssign &VA = ArgLocs[j];
291     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
292 
293     if (VA.needsCustom()) {
294       j += Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
295       continue;
296     }
297 
298     // FIXME: Pack registers if we have more than one.
299     Register ArgReg = Args[i].Regs[0];
300 
301     if (VA.isRegLoc()) {
302       MVT OrigVT = MVT::getVT(Args[i].Ty);
303       MVT VAVT = VA.getValVT();
304       if (Handler.isIncomingArgumentHandler() && VAVT != OrigVT) {
305         if (VAVT.getSizeInBits() < OrigVT.getSizeInBits()) {
306           // Expected to be multiple regs for a single incoming arg.
307           unsigned NumArgRegs = Args[i].Regs.size();
308           if (NumArgRegs < 2)
309             return false;
310 
311           assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
312                  "Too many regs for number of args");
313           for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
314             // There should be Regs.size() ArgLocs per argument.
315             VA = ArgLocs[j + Part];
316             Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
317           }
318           j += NumArgRegs - 1;
319           // Merge the split registers into the expected larger result vreg
320           // of the original call.
321           MIRBuilder.buildMerge(Args[i].OrigRegs[0], Args[i].Regs);
322           continue;
323         }
324         const LLT VATy(VAVT);
325         Register NewReg =
326             MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
327         Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
328         // If it's a vector type, we either need to truncate the elements
329         // or do an unmerge to get the lower block of elements.
330         if (VATy.isVector() &&
331             VATy.getNumElements() > OrigVT.getVectorNumElements()) {
332           const LLT OrigTy(OrigVT);
333           // Just handle the case where the VA type is 2 * original type.
334           if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
335             LLVM_DEBUG(dbgs()
336                        << "Incoming promoted vector arg has too many elts");
337             return false;
338           }
339           auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
340           MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0));
341         } else {
342           MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
343         }
344       } else if (!Handler.isIncomingArgumentHandler()) {
345         assert((j + (Args[i].Regs.size() - 1)) < ArgLocs.size() &&
346                "Too many regs for number of args");
347         // This is an outgoing argument that might have been split.
348         for (unsigned Part = 0; Part < Args[i].Regs.size(); ++Part) {
349           // There should be Regs.size() ArgLocs per argument.
350           VA = ArgLocs[j + Part];
351           Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
352         }
353         j += Args[i].Regs.size() - 1;
354       } else {
355         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
356       }
357     } else if (VA.isMemLoc()) {
358       MVT VT = MVT::getVT(Args[i].Ty);
359       unsigned Size = VT == MVT::iPTR ? DL.getPointerSize()
360                                       : alignTo(VT.getSizeInBits(), 8) / 8;
361       unsigned Offset = VA.getLocMemOffset();
362       MachinePointerInfo MPO;
363       Register StackAddr = Handler.getStackAddress(Size, Offset, MPO);
364       Handler.assignValueToAddress(ArgReg, StackAddr, Size, MPO, VA);
365     } else {
366       // FIXME: Support byvals and other weirdness
367       return false;
368     }
369   }
370   return true;
371 }
372 
373 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
374                                                     CCValAssign &VA) {
375   LLT LocTy{VA.getLocVT()};
376   if (LocTy.getSizeInBits() == MRI.getType(ValReg).getSizeInBits())
377     return ValReg;
378   switch (VA.getLocInfo()) {
379   default: break;
380   case CCValAssign::Full:
381   case CCValAssign::BCvt:
382     // FIXME: bitconverting between vector types may or may not be a
383     // nop in big-endian situations.
384     return ValReg;
385   case CCValAssign::AExt: {
386     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
387     return MIB->getOperand(0).getReg();
388   }
389   case CCValAssign::SExt: {
390     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
391     MIRBuilder.buildSExt(NewReg, ValReg);
392     return NewReg;
393   }
394   case CCValAssign::ZExt: {
395     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
396     MIRBuilder.buildZExt(NewReg, ValReg);
397     return NewReg;
398   }
399   }
400   llvm_unreachable("unable to extend register");
401 }
402 
403 void CallLowering::ValueHandler::anchor() {}
404