1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "call-lowering" 29 30 using namespace llvm; 31 32 void CallLowering::anchor() {} 33 34 /// Helper function which updates \p Flags when \p AttrFn returns true. 35 static void 36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 37 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 38 if (AttrFn(Attribute::SExt)) 39 Flags.setSExt(); 40 if (AttrFn(Attribute::ZExt)) 41 Flags.setZExt(); 42 if (AttrFn(Attribute::InReg)) 43 Flags.setInReg(); 44 if (AttrFn(Attribute::StructRet)) 45 Flags.setSRet(); 46 if (AttrFn(Attribute::Nest)) 47 Flags.setNest(); 48 if (AttrFn(Attribute::ByVal)) 49 Flags.setByVal(); 50 if (AttrFn(Attribute::Preallocated)) 51 Flags.setPreallocated(); 52 if (AttrFn(Attribute::InAlloca)) 53 Flags.setInAlloca(); 54 if (AttrFn(Attribute::Returned)) 55 Flags.setReturned(); 56 if (AttrFn(Attribute::SwiftSelf)) 57 Flags.setSwiftSelf(); 58 if (AttrFn(Attribute::SwiftAsync)) 59 Flags.setSwiftAsync(); 60 if (AttrFn(Attribute::SwiftError)) 61 Flags.setSwiftError(); 62 } 63 64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 65 unsigned ArgIdx) const { 66 ISD::ArgFlagsTy Flags; 67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 68 return Call.paramHasAttr(ArgIdx, Attr); 69 }); 70 return Flags; 71 } 72 73 ISD::ArgFlagsTy 74 CallLowering::getAttributesForReturn(const CallBase &Call) const { 75 ISD::ArgFlagsTy Flags; 76 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { 77 return Call.hasRetAttr(Attr); 78 }); 79 return Flags; 80 } 81 82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 83 const AttributeList &Attrs, 84 unsigned OpIdx) const { 85 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 86 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 87 }); 88 } 89 90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 91 ArrayRef<Register> ResRegs, 92 ArrayRef<ArrayRef<Register>> ArgRegs, 93 Register SwiftErrorVReg, 94 std::function<unsigned()> GetCalleeReg) const { 95 CallLoweringInfo Info; 96 const DataLayout &DL = MIRBuilder.getDataLayout(); 97 MachineFunction &MF = MIRBuilder.getMF(); 98 MachineRegisterInfo &MRI = MF.getRegInfo(); 99 bool CanBeTailCalled = CB.isTailCall() && 100 isInTailCallPosition(CB, MF.getTarget()) && 101 (MF.getFunction() 102 .getFnAttribute("disable-tail-calls") 103 .getValueAsString() != "true"); 104 105 CallingConv::ID CallConv = CB.getCallingConv(); 106 Type *RetTy = CB.getType(); 107 bool IsVarArg = CB.getFunctionType()->isVarArg(); 108 109 SmallVector<BaseArgInfo, 4> SplitArgs; 110 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 111 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 112 113 Info.IsConvergent = CB.isConvergent(); 114 115 if (!Info.CanLowerReturn) { 116 // Callee requires sret demotion. 117 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 118 119 // The sret demotion isn't compatible with tail-calls, since the sret 120 // argument points into the caller's stack frame. 121 CanBeTailCalled = false; 122 } 123 124 125 // First step is to marshall all the function's parameters into the correct 126 // physregs and memory locations. Gather the sequence of argument types that 127 // we'll pass to the assigner function. 128 unsigned i = 0; 129 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 130 for (const auto &Arg : CB.args()) { 131 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 132 i < NumFixedArgs}; 133 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 134 135 // If we have an explicit sret argument that is an Instruction, (i.e., it 136 // might point to function-local memory), we can't meaningfully tail-call. 137 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 138 CanBeTailCalled = false; 139 140 Info.OrigArgs.push_back(OrigArg); 141 ++i; 142 } 143 144 // Try looking through a bitcast from one function type to another. 145 // Commonly happens with calls to objc_msgSend(). 146 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 147 if (const Function *F = dyn_cast<Function>(CalleeV)) { 148 if (F->hasFnAttribute(Attribute::NonLazyBind)) { 149 LLT Ty = getLLTForType(*F->getType(), DL); 150 Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0); 151 Info.Callee = MachineOperand::CreateReg(Reg, false); 152 } else { 153 Info.Callee = MachineOperand::CreateGA(F, 0); 154 } 155 } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) { 156 // IR IFuncs and Aliases can't be forward declared (only defined), so the 157 // callee must be in the same TU and therefore we can direct-call it without 158 // worrying about it being out of range. 159 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0); 160 } else 161 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 162 163 Register ReturnHintAlignReg; 164 Align ReturnHintAlign; 165 166 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; 167 168 if (!Info.OrigRet.Ty->isVoidTy()) { 169 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 170 171 if (MaybeAlign Alignment = CB.getRetAlign()) { 172 if (*Alignment > Align(1)) { 173 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 174 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 175 ReturnHintAlign = *Alignment; 176 } 177 } 178 } 179 180 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 181 if (Bundle && CB.isIndirectCall()) { 182 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 183 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 184 } 185 186 Info.CB = &CB; 187 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 188 Info.CallConv = CallConv; 189 Info.SwiftErrorVReg = SwiftErrorVReg; 190 Info.IsMustTailCall = CB.isMustTailCall(); 191 Info.IsTailCall = CanBeTailCalled; 192 Info.IsVarArg = IsVarArg; 193 if (!lowerCall(MIRBuilder, Info)) 194 return false; 195 196 if (ReturnHintAlignReg && !Info.LoweredTailCall) { 197 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 198 ReturnHintAlign); 199 } 200 201 return true; 202 } 203 204 template <typename FuncInfoTy> 205 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 206 const DataLayout &DL, 207 const FuncInfoTy &FuncInfo) const { 208 auto &Flags = Arg.Flags[0]; 209 const AttributeList &Attrs = FuncInfo.getAttributes(); 210 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 211 212 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 213 if (PtrTy) { 214 Flags.setPointer(); 215 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 216 } 217 218 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 219 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 220 assert(OpIdx >= AttributeList::FirstArgIndex); 221 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 222 223 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 224 if (!ElementTy) 225 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 226 if (!ElementTy) 227 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 228 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 229 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 230 231 // For ByVal, alignment should be passed from FE. BE will guess if 232 // this info is not there but there are cases it cannot get right. 233 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 234 MemAlign = *ParamAlign; 235 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 236 MemAlign = *ParamAlign; 237 else 238 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 239 } else if (OpIdx >= AttributeList::FirstArgIndex) { 240 if (auto ParamAlign = 241 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 242 MemAlign = *ParamAlign; 243 } 244 Flags.setMemAlign(MemAlign); 245 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 246 247 // Don't try to use the returned attribute if the argument is marked as 248 // swiftself, since it won't be passed in x0. 249 if (Flags.isSwiftSelf()) 250 Flags.setReturned(false); 251 } 252 253 template void 254 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 255 const DataLayout &DL, 256 const Function &FuncInfo) const; 257 258 template void 259 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 260 const DataLayout &DL, 261 const CallBase &FuncInfo) const; 262 263 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 264 SmallVectorImpl<ArgInfo> &SplitArgs, 265 const DataLayout &DL, 266 CallingConv::ID CallConv, 267 SmallVectorImpl<uint64_t> *Offsets) const { 268 LLVMContext &Ctx = OrigArg.Ty->getContext(); 269 270 SmallVector<EVT, 4> SplitVTs; 271 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 272 273 if (SplitVTs.size() == 0) 274 return; 275 276 if (SplitVTs.size() == 1) { 277 // No splitting to do, but we want to replace the original type (e.g. [1 x 278 // double] -> double). 279 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 280 OrigArg.OrigArgIndex, OrigArg.Flags[0], 281 OrigArg.IsFixed, OrigArg.OrigValue); 282 return; 283 } 284 285 // Create one ArgInfo for each virtual register in the original ArgInfo. 286 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 287 288 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 289 OrigArg.Ty, CallConv, false, DL); 290 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 291 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 292 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 293 OrigArg.Flags[0], OrigArg.IsFixed); 294 if (NeedsRegBlock) 295 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 296 } 297 298 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 299 } 300 301 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 302 static MachineInstrBuilder 303 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 304 ArrayRef<Register> SrcRegs) { 305 MachineRegisterInfo &MRI = *B.getMRI(); 306 LLT LLTy = MRI.getType(DstRegs[0]); 307 LLT PartLLT = MRI.getType(SrcRegs[0]); 308 309 // Deal with v3s16 split into v2s16 310 LLT LCMTy = getCoverTy(LLTy, PartLLT); 311 if (LCMTy == LLTy) { 312 // Common case where no padding is needed. 313 assert(DstRegs.size() == 1); 314 return B.buildConcatVectors(DstRegs[0], SrcRegs); 315 } 316 317 // We need to create an unmerge to the result registers, which may require 318 // widening the original value. 319 Register UnmergeSrcReg; 320 if (LCMTy != PartLLT) { 321 assert(DstRegs.size() == 1); 322 return B.buildDeleteTrailingVectorElements( 323 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); 324 } else { 325 // We don't need to widen anything if we're extracting a scalar which was 326 // promoted to a vector e.g. s8 -> v4s8 -> s8 327 assert(SrcRegs.size() == 1); 328 UnmergeSrcReg = SrcRegs[0]; 329 } 330 331 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 332 333 SmallVector<Register, 8> PadDstRegs(NumDst); 334 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 335 336 // Create the excess dead defs for the unmerge. 337 for (int I = DstRegs.size(); I != NumDst; ++I) 338 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 339 340 if (PadDstRegs.size() == 1) 341 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 342 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 343 } 344 345 /// Create a sequence of instructions to combine pieces split into register 346 /// typed values to the original IR value. \p OrigRegs contains the destination 347 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 348 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 349 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 350 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 351 const ISD::ArgFlagsTy Flags) { 352 MachineRegisterInfo &MRI = *B.getMRI(); 353 354 if (PartLLT == LLTy) { 355 // We should have avoided introducing a new virtual register, and just 356 // directly assigned here. 357 assert(OrigRegs[0] == Regs[0]); 358 return; 359 } 360 361 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 362 Regs.size() == 1) { 363 B.buildBitcast(OrigRegs[0], Regs[0]); 364 return; 365 } 366 367 // A vector PartLLT needs extending to LLTy's element size. 368 // E.g. <2 x s64> = G_SEXT <2 x s32>. 369 if (PartLLT.isVector() == LLTy.isVector() && 370 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 371 (!PartLLT.isVector() || 372 PartLLT.getElementCount() == LLTy.getElementCount()) && 373 OrigRegs.size() == 1 && Regs.size() == 1) { 374 Register SrcReg = Regs[0]; 375 376 LLT LocTy = MRI.getType(SrcReg); 377 378 if (Flags.isSExt()) { 379 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 380 .getReg(0); 381 } else if (Flags.isZExt()) { 382 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 383 .getReg(0); 384 } 385 386 // Sometimes pointers are passed zero extended. 387 LLT OrigTy = MRI.getType(OrigRegs[0]); 388 if (OrigTy.isPointer()) { 389 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 390 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 391 return; 392 } 393 394 B.buildTrunc(OrigRegs[0], SrcReg); 395 return; 396 } 397 398 if (!LLTy.isVector() && !PartLLT.isVector()) { 399 assert(OrigRegs.size() == 1); 400 LLT OrigTy = MRI.getType(OrigRegs[0]); 401 402 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); 403 if (SrcSize == OrigTy.getSizeInBits()) 404 B.buildMergeValues(OrigRegs[0], Regs); 405 else { 406 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); 407 B.buildTrunc(OrigRegs[0], Widened); 408 } 409 410 return; 411 } 412 413 if (PartLLT.isVector()) { 414 assert(OrigRegs.size() == 1); 415 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 416 417 // If PartLLT is a mismatched vector in both number of elements and element 418 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 419 // have the same elt type, i.e. v4s32. 420 // TODO: Extend this coersion to element multiples other than just 2. 421 if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) && 422 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 423 Regs.size() == 1) { 424 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 425 .changeElementCount(PartLLT.getElementCount() * 2); 426 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 427 PartLLT = NewTy; 428 } 429 430 if (LLTy.getScalarType() == PartLLT.getElementType()) { 431 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 432 } else { 433 unsigned I = 0; 434 LLT GCDTy = getGCDType(LLTy, PartLLT); 435 436 // We are both splitting a vector, and bitcasting its element types. Cast 437 // the source pieces into the appropriate number of pieces with the result 438 // element type. 439 for (Register SrcReg : CastRegs) 440 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 441 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 442 } 443 444 return; 445 } 446 447 assert(LLTy.isVector() && !PartLLT.isVector()); 448 449 LLT DstEltTy = LLTy.getElementType(); 450 451 // Pointer information was discarded. We'll need to coerce some register types 452 // to avoid violating type constraints. 453 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 454 455 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 456 457 if (DstEltTy == PartLLT) { 458 // Vector was trivially scalarized. 459 460 if (RealDstEltTy.isPointer()) { 461 for (Register Reg : Regs) 462 MRI.setType(Reg, RealDstEltTy); 463 } 464 465 B.buildBuildVector(OrigRegs[0], Regs); 466 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 467 // Deal with vector with 64-bit elements decomposed to 32-bit 468 // registers. Need to create intermediate 64-bit elements. 469 SmallVector<Register, 8> EltMerges; 470 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 471 472 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 473 474 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 475 auto Merge = 476 B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt)); 477 // Fix the type in case this is really a vector of pointers. 478 MRI.setType(Merge.getReg(0), RealDstEltTy); 479 EltMerges.push_back(Merge.getReg(0)); 480 Regs = Regs.drop_front(PartsPerElt); 481 } 482 483 B.buildBuildVector(OrigRegs[0], EltMerges); 484 } else { 485 // Vector was split, and elements promoted to a wider type. 486 // FIXME: Should handle floating point promotions. 487 unsigned NumElts = LLTy.getNumElements(); 488 LLT BVType = LLT::fixed_vector(NumElts, PartLLT); 489 490 Register BuildVec; 491 if (NumElts == Regs.size()) 492 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0); 493 else { 494 // Vector elements are packed in the inputs. 495 // e.g. we have a <4 x s16> but 2 x s32 in regs. 496 assert(NumElts > Regs.size()); 497 LLT SrcEltTy = MRI.getType(Regs[0]); 498 499 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType(); 500 501 // Input registers contain packed elements. 502 // Determine how many elements per reg. 503 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0); 504 unsigned EltPerReg = 505 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits()); 506 507 SmallVector<Register, 0> BVRegs; 508 BVRegs.reserve(Regs.size() * EltPerReg); 509 for (Register R : Regs) { 510 auto Unmerge = B.buildUnmerge(OriginalEltTy, R); 511 for (unsigned K = 0; K < EltPerReg; ++K) 512 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0)); 513 } 514 515 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces 516 // for a <3 x s16> vector. We should have less than EltPerReg extra items. 517 if (BVRegs.size() > NumElts) { 518 assert((BVRegs.size() - NumElts) < EltPerReg); 519 BVRegs.truncate(NumElts); 520 } 521 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0); 522 } 523 B.buildTrunc(OrigRegs[0], BuildVec); 524 } 525 } 526 527 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 528 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 529 /// contain the type of scalar value extension if necessary. 530 /// 531 /// This is used for outgoing values (vregs to physregs) 532 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 533 Register SrcReg, LLT SrcTy, LLT PartTy, 534 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 535 // We could just insert a regular copy, but this is unreachable at the moment. 536 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 537 538 const TypeSize PartSize = PartTy.getSizeInBits(); 539 540 if (PartTy.isVector() == SrcTy.isVector() && 541 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 542 assert(DstRegs.size() == 1); 543 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 544 return; 545 } 546 547 if (SrcTy.isVector() && !PartTy.isVector() && 548 TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) { 549 // Vector was scalarized, and the elements extended. 550 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 551 for (int i = 0, e = DstRegs.size(); i != e; ++i) 552 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 553 return; 554 } 555 556 if (SrcTy.isVector() && PartTy.isVector() && 557 PartTy.getSizeInBits() == SrcTy.getSizeInBits() && 558 ElementCount::isKnownLT(SrcTy.getElementCount(), 559 PartTy.getElementCount())) { 560 // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32 561 Register DstReg = DstRegs.front(); 562 B.buildPadVectorWithUndefElements(DstReg, SrcReg); 563 return; 564 } 565 566 LLT GCDTy = getGCDType(SrcTy, PartTy); 567 if (GCDTy == PartTy) { 568 // If this already evenly divisible, we can create a simple unmerge. 569 B.buildUnmerge(DstRegs, SrcReg); 570 return; 571 } 572 573 MachineRegisterInfo &MRI = *B.getMRI(); 574 LLT DstTy = MRI.getType(DstRegs[0]); 575 LLT LCMTy = getCoverTy(SrcTy, PartTy); 576 577 if (PartTy.isVector() && LCMTy == PartTy) { 578 assert(DstRegs.size() == 1); 579 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 580 return; 581 } 582 583 const unsigned DstSize = DstTy.getSizeInBits(); 584 const unsigned SrcSize = SrcTy.getSizeInBits(); 585 unsigned CoveringSize = LCMTy.getSizeInBits(); 586 587 Register UnmergeSrc = SrcReg; 588 589 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 590 // For scalars, it's common to be able to use a simple extension. 591 if (SrcTy.isScalar() && DstTy.isScalar()) { 592 CoveringSize = alignTo(SrcSize, DstSize); 593 LLT CoverTy = LLT::scalar(CoveringSize); 594 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 595 } else { 596 // Widen to the common type. 597 // FIXME: This should respect the extend type 598 Register Undef = B.buildUndef(SrcTy).getReg(0); 599 SmallVector<Register, 8> MergeParts(1, SrcReg); 600 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 601 MergeParts.push_back(Undef); 602 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); 603 } 604 } 605 606 if (LCMTy.isVector() && CoveringSize != SrcSize) 607 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 608 609 B.buildUnmerge(DstRegs, UnmergeSrc); 610 } 611 612 bool CallLowering::determineAndHandleAssignments( 613 ValueHandler &Handler, ValueAssigner &Assigner, 614 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 615 CallingConv::ID CallConv, bool IsVarArg, 616 ArrayRef<Register> ThisReturnRegs) const { 617 MachineFunction &MF = MIRBuilder.getMF(); 618 const Function &F = MF.getFunction(); 619 SmallVector<CCValAssign, 16> ArgLocs; 620 621 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 622 if (!determineAssignments(Assigner, Args, CCInfo)) 623 return false; 624 625 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 626 ThisReturnRegs); 627 } 628 629 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 630 if (Flags.isSExt()) 631 return TargetOpcode::G_SEXT; 632 if (Flags.isZExt()) 633 return TargetOpcode::G_ZEXT; 634 return TargetOpcode::G_ANYEXT; 635 } 636 637 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 638 SmallVectorImpl<ArgInfo> &Args, 639 CCState &CCInfo) const { 640 LLVMContext &Ctx = CCInfo.getContext(); 641 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 642 643 unsigned NumArgs = Args.size(); 644 for (unsigned i = 0; i != NumArgs; ++i) { 645 EVT CurVT = EVT::getEVT(Args[i].Ty); 646 647 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 648 649 // If we need to split the type over multiple regs, check it's a scenario 650 // we currently support. 651 unsigned NumParts = 652 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 653 654 if (NumParts == 1) { 655 // Try to use the register type if we couldn't assign the VT. 656 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 657 Args[i].Flags[0], CCInfo)) 658 return false; 659 continue; 660 } 661 662 // For incoming arguments (physregs to vregs), we could have values in 663 // physregs (or memlocs) which we want to extract and copy to vregs. 664 // During this, we might have to deal with the LLT being split across 665 // multiple regs, so we have to record this information for later. 666 // 667 // If we have outgoing args, then we have the opposite case. We have a 668 // vreg with an LLT which we want to assign to a physical location, and 669 // we might have to record that the value has to be split later. 670 671 // We're handling an incoming arg which is split over multiple regs. 672 // E.g. passing an s128 on AArch64. 673 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 674 Args[i].Flags.clear(); 675 676 for (unsigned Part = 0; Part < NumParts; ++Part) { 677 ISD::ArgFlagsTy Flags = OrigFlags; 678 if (Part == 0) { 679 Flags.setSplit(); 680 } else { 681 Flags.setOrigAlign(Align(1)); 682 if (Part == NumParts - 1) 683 Flags.setSplitEnd(); 684 } 685 686 Args[i].Flags.push_back(Flags); 687 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 688 Args[i].Flags[Part], CCInfo)) { 689 // Still couldn't assign this smaller part type for some reason. 690 return false; 691 } 692 } 693 } 694 695 return true; 696 } 697 698 bool CallLowering::handleAssignments(ValueHandler &Handler, 699 SmallVectorImpl<ArgInfo> &Args, 700 CCState &CCInfo, 701 SmallVectorImpl<CCValAssign> &ArgLocs, 702 MachineIRBuilder &MIRBuilder, 703 ArrayRef<Register> ThisReturnRegs) const { 704 MachineFunction &MF = MIRBuilder.getMF(); 705 MachineRegisterInfo &MRI = MF.getRegInfo(); 706 const Function &F = MF.getFunction(); 707 const DataLayout &DL = F.getParent()->getDataLayout(); 708 709 const unsigned NumArgs = Args.size(); 710 711 // Stores thunks for outgoing register assignments. This is used so we delay 712 // generating register copies until mem loc assignments are done. We do this 713 // so that if the target is using the delayed stack protector feature, we can 714 // find the split point of the block accurately. E.g. if we have: 715 // G_STORE %val, %memloc 716 // $x0 = COPY %foo 717 // $x1 = COPY %bar 718 // CALL func 719 // ... then the split point for the block will correctly be at, and including, 720 // the copy to $x0. If instead the G_STORE instruction immediately precedes 721 // the CALL, then we'd prematurely choose the CALL as the split point, thus 722 // generating a split block with a CALL that uses undefined physregs. 723 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 724 725 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 726 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 727 CCValAssign &VA = ArgLocs[j]; 728 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 729 730 if (VA.needsCustom()) { 731 std::function<void()> Thunk; 732 unsigned NumArgRegs = Handler.assignCustomValue( 733 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); 734 if (Thunk) 735 DelayedOutgoingRegAssignments.emplace_back(Thunk); 736 if (!NumArgRegs) 737 return false; 738 j += (NumArgRegs - 1); 739 continue; 740 } 741 742 const MVT ValVT = VA.getValVT(); 743 const MVT LocVT = VA.getLocVT(); 744 745 const LLT LocTy(LocVT); 746 const LLT ValTy(ValVT); 747 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 748 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 749 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 750 751 // Expected to be multiple regs for a single incoming arg. 752 // There should be Regs.size() ArgLocs per argument. 753 // This should be the same as getNumRegistersForCallingConv 754 const unsigned NumParts = Args[i].Flags.size(); 755 756 // Now split the registers into the assigned types. 757 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 758 759 if (NumParts != 1 || NewLLT != OrigTy) { 760 // If we can't directly assign the register, we need one or more 761 // intermediate values. 762 Args[i].Regs.resize(NumParts); 763 764 // For each split register, create and assign a vreg that will store 765 // the incoming component of the larger value. These will later be 766 // merged to form the final vreg. 767 for (unsigned Part = 0; Part < NumParts; ++Part) 768 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 769 } 770 771 assert((j + (NumParts - 1)) < ArgLocs.size() && 772 "Too many regs for number of args"); 773 774 // Coerce into outgoing value types before register assignment. 775 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 776 assert(Args[i].OrigRegs.size() == 1); 777 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 778 ValTy, extendOpFromFlags(Args[i].Flags[0])); 779 } 780 781 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 782 for (unsigned Part = 0; Part < NumParts; ++Part) { 783 Register ArgReg = Args[i].Regs[Part]; 784 // There should be Regs.size() ArgLocs per argument. 785 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 786 CCValAssign &VA = ArgLocs[j + Idx]; 787 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 788 789 if (VA.isMemLoc() && !Flags.isByVal()) { 790 // Individual pieces may have been spilled to the stack and others 791 // passed in registers. 792 793 // TODO: The memory size may be larger than the value we need to 794 // store. We may need to adjust the offset for big endian targets. 795 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 796 797 MachinePointerInfo MPO; 798 Register StackAddr = Handler.getStackAddress( 799 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 800 801 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 802 continue; 803 } 804 805 if (VA.isMemLoc() && Flags.isByVal()) { 806 assert(Args[i].Regs.size() == 1 && 807 "didn't expect split byval pointer"); 808 809 if (Handler.isIncomingArgumentHandler()) { 810 // We just need to copy the frame index value to the pointer. 811 MachinePointerInfo MPO; 812 Register StackAddr = Handler.getStackAddress( 813 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 814 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 815 } else { 816 // For outgoing byval arguments, insert the implicit copy byval 817 // implies, such that writes in the callee do not modify the caller's 818 // value. 819 uint64_t MemSize = Flags.getByValSize(); 820 int64_t Offset = VA.getLocMemOffset(); 821 822 MachinePointerInfo DstMPO; 823 Register StackAddr = 824 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 825 826 MachinePointerInfo SrcMPO(Args[i].OrigValue); 827 if (!Args[i].OrigValue) { 828 // We still need to accurately track the stack address space if we 829 // don't know the underlying value. 830 const LLT PtrTy = MRI.getType(StackAddr); 831 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 832 } 833 834 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 835 inferAlignFromPtrInfo(MF, DstMPO)); 836 837 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 838 inferAlignFromPtrInfo(MF, SrcMPO)); 839 840 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 841 DstMPO, DstAlign, SrcMPO, SrcAlign, 842 MemSize, VA); 843 } 844 continue; 845 } 846 847 assert(!VA.needsCustom() && "custom loc should have been handled already"); 848 849 if (i == 0 && !ThisReturnRegs.empty() && 850 Handler.isIncomingArgumentHandler() && 851 isTypeIsValidForThisReturn(ValVT)) { 852 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 853 continue; 854 } 855 856 if (Handler.isIncomingArgumentHandler()) 857 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 858 else { 859 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 860 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 861 }); 862 } 863 } 864 865 // Now that all pieces have been assigned, re-pack the register typed values 866 // into the original value typed registers. 867 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 868 // Merge the split registers into the expected larger result vregs of 869 // the original call. 870 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 871 LocTy, Args[i].Flags[0]); 872 } 873 874 j += NumParts - 1; 875 } 876 for (auto &Fn : DelayedOutgoingRegAssignments) 877 Fn(); 878 879 return true; 880 } 881 882 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 883 ArrayRef<Register> VRegs, Register DemoteReg, 884 int FI) const { 885 MachineFunction &MF = MIRBuilder.getMF(); 886 MachineRegisterInfo &MRI = MF.getRegInfo(); 887 const DataLayout &DL = MF.getDataLayout(); 888 889 SmallVector<EVT, 4> SplitVTs; 890 SmallVector<uint64_t, 4> Offsets; 891 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 892 893 assert(VRegs.size() == SplitVTs.size()); 894 895 unsigned NumValues = SplitVTs.size(); 896 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 897 Type *RetPtrTy = 898 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); 899 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); 900 901 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 902 903 for (unsigned I = 0; I < NumValues; ++I) { 904 Register Addr; 905 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 906 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 907 MRI.getType(VRegs[I]), 908 commonAlignment(BaseAlign, Offsets[I])); 909 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 910 } 911 } 912 913 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 914 ArrayRef<Register> VRegs, 915 Register DemoteReg) const { 916 MachineFunction &MF = MIRBuilder.getMF(); 917 MachineRegisterInfo &MRI = MF.getRegInfo(); 918 const DataLayout &DL = MF.getDataLayout(); 919 920 SmallVector<EVT, 4> SplitVTs; 921 SmallVector<uint64_t, 4> Offsets; 922 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 923 924 assert(VRegs.size() == SplitVTs.size()); 925 926 unsigned NumValues = SplitVTs.size(); 927 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 928 unsigned AS = DL.getAllocaAddrSpace(); 929 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL); 930 931 MachinePointerInfo PtrInfo(AS); 932 933 for (unsigned I = 0; I < NumValues; ++I) { 934 Register Addr; 935 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 936 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 937 MRI.getType(VRegs[I]), 938 commonAlignment(BaseAlign, Offsets[I])); 939 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 940 } 941 } 942 943 void CallLowering::insertSRetIncomingArgument( 944 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 945 MachineRegisterInfo &MRI, const DataLayout &DL) const { 946 unsigned AS = DL.getAllocaAddrSpace(); 947 DemoteReg = MRI.createGenericVirtualRegister( 948 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 949 950 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 951 952 SmallVector<EVT, 1> ValueVTs; 953 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 954 955 // NOTE: Assume that a pointer won't get split into more than one VT. 956 assert(ValueVTs.size() == 1); 957 958 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 959 ArgInfo::NoArgIndex); 960 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 961 DemoteArg.Flags[0].setSRet(); 962 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 963 } 964 965 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 966 const CallBase &CB, 967 CallLoweringInfo &Info) const { 968 const DataLayout &DL = MIRBuilder.getDataLayout(); 969 Type *RetTy = CB.getType(); 970 unsigned AS = DL.getAllocaAddrSpace(); 971 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 972 973 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 974 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 975 976 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 977 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 978 ArgInfo::NoArgIndex); 979 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 980 DemoteArg.Flags[0].setSRet(); 981 982 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 983 Info.DemoteStackIndex = FI; 984 Info.DemoteRegister = DemoteReg; 985 } 986 987 bool CallLowering::checkReturn(CCState &CCInfo, 988 SmallVectorImpl<BaseArgInfo> &Outs, 989 CCAssignFn *Fn) const { 990 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 991 MVT VT = MVT::getVT(Outs[I].Ty); 992 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 993 return false; 994 } 995 return true; 996 } 997 998 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 999 AttributeList Attrs, 1000 SmallVectorImpl<BaseArgInfo> &Outs, 1001 const DataLayout &DL) const { 1002 LLVMContext &Context = RetTy->getContext(); 1003 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1004 1005 SmallVector<EVT, 4> SplitVTs; 1006 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 1007 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 1008 1009 for (EVT VT : SplitVTs) { 1010 unsigned NumParts = 1011 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 1012 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 1013 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 1014 1015 for (unsigned I = 0; I < NumParts; ++I) { 1016 Outs.emplace_back(PartTy, Flags); 1017 } 1018 } 1019 } 1020 1021 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 1022 const auto &F = MF.getFunction(); 1023 Type *ReturnType = F.getReturnType(); 1024 CallingConv::ID CallConv = F.getCallingConv(); 1025 1026 SmallVector<BaseArgInfo, 4> SplitArgs; 1027 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 1028 MF.getDataLayout()); 1029 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 1030 } 1031 1032 bool CallLowering::parametersInCSRMatch( 1033 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 1034 const SmallVectorImpl<CCValAssign> &OutLocs, 1035 const SmallVectorImpl<ArgInfo> &OutArgs) const { 1036 for (unsigned i = 0; i < OutLocs.size(); ++i) { 1037 const auto &ArgLoc = OutLocs[i]; 1038 // If it's not a register, it's fine. 1039 if (!ArgLoc.isRegLoc()) 1040 continue; 1041 1042 MCRegister PhysReg = ArgLoc.getLocReg(); 1043 1044 // Only look at callee-saved registers. 1045 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 1046 continue; 1047 1048 LLVM_DEBUG( 1049 dbgs() 1050 << "... Call has an argument passed in a callee-saved register.\n"); 1051 1052 // Check if it was copied from. 1053 const ArgInfo &OutInfo = OutArgs[i]; 1054 1055 if (OutInfo.Regs.size() > 1) { 1056 LLVM_DEBUG( 1057 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 1058 return false; 1059 } 1060 1061 // Check if we copy the register, walking through copies from virtual 1062 // registers. Note that getDefIgnoringCopies does not ignore copies from 1063 // physical registers. 1064 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 1065 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 1066 LLVM_DEBUG( 1067 dbgs() 1068 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1069 return false; 1070 } 1071 1072 // Got a copy. Verify that it's the same as the register we want. 1073 Register CopyRHS = RegDef->getOperand(1).getReg(); 1074 if (CopyRHS != PhysReg) { 1075 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1076 "VReg, cannot tail call.\n"); 1077 return false; 1078 } 1079 } 1080 1081 return true; 1082 } 1083 1084 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1085 MachineFunction &MF, 1086 SmallVectorImpl<ArgInfo> &InArgs, 1087 ValueAssigner &CalleeAssigner, 1088 ValueAssigner &CallerAssigner) const { 1089 const Function &F = MF.getFunction(); 1090 CallingConv::ID CalleeCC = Info.CallConv; 1091 CallingConv::ID CallerCC = F.getCallingConv(); 1092 1093 if (CallerCC == CalleeCC) 1094 return true; 1095 1096 SmallVector<CCValAssign, 16> ArgLocs1; 1097 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1098 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1099 return false; 1100 1101 SmallVector<CCValAssign, 16> ArgLocs2; 1102 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1103 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1104 return false; 1105 1106 // We need the argument locations to match up exactly. If there's more in 1107 // one than the other, then we are done. 1108 if (ArgLocs1.size() != ArgLocs2.size()) 1109 return false; 1110 1111 // Make sure that each location is passed in exactly the same way. 1112 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1113 const CCValAssign &Loc1 = ArgLocs1[i]; 1114 const CCValAssign &Loc2 = ArgLocs2[i]; 1115 1116 // We need both of them to be the same. So if one is a register and one 1117 // isn't, we're done. 1118 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1119 return false; 1120 1121 if (Loc1.isRegLoc()) { 1122 // If they don't have the same register location, we're done. 1123 if (Loc1.getLocReg() != Loc2.getLocReg()) 1124 return false; 1125 1126 // They matched, so we can move to the next ArgLoc. 1127 continue; 1128 } 1129 1130 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1131 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1132 return false; 1133 } 1134 1135 return true; 1136 } 1137 1138 LLT CallLowering::ValueHandler::getStackValueStoreType( 1139 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1140 const MVT ValVT = VA.getValVT(); 1141 if (ValVT != MVT::iPTR) { 1142 LLT ValTy(ValVT); 1143 1144 // We lost the pointeriness going through CCValAssign, so try to restore it 1145 // based on the flags. 1146 if (Flags.isPointer()) { 1147 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1148 ValTy.getScalarSizeInBits()); 1149 if (ValVT.isVector()) 1150 return LLT::vector(ValTy.getElementCount(), PtrTy); 1151 return PtrTy; 1152 } 1153 1154 return ValTy; 1155 } 1156 1157 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1158 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1159 } 1160 1161 void CallLowering::ValueHandler::copyArgumentMemory( 1162 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1163 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1164 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1165 CCValAssign &VA) const { 1166 MachineFunction &MF = MIRBuilder.getMF(); 1167 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1168 SrcPtrInfo, 1169 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1170 SrcAlign); 1171 1172 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1173 DstPtrInfo, 1174 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1175 MemSize, DstAlign); 1176 1177 const LLT PtrTy = MRI.getType(DstPtr); 1178 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1179 1180 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1181 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1182 } 1183 1184 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1185 const CCValAssign &VA, 1186 unsigned MaxSizeBits) { 1187 LLT LocTy{VA.getLocVT()}; 1188 LLT ValTy{VA.getValVT()}; 1189 1190 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1191 return ValReg; 1192 1193 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1194 if (MaxSizeBits <= ValTy.getSizeInBits()) 1195 return ValReg; 1196 LocTy = LLT::scalar(MaxSizeBits); 1197 } 1198 1199 const LLT ValRegTy = MRI.getType(ValReg); 1200 if (ValRegTy.isPointer()) { 1201 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1202 // we have to cast to do the extension. 1203 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1204 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1205 } 1206 1207 switch (VA.getLocInfo()) { 1208 default: break; 1209 case CCValAssign::Full: 1210 case CCValAssign::BCvt: 1211 // FIXME: bitconverting between vector types may or may not be a 1212 // nop in big-endian situations. 1213 return ValReg; 1214 case CCValAssign::AExt: { 1215 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1216 return MIB.getReg(0); 1217 } 1218 case CCValAssign::SExt: { 1219 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1220 MIRBuilder.buildSExt(NewReg, ValReg); 1221 return NewReg; 1222 } 1223 case CCValAssign::ZExt: { 1224 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1225 MIRBuilder.buildZExt(NewReg, ValReg); 1226 return NewReg; 1227 } 1228 } 1229 llvm_unreachable("unable to extend register"); 1230 } 1231 1232 void CallLowering::ValueAssigner::anchor() {} 1233 1234 Register CallLowering::IncomingValueHandler::buildExtensionHint( 1235 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { 1236 switch (VA.getLocInfo()) { 1237 case CCValAssign::LocInfo::ZExt: { 1238 return MIRBuilder 1239 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1240 NarrowTy.getScalarSizeInBits()) 1241 .getReg(0); 1242 } 1243 case CCValAssign::LocInfo::SExt: { 1244 return MIRBuilder 1245 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1246 NarrowTy.getScalarSizeInBits()) 1247 .getReg(0); 1248 break; 1249 } 1250 default: 1251 return SrcReg; 1252 } 1253 } 1254 1255 /// Check if we can use a basic COPY instruction between the two types. 1256 /// 1257 /// We're currently building on top of the infrastructure using MVT, which loses 1258 /// pointer information in the CCValAssign. We accept copies from physical 1259 /// registers that have been reported as integers if it's to an equivalent sized 1260 /// pointer LLT. 1261 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1262 if (SrcTy == DstTy) 1263 return true; 1264 1265 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1266 return false; 1267 1268 SrcTy = SrcTy.getScalarType(); 1269 DstTy = DstTy.getScalarType(); 1270 1271 return (SrcTy.isPointer() && DstTy.isScalar()) || 1272 (DstTy.isPointer() && SrcTy.isScalar()); 1273 } 1274 1275 void CallLowering::IncomingValueHandler::assignValueToReg( 1276 Register ValVReg, Register PhysReg, const CCValAssign &VA) { 1277 const MVT LocVT = VA.getLocVT(); 1278 const LLT LocTy(LocVT); 1279 const LLT RegTy = MRI.getType(ValVReg); 1280 1281 if (isCopyCompatibleType(RegTy, LocTy)) { 1282 MIRBuilder.buildCopy(ValVReg, PhysReg); 1283 return; 1284 } 1285 1286 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1287 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1288 MIRBuilder.buildTrunc(ValVReg, Hint); 1289 } 1290