xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 201572e34b2cb0861a60e00fd7dc2965e6af1587)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   if (AttrFn(Attribute::SExt))
39     Flags.setSExt();
40   if (AttrFn(Attribute::ZExt))
41     Flags.setZExt();
42   if (AttrFn(Attribute::InReg))
43     Flags.setInReg();
44   if (AttrFn(Attribute::StructRet))
45     Flags.setSRet();
46   if (AttrFn(Attribute::Nest))
47     Flags.setNest();
48   if (AttrFn(Attribute::ByVal))
49     Flags.setByVal();
50   if (AttrFn(Attribute::Preallocated))
51     Flags.setPreallocated();
52   if (AttrFn(Attribute::InAlloca))
53     Flags.setInAlloca();
54   if (AttrFn(Attribute::Returned))
55     Flags.setReturned();
56   if (AttrFn(Attribute::SwiftSelf))
57     Flags.setSwiftSelf();
58   if (AttrFn(Attribute::SwiftAsync))
59     Flags.setSwiftAsync();
60   if (AttrFn(Attribute::SwiftError))
61     Flags.setSwiftError();
62 }
63 
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65                                                      unsigned ArgIdx) const {
66   ISD::ArgFlagsTy Flags;
67   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68     return Call.paramHasAttr(ArgIdx, Attr);
69   });
70   return Flags;
71 }
72 
73 ISD::ArgFlagsTy
74 CallLowering::getAttributesForReturn(const CallBase &Call) const {
75   ISD::ArgFlagsTy Flags;
76   addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
77     return Call.hasRetAttr(Attr);
78   });
79   return Flags;
80 }
81 
82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
83                                              const AttributeList &Attrs,
84                                              unsigned OpIdx) const {
85   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
86     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
87   });
88 }
89 
90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
91                              ArrayRef<Register> ResRegs,
92                              ArrayRef<ArrayRef<Register>> ArgRegs,
93                              Register SwiftErrorVReg,
94                              std::function<unsigned()> GetCalleeReg) const {
95   CallLoweringInfo Info;
96   const DataLayout &DL = MIRBuilder.getDataLayout();
97   MachineFunction &MF = MIRBuilder.getMF();
98   MachineRegisterInfo &MRI = MF.getRegInfo();
99   bool CanBeTailCalled = CB.isTailCall() &&
100                          isInTailCallPosition(CB, MF.getTarget()) &&
101                          (MF.getFunction()
102                               .getFnAttribute("disable-tail-calls")
103                               .getValueAsString() != "true");
104 
105   CallingConv::ID CallConv = CB.getCallingConv();
106   Type *RetTy = CB.getType();
107   bool IsVarArg = CB.getFunctionType()->isVarArg();
108 
109   SmallVector<BaseArgInfo, 4> SplitArgs;
110   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
111   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
112 
113   Info.IsConvergent = CB.isConvergent();
114 
115   if (!Info.CanLowerReturn) {
116     // Callee requires sret demotion.
117     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
118 
119     // The sret demotion isn't compatible with tail-calls, since the sret
120     // argument points into the caller's stack frame.
121     CanBeTailCalled = false;
122   }
123 
124 
125   // First step is to marshall all the function's parameters into the correct
126   // physregs and memory locations. Gather the sequence of argument types that
127   // we'll pass to the assigner function.
128   unsigned i = 0;
129   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
130   for (const auto &Arg : CB.args()) {
131     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
132                     i < NumFixedArgs};
133     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
134 
135     // If we have an explicit sret argument that is an Instruction, (i.e., it
136     // might point to function-local memory), we can't meaningfully tail-call.
137     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
138       CanBeTailCalled = false;
139 
140     Info.OrigArgs.push_back(OrigArg);
141     ++i;
142   }
143 
144   // Try looking through a bitcast from one function type to another.
145   // Commonly happens with calls to objc_msgSend().
146   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
147   if (const Function *F = dyn_cast<Function>(CalleeV)) {
148     if (F->hasFnAttribute(Attribute::NonLazyBind)) {
149       LLT Ty = getLLTForType(*F->getType(), DL);
150       Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0);
151       Info.Callee = MachineOperand::CreateReg(Reg, false);
152     } else {
153       Info.Callee = MachineOperand::CreateGA(F, 0);
154     }
155   } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
156     // IR IFuncs and Aliases can't be forward declared (only defined), so the
157     // callee must be in the same TU and therefore we can direct-call it without
158     // worrying about it being out of range.
159     Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
160   } else
161     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
162 
163   Register ReturnHintAlignReg;
164   Align ReturnHintAlign;
165 
166   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
167 
168   if (!Info.OrigRet.Ty->isVoidTy()) {
169     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
170 
171     if (MaybeAlign Alignment = CB.getRetAlign()) {
172       if (*Alignment > Align(1)) {
173         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
174         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
175         ReturnHintAlign = *Alignment;
176       }
177     }
178   }
179 
180   auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
181   if (Bundle && CB.isIndirectCall()) {
182     Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
183     assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
184   }
185 
186   Info.CB = &CB;
187   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
188   Info.CallConv = CallConv;
189   Info.SwiftErrorVReg = SwiftErrorVReg;
190   Info.IsMustTailCall = CB.isMustTailCall();
191   Info.IsTailCall = CanBeTailCalled;
192   Info.IsVarArg = IsVarArg;
193   if (!lowerCall(MIRBuilder, Info))
194     return false;
195 
196   if (ReturnHintAlignReg && !Info.LoweredTailCall) {
197     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
198                                 ReturnHintAlign);
199   }
200 
201   return true;
202 }
203 
204 template <typename FuncInfoTy>
205 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
206                                const DataLayout &DL,
207                                const FuncInfoTy &FuncInfo) const {
208   auto &Flags = Arg.Flags[0];
209   const AttributeList &Attrs = FuncInfo.getAttributes();
210   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
211 
212   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
213   if (PtrTy) {
214     Flags.setPointer();
215     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
216   }
217 
218   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
219   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
220     assert(OpIdx >= AttributeList::FirstArgIndex);
221     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
222 
223     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
224     if (!ElementTy)
225       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
226     if (!ElementTy)
227       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
228     assert(ElementTy && "Must have byval, inalloca or preallocated type");
229     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
230 
231     // For ByVal, alignment should be passed from FE.  BE will guess if
232     // this info is not there but there are cases it cannot get right.
233     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
234       MemAlign = *ParamAlign;
235     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
236       MemAlign = *ParamAlign;
237     else
238       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
239   } else if (OpIdx >= AttributeList::FirstArgIndex) {
240     if (auto ParamAlign =
241             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
242       MemAlign = *ParamAlign;
243   }
244   Flags.setMemAlign(MemAlign);
245   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
246 
247   // Don't try to use the returned attribute if the argument is marked as
248   // swiftself, since it won't be passed in x0.
249   if (Flags.isSwiftSelf())
250     Flags.setReturned(false);
251 }
252 
253 template void
254 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
255                                     const DataLayout &DL,
256                                     const Function &FuncInfo) const;
257 
258 template void
259 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
260                                     const DataLayout &DL,
261                                     const CallBase &FuncInfo) const;
262 
263 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
264                                      SmallVectorImpl<ArgInfo> &SplitArgs,
265                                      const DataLayout &DL,
266                                      CallingConv::ID CallConv,
267                                      SmallVectorImpl<uint64_t> *Offsets) const {
268   LLVMContext &Ctx = OrigArg.Ty->getContext();
269 
270   SmallVector<EVT, 4> SplitVTs;
271   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
272 
273   if (SplitVTs.size() == 0)
274     return;
275 
276   if (SplitVTs.size() == 1) {
277     // No splitting to do, but we want to replace the original type (e.g. [1 x
278     // double] -> double).
279     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
280                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
281                            OrigArg.IsFixed, OrigArg.OrigValue);
282     return;
283   }
284 
285   // Create one ArgInfo for each virtual register in the original ArgInfo.
286   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
287 
288   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
289       OrigArg.Ty, CallConv, false, DL);
290   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
291     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
292     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
293                            OrigArg.Flags[0], OrigArg.IsFixed);
294     if (NeedsRegBlock)
295       SplitArgs.back().Flags[0].setInConsecutiveRegs();
296   }
297 
298   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
299 }
300 
301 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
302 static MachineInstrBuilder
303 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
304                             ArrayRef<Register> SrcRegs) {
305   MachineRegisterInfo &MRI = *B.getMRI();
306   LLT LLTy = MRI.getType(DstRegs[0]);
307   LLT PartLLT = MRI.getType(SrcRegs[0]);
308 
309   // Deal with v3s16 split into v2s16
310   LLT LCMTy = getCoverTy(LLTy, PartLLT);
311   if (LCMTy == LLTy) {
312     // Common case where no padding is needed.
313     assert(DstRegs.size() == 1);
314     return B.buildConcatVectors(DstRegs[0], SrcRegs);
315   }
316 
317   // We need to create an unmerge to the result registers, which may require
318   // widening the original value.
319   Register UnmergeSrcReg;
320   if (LCMTy != PartLLT) {
321     assert(DstRegs.size() == 1);
322     return B.buildDeleteTrailingVectorElements(
323         DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
324   } else {
325     // We don't need to widen anything if we're extracting a scalar which was
326     // promoted to a vector e.g. s8 -> v4s8 -> s8
327     assert(SrcRegs.size() == 1);
328     UnmergeSrcReg = SrcRegs[0];
329   }
330 
331   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
332 
333   SmallVector<Register, 8> PadDstRegs(NumDst);
334   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
335 
336   // Create the excess dead defs for the unmerge.
337   for (int I = DstRegs.size(); I != NumDst; ++I)
338     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
339 
340   if (PadDstRegs.size() == 1)
341     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
342   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
343 }
344 
345 /// Create a sequence of instructions to combine pieces split into register
346 /// typed values to the original IR value. \p OrigRegs contains the destination
347 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
348 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
349 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
350                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
351                               const ISD::ArgFlagsTy Flags) {
352   MachineRegisterInfo &MRI = *B.getMRI();
353 
354   if (PartLLT == LLTy) {
355     // We should have avoided introducing a new virtual register, and just
356     // directly assigned here.
357     assert(OrigRegs[0] == Regs[0]);
358     return;
359   }
360 
361   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
362       Regs.size() == 1) {
363     B.buildBitcast(OrigRegs[0], Regs[0]);
364     return;
365   }
366 
367   // A vector PartLLT needs extending to LLTy's element size.
368   // E.g. <2 x s64> = G_SEXT <2 x s32>.
369   if (PartLLT.isVector() == LLTy.isVector() &&
370       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
371       (!PartLLT.isVector() ||
372        PartLLT.getElementCount() == LLTy.getElementCount()) &&
373       OrigRegs.size() == 1 && Regs.size() == 1) {
374     Register SrcReg = Regs[0];
375 
376     LLT LocTy = MRI.getType(SrcReg);
377 
378     if (Flags.isSExt()) {
379       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
380                    .getReg(0);
381     } else if (Flags.isZExt()) {
382       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
383                    .getReg(0);
384     }
385 
386     // Sometimes pointers are passed zero extended.
387     LLT OrigTy = MRI.getType(OrigRegs[0]);
388     if (OrigTy.isPointer()) {
389       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
390       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
391       return;
392     }
393 
394     B.buildTrunc(OrigRegs[0], SrcReg);
395     return;
396   }
397 
398   if (!LLTy.isVector() && !PartLLT.isVector()) {
399     assert(OrigRegs.size() == 1);
400     LLT OrigTy = MRI.getType(OrigRegs[0]);
401 
402     unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
403     if (SrcSize == OrigTy.getSizeInBits())
404       B.buildMergeValues(OrigRegs[0], Regs);
405     else {
406       auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
407       B.buildTrunc(OrigRegs[0], Widened);
408     }
409 
410     return;
411   }
412 
413   if (PartLLT.isVector()) {
414     assert(OrigRegs.size() == 1);
415     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
416 
417     // If PartLLT is a mismatched vector in both number of elements and element
418     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
419     // have the same elt type, i.e. v4s32.
420     // TODO: Extend this coersion to element multiples other than just 2.
421     if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
422         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
423         Regs.size() == 1) {
424       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
425                       .changeElementCount(PartLLT.getElementCount() * 2);
426       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
427       PartLLT = NewTy;
428     }
429 
430     if (LLTy.getScalarType() == PartLLT.getElementType()) {
431       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
432     } else {
433       unsigned I = 0;
434       LLT GCDTy = getGCDType(LLTy, PartLLT);
435 
436       // We are both splitting a vector, and bitcasting its element types. Cast
437       // the source pieces into the appropriate number of pieces with the result
438       // element type.
439       for (Register SrcReg : CastRegs)
440         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
441       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
442     }
443 
444     return;
445   }
446 
447   assert(LLTy.isVector() && !PartLLT.isVector());
448 
449   LLT DstEltTy = LLTy.getElementType();
450 
451   // Pointer information was discarded. We'll need to coerce some register types
452   // to avoid violating type constraints.
453   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
454 
455   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
456 
457   if (DstEltTy == PartLLT) {
458     // Vector was trivially scalarized.
459 
460     if (RealDstEltTy.isPointer()) {
461       for (Register Reg : Regs)
462         MRI.setType(Reg, RealDstEltTy);
463     }
464 
465     B.buildBuildVector(OrigRegs[0], Regs);
466   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
467     // Deal with vector with 64-bit elements decomposed to 32-bit
468     // registers. Need to create intermediate 64-bit elements.
469     SmallVector<Register, 8> EltMerges;
470     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
471 
472     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
473 
474     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
475       auto Merge =
476           B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt));
477       // Fix the type in case this is really a vector of pointers.
478       MRI.setType(Merge.getReg(0), RealDstEltTy);
479       EltMerges.push_back(Merge.getReg(0));
480       Regs = Regs.drop_front(PartsPerElt);
481     }
482 
483     B.buildBuildVector(OrigRegs[0], EltMerges);
484   } else {
485     // Vector was split, and elements promoted to a wider type.
486     // FIXME: Should handle floating point promotions.
487     unsigned NumElts = LLTy.getNumElements();
488     LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
489 
490     Register BuildVec;
491     if (NumElts == Regs.size())
492       BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
493     else {
494       // Vector elements are packed in the inputs.
495       // e.g. we have a <4 x s16> but 2 x s32 in regs.
496       assert(NumElts > Regs.size());
497       LLT SrcEltTy = MRI.getType(Regs[0]);
498 
499       LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
500 
501       // Input registers contain packed elements.
502       // Determine how many elements per reg.
503       assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
504       unsigned EltPerReg =
505           (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
506 
507       SmallVector<Register, 0> BVRegs;
508       BVRegs.reserve(Regs.size() * EltPerReg);
509       for (Register R : Regs) {
510         auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
511         for (unsigned K = 0; K < EltPerReg; ++K)
512           BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
513       }
514 
515       // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
516       // for a <3 x s16> vector. We should have less than EltPerReg extra items.
517       if (BVRegs.size() > NumElts) {
518         assert((BVRegs.size() - NumElts) < EltPerReg);
519         BVRegs.truncate(NumElts);
520       }
521       BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
522     }
523     B.buildTrunc(OrigRegs[0], BuildVec);
524   }
525 }
526 
527 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
528 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
529 /// contain the type of scalar value extension if necessary.
530 ///
531 /// This is used for outgoing values (vregs to physregs)
532 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
533                             Register SrcReg, LLT SrcTy, LLT PartTy,
534                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
535   // We could just insert a regular copy, but this is unreachable at the moment.
536   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
537 
538   const TypeSize PartSize = PartTy.getSizeInBits();
539 
540   if (PartTy.isVector() == SrcTy.isVector() &&
541       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
542     assert(DstRegs.size() == 1);
543     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
544     return;
545   }
546 
547   if (SrcTy.isVector() && !PartTy.isVector() &&
548       TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
549     // Vector was scalarized, and the elements extended.
550     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
551     for (int i = 0, e = DstRegs.size(); i != e; ++i)
552       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
553     return;
554   }
555 
556   if (SrcTy.isVector() && PartTy.isVector() &&
557       PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
558       ElementCount::isKnownLT(SrcTy.getElementCount(),
559                               PartTy.getElementCount())) {
560     // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
561     Register DstReg = DstRegs.front();
562     B.buildPadVectorWithUndefElements(DstReg, SrcReg);
563     return;
564   }
565 
566   LLT GCDTy = getGCDType(SrcTy, PartTy);
567   if (GCDTy == PartTy) {
568     // If this already evenly divisible, we can create a simple unmerge.
569     B.buildUnmerge(DstRegs, SrcReg);
570     return;
571   }
572 
573   MachineRegisterInfo &MRI = *B.getMRI();
574   LLT DstTy = MRI.getType(DstRegs[0]);
575   LLT LCMTy = getCoverTy(SrcTy, PartTy);
576 
577   if (PartTy.isVector() && LCMTy == PartTy) {
578     assert(DstRegs.size() == 1);
579     B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
580     return;
581   }
582 
583   const unsigned DstSize = DstTy.getSizeInBits();
584   const unsigned SrcSize = SrcTy.getSizeInBits();
585   unsigned CoveringSize = LCMTy.getSizeInBits();
586 
587   Register UnmergeSrc = SrcReg;
588 
589   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
590     // For scalars, it's common to be able to use a simple extension.
591     if (SrcTy.isScalar() && DstTy.isScalar()) {
592       CoveringSize = alignTo(SrcSize, DstSize);
593       LLT CoverTy = LLT::scalar(CoveringSize);
594       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
595     } else {
596       // Widen to the common type.
597       // FIXME: This should respect the extend type
598       Register Undef = B.buildUndef(SrcTy).getReg(0);
599       SmallVector<Register, 8> MergeParts(1, SrcReg);
600       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
601         MergeParts.push_back(Undef);
602       UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
603     }
604   }
605 
606   if (LCMTy.isVector() && CoveringSize != SrcSize)
607     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
608 
609   B.buildUnmerge(DstRegs, UnmergeSrc);
610 }
611 
612 bool CallLowering::determineAndHandleAssignments(
613     ValueHandler &Handler, ValueAssigner &Assigner,
614     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
615     CallingConv::ID CallConv, bool IsVarArg,
616     ArrayRef<Register> ThisReturnRegs) const {
617   MachineFunction &MF = MIRBuilder.getMF();
618   const Function &F = MF.getFunction();
619   SmallVector<CCValAssign, 16> ArgLocs;
620 
621   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
622   if (!determineAssignments(Assigner, Args, CCInfo))
623     return false;
624 
625   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
626                            ThisReturnRegs);
627 }
628 
629 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
630   if (Flags.isSExt())
631     return TargetOpcode::G_SEXT;
632   if (Flags.isZExt())
633     return TargetOpcode::G_ZEXT;
634   return TargetOpcode::G_ANYEXT;
635 }
636 
637 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
638                                         SmallVectorImpl<ArgInfo> &Args,
639                                         CCState &CCInfo) const {
640   LLVMContext &Ctx = CCInfo.getContext();
641   const CallingConv::ID CallConv = CCInfo.getCallingConv();
642 
643   unsigned NumArgs = Args.size();
644   for (unsigned i = 0; i != NumArgs; ++i) {
645     EVT CurVT = EVT::getEVT(Args[i].Ty);
646 
647     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
648 
649     // If we need to split the type over multiple regs, check it's a scenario
650     // we currently support.
651     unsigned NumParts =
652         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
653 
654     if (NumParts == 1) {
655       // Try to use the register type if we couldn't assign the VT.
656       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
657                              Args[i].Flags[0], CCInfo))
658         return false;
659       continue;
660     }
661 
662     // For incoming arguments (physregs to vregs), we could have values in
663     // physregs (or memlocs) which we want to extract and copy to vregs.
664     // During this, we might have to deal with the LLT being split across
665     // multiple regs, so we have to record this information for later.
666     //
667     // If we have outgoing args, then we have the opposite case. We have a
668     // vreg with an LLT which we want to assign to a physical location, and
669     // we might have to record that the value has to be split later.
670 
671     // We're handling an incoming arg which is split over multiple regs.
672     // E.g. passing an s128 on AArch64.
673     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
674     Args[i].Flags.clear();
675 
676     for (unsigned Part = 0; Part < NumParts; ++Part) {
677       ISD::ArgFlagsTy Flags = OrigFlags;
678       if (Part == 0) {
679         Flags.setSplit();
680       } else {
681         Flags.setOrigAlign(Align(1));
682         if (Part == NumParts - 1)
683           Flags.setSplitEnd();
684       }
685 
686       Args[i].Flags.push_back(Flags);
687       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
688                              Args[i].Flags[Part], CCInfo)) {
689         // Still couldn't assign this smaller part type for some reason.
690         return false;
691       }
692     }
693   }
694 
695   return true;
696 }
697 
698 bool CallLowering::handleAssignments(ValueHandler &Handler,
699                                      SmallVectorImpl<ArgInfo> &Args,
700                                      CCState &CCInfo,
701                                      SmallVectorImpl<CCValAssign> &ArgLocs,
702                                      MachineIRBuilder &MIRBuilder,
703                                      ArrayRef<Register> ThisReturnRegs) const {
704   MachineFunction &MF = MIRBuilder.getMF();
705   MachineRegisterInfo &MRI = MF.getRegInfo();
706   const Function &F = MF.getFunction();
707   const DataLayout &DL = F.getParent()->getDataLayout();
708 
709   const unsigned NumArgs = Args.size();
710 
711   // Stores thunks for outgoing register assignments. This is used so we delay
712   // generating register copies until mem loc assignments are done. We do this
713   // so that if the target is using the delayed stack protector feature, we can
714   // find the split point of the block accurately. E.g. if we have:
715   // G_STORE %val, %memloc
716   // $x0 = COPY %foo
717   // $x1 = COPY %bar
718   // CALL func
719   // ... then the split point for the block will correctly be at, and including,
720   // the copy to $x0. If instead the G_STORE instruction immediately precedes
721   // the CALL, then we'd prematurely choose the CALL as the split point, thus
722   // generating a split block with a CALL that uses undefined physregs.
723   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
724 
725   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
726     assert(j < ArgLocs.size() && "Skipped too many arg locs");
727     CCValAssign &VA = ArgLocs[j];
728     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
729 
730     if (VA.needsCustom()) {
731       std::function<void()> Thunk;
732       unsigned NumArgRegs = Handler.assignCustomValue(
733           Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
734       if (Thunk)
735         DelayedOutgoingRegAssignments.emplace_back(Thunk);
736       if (!NumArgRegs)
737         return false;
738       j += (NumArgRegs - 1);
739       continue;
740     }
741 
742     const MVT ValVT = VA.getValVT();
743     const MVT LocVT = VA.getLocVT();
744 
745     const LLT LocTy(LocVT);
746     const LLT ValTy(ValVT);
747     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
748     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
749     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
750 
751     // Expected to be multiple regs for a single incoming arg.
752     // There should be Regs.size() ArgLocs per argument.
753     // This should be the same as getNumRegistersForCallingConv
754     const unsigned NumParts = Args[i].Flags.size();
755 
756     // Now split the registers into the assigned types.
757     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
758 
759     if (NumParts != 1 || NewLLT != OrigTy) {
760       // If we can't directly assign the register, we need one or more
761       // intermediate values.
762       Args[i].Regs.resize(NumParts);
763 
764       // For each split register, create and assign a vreg that will store
765       // the incoming component of the larger value. These will later be
766       // merged to form the final vreg.
767       for (unsigned Part = 0; Part < NumParts; ++Part)
768         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
769     }
770 
771     assert((j + (NumParts - 1)) < ArgLocs.size() &&
772            "Too many regs for number of args");
773 
774     // Coerce into outgoing value types before register assignment.
775     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
776       assert(Args[i].OrigRegs.size() == 1);
777       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
778                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
779     }
780 
781     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
782     for (unsigned Part = 0; Part < NumParts; ++Part) {
783       Register ArgReg = Args[i].Regs[Part];
784       // There should be Regs.size() ArgLocs per argument.
785       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
786       CCValAssign &VA = ArgLocs[j + Idx];
787       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
788 
789       if (VA.isMemLoc() && !Flags.isByVal()) {
790         // Individual pieces may have been spilled to the stack and others
791         // passed in registers.
792 
793         // TODO: The memory size may be larger than the value we need to
794         // store. We may need to adjust the offset for big endian targets.
795         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
796 
797         MachinePointerInfo MPO;
798         Register StackAddr = Handler.getStackAddress(
799             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
800 
801         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
802         continue;
803       }
804 
805       if (VA.isMemLoc() && Flags.isByVal()) {
806         assert(Args[i].Regs.size() == 1 &&
807                "didn't expect split byval pointer");
808 
809         if (Handler.isIncomingArgumentHandler()) {
810           // We just need to copy the frame index value to the pointer.
811           MachinePointerInfo MPO;
812           Register StackAddr = Handler.getStackAddress(
813               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
814           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
815         } else {
816           // For outgoing byval arguments, insert the implicit copy byval
817           // implies, such that writes in the callee do not modify the caller's
818           // value.
819           uint64_t MemSize = Flags.getByValSize();
820           int64_t Offset = VA.getLocMemOffset();
821 
822           MachinePointerInfo DstMPO;
823           Register StackAddr =
824               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
825 
826           MachinePointerInfo SrcMPO(Args[i].OrigValue);
827           if (!Args[i].OrigValue) {
828             // We still need to accurately track the stack address space if we
829             // don't know the underlying value.
830             const LLT PtrTy = MRI.getType(StackAddr);
831             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
832           }
833 
834           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
835                                     inferAlignFromPtrInfo(MF, DstMPO));
836 
837           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
838                                     inferAlignFromPtrInfo(MF, SrcMPO));
839 
840           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
841                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
842                                      MemSize, VA);
843         }
844         continue;
845       }
846 
847       assert(!VA.needsCustom() && "custom loc should have been handled already");
848 
849       if (i == 0 && !ThisReturnRegs.empty() &&
850           Handler.isIncomingArgumentHandler() &&
851           isTypeIsValidForThisReturn(ValVT)) {
852         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
853         continue;
854       }
855 
856       if (Handler.isIncomingArgumentHandler())
857         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
858       else {
859         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
860           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
861         });
862       }
863     }
864 
865     // Now that all pieces have been assigned, re-pack the register typed values
866     // into the original value typed registers.
867     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
868       // Merge the split registers into the expected larger result vregs of
869       // the original call.
870       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
871                         LocTy, Args[i].Flags[0]);
872     }
873 
874     j += NumParts - 1;
875   }
876   for (auto &Fn : DelayedOutgoingRegAssignments)
877     Fn();
878 
879   return true;
880 }
881 
882 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
883                                    ArrayRef<Register> VRegs, Register DemoteReg,
884                                    int FI) const {
885   MachineFunction &MF = MIRBuilder.getMF();
886   MachineRegisterInfo &MRI = MF.getRegInfo();
887   const DataLayout &DL = MF.getDataLayout();
888 
889   SmallVector<EVT, 4> SplitVTs;
890   SmallVector<uint64_t, 4> Offsets;
891   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
892 
893   assert(VRegs.size() == SplitVTs.size());
894 
895   unsigned NumValues = SplitVTs.size();
896   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
897   Type *RetPtrTy =
898       PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
899   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
900 
901   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
902 
903   for (unsigned I = 0; I < NumValues; ++I) {
904     Register Addr;
905     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
906     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
907                                         MRI.getType(VRegs[I]),
908                                         commonAlignment(BaseAlign, Offsets[I]));
909     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
910   }
911 }
912 
913 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
914                                     ArrayRef<Register> VRegs,
915                                     Register DemoteReg) const {
916   MachineFunction &MF = MIRBuilder.getMF();
917   MachineRegisterInfo &MRI = MF.getRegInfo();
918   const DataLayout &DL = MF.getDataLayout();
919 
920   SmallVector<EVT, 4> SplitVTs;
921   SmallVector<uint64_t, 4> Offsets;
922   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
923 
924   assert(VRegs.size() == SplitVTs.size());
925 
926   unsigned NumValues = SplitVTs.size();
927   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
928   unsigned AS = DL.getAllocaAddrSpace();
929   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
930 
931   MachinePointerInfo PtrInfo(AS);
932 
933   for (unsigned I = 0; I < NumValues; ++I) {
934     Register Addr;
935     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
936     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
937                                         MRI.getType(VRegs[I]),
938                                         commonAlignment(BaseAlign, Offsets[I]));
939     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
940   }
941 }
942 
943 void CallLowering::insertSRetIncomingArgument(
944     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
945     MachineRegisterInfo &MRI, const DataLayout &DL) const {
946   unsigned AS = DL.getAllocaAddrSpace();
947   DemoteReg = MRI.createGenericVirtualRegister(
948       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
949 
950   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
951 
952   SmallVector<EVT, 1> ValueVTs;
953   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
954 
955   // NOTE: Assume that a pointer won't get split into more than one VT.
956   assert(ValueVTs.size() == 1);
957 
958   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
959                     ArgInfo::NoArgIndex);
960   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
961   DemoteArg.Flags[0].setSRet();
962   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
963 }
964 
965 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
966                                               const CallBase &CB,
967                                               CallLoweringInfo &Info) const {
968   const DataLayout &DL = MIRBuilder.getDataLayout();
969   Type *RetTy = CB.getType();
970   unsigned AS = DL.getAllocaAddrSpace();
971   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
972 
973   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
974       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
975 
976   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
977   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
978                     ArgInfo::NoArgIndex);
979   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
980   DemoteArg.Flags[0].setSRet();
981 
982   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
983   Info.DemoteStackIndex = FI;
984   Info.DemoteRegister = DemoteReg;
985 }
986 
987 bool CallLowering::checkReturn(CCState &CCInfo,
988                                SmallVectorImpl<BaseArgInfo> &Outs,
989                                CCAssignFn *Fn) const {
990   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
991     MVT VT = MVT::getVT(Outs[I].Ty);
992     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
993       return false;
994   }
995   return true;
996 }
997 
998 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
999                                  AttributeList Attrs,
1000                                  SmallVectorImpl<BaseArgInfo> &Outs,
1001                                  const DataLayout &DL) const {
1002   LLVMContext &Context = RetTy->getContext();
1003   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1004 
1005   SmallVector<EVT, 4> SplitVTs;
1006   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1007   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1008 
1009   for (EVT VT : SplitVTs) {
1010     unsigned NumParts =
1011         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1012     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1013     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1014 
1015     for (unsigned I = 0; I < NumParts; ++I) {
1016       Outs.emplace_back(PartTy, Flags);
1017     }
1018   }
1019 }
1020 
1021 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
1022   const auto &F = MF.getFunction();
1023   Type *ReturnType = F.getReturnType();
1024   CallingConv::ID CallConv = F.getCallingConv();
1025 
1026   SmallVector<BaseArgInfo, 4> SplitArgs;
1027   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1028                 MF.getDataLayout());
1029   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1030 }
1031 
1032 bool CallLowering::parametersInCSRMatch(
1033     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1034     const SmallVectorImpl<CCValAssign> &OutLocs,
1035     const SmallVectorImpl<ArgInfo> &OutArgs) const {
1036   for (unsigned i = 0; i < OutLocs.size(); ++i) {
1037     const auto &ArgLoc = OutLocs[i];
1038     // If it's not a register, it's fine.
1039     if (!ArgLoc.isRegLoc())
1040       continue;
1041 
1042     MCRegister PhysReg = ArgLoc.getLocReg();
1043 
1044     // Only look at callee-saved registers.
1045     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1046       continue;
1047 
1048     LLVM_DEBUG(
1049         dbgs()
1050         << "... Call has an argument passed in a callee-saved register.\n");
1051 
1052     // Check if it was copied from.
1053     const ArgInfo &OutInfo = OutArgs[i];
1054 
1055     if (OutInfo.Regs.size() > 1) {
1056       LLVM_DEBUG(
1057           dbgs() << "... Cannot handle arguments in multiple registers.\n");
1058       return false;
1059     }
1060 
1061     // Check if we copy the register, walking through copies from virtual
1062     // registers. Note that getDefIgnoringCopies does not ignore copies from
1063     // physical registers.
1064     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1065     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1066       LLVM_DEBUG(
1067           dbgs()
1068           << "... Parameter was not copied into a VReg, cannot tail call.\n");
1069       return false;
1070     }
1071 
1072     // Got a copy. Verify that it's the same as the register we want.
1073     Register CopyRHS = RegDef->getOperand(1).getReg();
1074     if (CopyRHS != PhysReg) {
1075       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1076                            "VReg, cannot tail call.\n");
1077       return false;
1078     }
1079   }
1080 
1081   return true;
1082 }
1083 
1084 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1085                                      MachineFunction &MF,
1086                                      SmallVectorImpl<ArgInfo> &InArgs,
1087                                      ValueAssigner &CalleeAssigner,
1088                                      ValueAssigner &CallerAssigner) const {
1089   const Function &F = MF.getFunction();
1090   CallingConv::ID CalleeCC = Info.CallConv;
1091   CallingConv::ID CallerCC = F.getCallingConv();
1092 
1093   if (CallerCC == CalleeCC)
1094     return true;
1095 
1096   SmallVector<CCValAssign, 16> ArgLocs1;
1097   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1098   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1099     return false;
1100 
1101   SmallVector<CCValAssign, 16> ArgLocs2;
1102   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1103   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1104     return false;
1105 
1106   // We need the argument locations to match up exactly. If there's more in
1107   // one than the other, then we are done.
1108   if (ArgLocs1.size() != ArgLocs2.size())
1109     return false;
1110 
1111   // Make sure that each location is passed in exactly the same way.
1112   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1113     const CCValAssign &Loc1 = ArgLocs1[i];
1114     const CCValAssign &Loc2 = ArgLocs2[i];
1115 
1116     // We need both of them to be the same. So if one is a register and one
1117     // isn't, we're done.
1118     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1119       return false;
1120 
1121     if (Loc1.isRegLoc()) {
1122       // If they don't have the same register location, we're done.
1123       if (Loc1.getLocReg() != Loc2.getLocReg())
1124         return false;
1125 
1126       // They matched, so we can move to the next ArgLoc.
1127       continue;
1128     }
1129 
1130     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1131     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1132       return false;
1133   }
1134 
1135   return true;
1136 }
1137 
1138 LLT CallLowering::ValueHandler::getStackValueStoreType(
1139     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1140   const MVT ValVT = VA.getValVT();
1141   if (ValVT != MVT::iPTR) {
1142     LLT ValTy(ValVT);
1143 
1144     // We lost the pointeriness going through CCValAssign, so try to restore it
1145     // based on the flags.
1146     if (Flags.isPointer()) {
1147       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1148                                ValTy.getScalarSizeInBits());
1149       if (ValVT.isVector())
1150         return LLT::vector(ValTy.getElementCount(), PtrTy);
1151       return PtrTy;
1152     }
1153 
1154     return ValTy;
1155   }
1156 
1157   unsigned AddrSpace = Flags.getPointerAddrSpace();
1158   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1159 }
1160 
1161 void CallLowering::ValueHandler::copyArgumentMemory(
1162     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1163     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1164     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1165     CCValAssign &VA) const {
1166   MachineFunction &MF = MIRBuilder.getMF();
1167   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1168       SrcPtrInfo,
1169       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1170       SrcAlign);
1171 
1172   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1173       DstPtrInfo,
1174       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1175       MemSize, DstAlign);
1176 
1177   const LLT PtrTy = MRI.getType(DstPtr);
1178   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1179 
1180   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1181   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1182 }
1183 
1184 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1185                                                     const CCValAssign &VA,
1186                                                     unsigned MaxSizeBits) {
1187   LLT LocTy{VA.getLocVT()};
1188   LLT ValTy{VA.getValVT()};
1189 
1190   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1191     return ValReg;
1192 
1193   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1194     if (MaxSizeBits <= ValTy.getSizeInBits())
1195       return ValReg;
1196     LocTy = LLT::scalar(MaxSizeBits);
1197   }
1198 
1199   const LLT ValRegTy = MRI.getType(ValReg);
1200   if (ValRegTy.isPointer()) {
1201     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1202     // we have to cast to do the extension.
1203     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1204     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1205   }
1206 
1207   switch (VA.getLocInfo()) {
1208   default: break;
1209   case CCValAssign::Full:
1210   case CCValAssign::BCvt:
1211     // FIXME: bitconverting between vector types may or may not be a
1212     // nop in big-endian situations.
1213     return ValReg;
1214   case CCValAssign::AExt: {
1215     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1216     return MIB.getReg(0);
1217   }
1218   case CCValAssign::SExt: {
1219     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1220     MIRBuilder.buildSExt(NewReg, ValReg);
1221     return NewReg;
1222   }
1223   case CCValAssign::ZExt: {
1224     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1225     MIRBuilder.buildZExt(NewReg, ValReg);
1226     return NewReg;
1227   }
1228   }
1229   llvm_unreachable("unable to extend register");
1230 }
1231 
1232 void CallLowering::ValueAssigner::anchor() {}
1233 
1234 Register CallLowering::IncomingValueHandler::buildExtensionHint(
1235     const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1236   switch (VA.getLocInfo()) {
1237   case CCValAssign::LocInfo::ZExt: {
1238     return MIRBuilder
1239         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1240                          NarrowTy.getScalarSizeInBits())
1241         .getReg(0);
1242   }
1243   case CCValAssign::LocInfo::SExt: {
1244     return MIRBuilder
1245         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1246                          NarrowTy.getScalarSizeInBits())
1247         .getReg(0);
1248     break;
1249   }
1250   default:
1251     return SrcReg;
1252   }
1253 }
1254 
1255 /// Check if we can use a basic COPY instruction between the two types.
1256 ///
1257 /// We're currently building on top of the infrastructure using MVT, which loses
1258 /// pointer information in the CCValAssign. We accept copies from physical
1259 /// registers that have been reported as integers if it's to an equivalent sized
1260 /// pointer LLT.
1261 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1262   if (SrcTy == DstTy)
1263     return true;
1264 
1265   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1266     return false;
1267 
1268   SrcTy = SrcTy.getScalarType();
1269   DstTy = DstTy.getScalarType();
1270 
1271   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1272          (DstTy.isPointer() && SrcTy.isScalar());
1273 }
1274 
1275 void CallLowering::IncomingValueHandler::assignValueToReg(
1276     Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1277   const MVT LocVT = VA.getLocVT();
1278   const LLT LocTy(LocVT);
1279   const LLT RegTy = MRI.getType(ValVReg);
1280 
1281   if (isCopyCompatibleType(RegTy, LocTy)) {
1282     MIRBuilder.buildCopy(ValVReg, PhysReg);
1283     return;
1284   }
1285 
1286   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1287   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1288   MIRBuilder.buildTrunc(ValVReg, Hint);
1289 }
1290