1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftAsync)) 58 Flags.setSwiftAsync(); 59 if (AttrFn(Attribute::SwiftError)) 60 Flags.setSwiftError(); 61 } 62 63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 64 unsigned ArgIdx) const { 65 ISD::ArgFlagsTy Flags; 66 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 67 return Call.paramHasAttr(ArgIdx, Attr); 68 }); 69 return Flags; 70 } 71 72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 73 const AttributeList &Attrs, 74 unsigned OpIdx) const { 75 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 76 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 77 }); 78 } 79 80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 81 ArrayRef<Register> ResRegs, 82 ArrayRef<ArrayRef<Register>> ArgRegs, 83 Register SwiftErrorVReg, 84 std::function<unsigned()> GetCalleeReg) const { 85 CallLoweringInfo Info; 86 const DataLayout &DL = MIRBuilder.getDataLayout(); 87 MachineFunction &MF = MIRBuilder.getMF(); 88 bool CanBeTailCalled = CB.isTailCall() && 89 isInTailCallPosition(CB, MF.getTarget()) && 90 (MF.getFunction() 91 .getFnAttribute("disable-tail-calls") 92 .getValueAsString() != "true"); 93 94 CallingConv::ID CallConv = CB.getCallingConv(); 95 Type *RetTy = CB.getType(); 96 bool IsVarArg = CB.getFunctionType()->isVarArg(); 97 98 SmallVector<BaseArgInfo, 4> SplitArgs; 99 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 100 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 101 102 if (!Info.CanLowerReturn) { 103 // Callee requires sret demotion. 104 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 105 106 // The sret demotion isn't compatible with tail-calls, since the sret 107 // argument points into the caller's stack frame. 108 CanBeTailCalled = false; 109 } 110 111 // First step is to marshall all the function's parameters into the correct 112 // physregs and memory locations. Gather the sequence of argument types that 113 // we'll pass to the assigner function. 114 unsigned i = 0; 115 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 116 for (auto &Arg : CB.args()) { 117 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 118 i < NumFixedArgs}; 119 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 120 121 // If we have an explicit sret argument that is an Instruction, (i.e., it 122 // might point to function-local memory), we can't meaningfully tail-call. 123 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 124 CanBeTailCalled = false; 125 126 Info.OrigArgs.push_back(OrigArg); 127 ++i; 128 } 129 130 // Try looking through a bitcast from one function type to another. 131 // Commonly happens with calls to objc_msgSend(). 132 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 133 if (const Function *F = dyn_cast<Function>(CalleeV)) 134 Info.Callee = MachineOperand::CreateGA(F, 0); 135 else 136 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 137 138 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 139 if (!Info.OrigRet.Ty->isVoidTy()) 140 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 141 142 Info.CB = &CB; 143 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 144 Info.CallConv = CallConv; 145 Info.SwiftErrorVReg = SwiftErrorVReg; 146 Info.IsMustTailCall = CB.isMustTailCall(); 147 Info.IsTailCall = CanBeTailCalled; 148 Info.IsVarArg = IsVarArg; 149 return lowerCall(MIRBuilder, Info); 150 } 151 152 template <typename FuncInfoTy> 153 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 154 const DataLayout &DL, 155 const FuncInfoTy &FuncInfo) const { 156 auto &Flags = Arg.Flags[0]; 157 const AttributeList &Attrs = FuncInfo.getAttributes(); 158 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 159 160 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 161 if (PtrTy) { 162 Flags.setPointer(); 163 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 164 } 165 166 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 167 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 168 assert(OpIdx >= AttributeList::FirstArgIndex); 169 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 170 171 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 172 if (!ElementTy) 173 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 174 if (!ElementTy) 175 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 176 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 177 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 178 179 // For ByVal, alignment should be passed from FE. BE will guess if 180 // this info is not there but there are cases it cannot get right. 181 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 182 MemAlign = *ParamAlign; 183 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 184 MemAlign = *ParamAlign; 185 else 186 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 187 } else if (OpIdx >= AttributeList::FirstArgIndex) { 188 if (auto ParamAlign = 189 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 190 MemAlign = *ParamAlign; 191 } 192 Flags.setMemAlign(MemAlign); 193 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 194 195 // Don't try to use the returned attribute if the argument is marked as 196 // swiftself, since it won't be passed in x0. 197 if (Flags.isSwiftSelf()) 198 Flags.setReturned(false); 199 } 200 201 template void 202 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 203 const DataLayout &DL, 204 const Function &FuncInfo) const; 205 206 template void 207 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 208 const DataLayout &DL, 209 const CallBase &FuncInfo) const; 210 211 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 212 SmallVectorImpl<ArgInfo> &SplitArgs, 213 const DataLayout &DL, 214 CallingConv::ID CallConv, 215 SmallVectorImpl<uint64_t> *Offsets) const { 216 LLVMContext &Ctx = OrigArg.Ty->getContext(); 217 218 SmallVector<EVT, 4> SplitVTs; 219 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 220 221 if (SplitVTs.size() == 0) 222 return; 223 224 if (SplitVTs.size() == 1) { 225 // No splitting to do, but we want to replace the original type (e.g. [1 x 226 // double] -> double). 227 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 228 OrigArg.OrigArgIndex, OrigArg.Flags[0], 229 OrigArg.IsFixed, OrigArg.OrigValue); 230 return; 231 } 232 233 // Create one ArgInfo for each virtual register in the original ArgInfo. 234 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 235 236 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 237 OrigArg.Ty, CallConv, false, DL); 238 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 239 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 240 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 241 OrigArg.Flags[0], OrigArg.IsFixed); 242 if (NeedsRegBlock) 243 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 244 } 245 246 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 247 } 248 249 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 250 static MachineInstrBuilder 251 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 252 ArrayRef<Register> SrcRegs) { 253 MachineRegisterInfo &MRI = *B.getMRI(); 254 LLT LLTy = MRI.getType(DstRegs[0]); 255 LLT PartLLT = MRI.getType(SrcRegs[0]); 256 257 // Deal with v3s16 split into v2s16 258 LLT LCMTy = getLCMType(LLTy, PartLLT); 259 if (LCMTy == LLTy) { 260 // Common case where no padding is needed. 261 assert(DstRegs.size() == 1); 262 return B.buildConcatVectors(DstRegs[0], SrcRegs); 263 } 264 265 // We need to create an unmerge to the result registers, which may require 266 // widening the original value. 267 Register UnmergeSrcReg; 268 if (LCMTy != PartLLT) { 269 // e.g. A <3 x s16> value was split to <2 x s16> 270 // %register_value0:_(<2 x s16>) 271 // %register_value1:_(<2 x s16>) 272 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 273 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 274 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 275 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 276 Register Undef = B.buildUndef(PartLLT).getReg(0); 277 278 // Build vector of undefs. 279 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 280 281 // Replace the first sources with the real registers. 282 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 283 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 284 } else { 285 // We don't need to widen anything if we're extracting a scalar which was 286 // promoted to a vector e.g. s8 -> v4s8 -> s8 287 assert(SrcRegs.size() == 1); 288 UnmergeSrcReg = SrcRegs[0]; 289 } 290 291 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 292 293 SmallVector<Register, 8> PadDstRegs(NumDst); 294 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 295 296 // Create the excess dead defs for the unmerge. 297 for (int I = DstRegs.size(); I != NumDst; ++I) 298 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 299 300 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 301 } 302 303 /// Create a sequence of instructions to combine pieces split into register 304 /// typed values to the original IR value. \p OrigRegs contains the destination 305 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 306 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 307 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 308 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 309 const ISD::ArgFlagsTy Flags) { 310 MachineRegisterInfo &MRI = *B.getMRI(); 311 312 if (PartLLT == LLTy) { 313 // We should have avoided introducing a new virtual register, and just 314 // directly assigned here. 315 assert(OrigRegs[0] == Regs[0]); 316 return; 317 } 318 319 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 320 Regs.size() == 1) { 321 B.buildBitcast(OrigRegs[0], Regs[0]); 322 return; 323 } 324 325 // A vector PartLLT needs extending to LLTy's element size. 326 // E.g. <2 x s64> = G_SEXT <2 x s32>. 327 if (PartLLT.isVector() == LLTy.isVector() && 328 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 329 (!PartLLT.isVector() || 330 PartLLT.getNumElements() == LLTy.getNumElements()) && 331 OrigRegs.size() == 1 && Regs.size() == 1) { 332 Register SrcReg = Regs[0]; 333 334 LLT LocTy = MRI.getType(SrcReg); 335 336 if (Flags.isSExt()) { 337 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 338 .getReg(0); 339 } else if (Flags.isZExt()) { 340 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 341 .getReg(0); 342 } 343 344 // Sometimes pointers are passed zero extended. 345 LLT OrigTy = MRI.getType(OrigRegs[0]); 346 if (OrigTy.isPointer()) { 347 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 348 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 349 return; 350 } 351 352 B.buildTrunc(OrigRegs[0], SrcReg); 353 return; 354 } 355 356 if (!LLTy.isVector() && !PartLLT.isVector()) { 357 assert(OrigRegs.size() == 1); 358 LLT OrigTy = MRI.getType(OrigRegs[0]); 359 360 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 361 if (SrcSize == OrigTy.getSizeInBits()) 362 B.buildMerge(OrigRegs[0], Regs); 363 else { 364 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 365 B.buildTrunc(OrigRegs[0], Widened); 366 } 367 368 return; 369 } 370 371 if (PartLLT.isVector()) { 372 assert(OrigRegs.size() == 1); 373 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 374 375 // If PartLLT is a mismatched vector in both number of elements and element 376 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 377 // have the same elt type, i.e. v4s32. 378 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 379 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 380 Regs.size() == 1) { 381 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 382 .changeElementCount(PartLLT.getElementCount() * 2); 383 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 384 PartLLT = NewTy; 385 } 386 387 if (LLTy.getScalarType() == PartLLT.getElementType()) { 388 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 389 } else { 390 unsigned I = 0; 391 LLT GCDTy = getGCDType(LLTy, PartLLT); 392 393 // We are both splitting a vector, and bitcasting its element types. Cast 394 // the source pieces into the appropriate number of pieces with the result 395 // element type. 396 for (Register SrcReg : CastRegs) 397 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 398 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 399 } 400 401 return; 402 } 403 404 assert(LLTy.isVector() && !PartLLT.isVector()); 405 406 LLT DstEltTy = LLTy.getElementType(); 407 408 // Pointer information was discarded. We'll need to coerce some register types 409 // to avoid violating type constraints. 410 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 411 412 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 413 414 if (DstEltTy == PartLLT) { 415 // Vector was trivially scalarized. 416 417 if (RealDstEltTy.isPointer()) { 418 for (Register Reg : Regs) 419 MRI.setType(Reg, RealDstEltTy); 420 } 421 422 B.buildBuildVector(OrigRegs[0], Regs); 423 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 424 // Deal with vector with 64-bit elements decomposed to 32-bit 425 // registers. Need to create intermediate 64-bit elements. 426 SmallVector<Register, 8> EltMerges; 427 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 428 429 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 430 431 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 432 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 433 // Fix the type in case this is really a vector of pointers. 434 MRI.setType(Merge.getReg(0), RealDstEltTy); 435 EltMerges.push_back(Merge.getReg(0)); 436 Regs = Regs.drop_front(PartsPerElt); 437 } 438 439 B.buildBuildVector(OrigRegs[0], EltMerges); 440 } else { 441 // Vector was split, and elements promoted to a wider type. 442 // FIXME: Should handle floating point promotions. 443 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 444 auto BV = B.buildBuildVector(BVType, Regs); 445 B.buildTrunc(OrigRegs[0], BV); 446 } 447 } 448 449 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 450 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 451 /// contain the type of scalar value extension if necessary. 452 /// 453 /// This is used for outgoing values (vregs to physregs) 454 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 455 Register SrcReg, LLT SrcTy, LLT PartTy, 456 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 457 // We could just insert a regular copy, but this is unreachable at the moment. 458 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 459 460 const unsigned PartSize = PartTy.getSizeInBits(); 461 462 if (PartTy.isVector() == SrcTy.isVector() && 463 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 464 assert(DstRegs.size() == 1); 465 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 466 return; 467 } 468 469 if (SrcTy.isVector() && !PartTy.isVector() && 470 PartSize > SrcTy.getElementType().getSizeInBits()) { 471 // Vector was scalarized, and the elements extended. 472 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 473 for (int i = 0, e = DstRegs.size(); i != e; ++i) 474 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 475 return; 476 } 477 478 LLT GCDTy = getGCDType(SrcTy, PartTy); 479 if (GCDTy == PartTy) { 480 // If this already evenly divisible, we can create a simple unmerge. 481 B.buildUnmerge(DstRegs, SrcReg); 482 return; 483 } 484 485 MachineRegisterInfo &MRI = *B.getMRI(); 486 LLT DstTy = MRI.getType(DstRegs[0]); 487 LLT LCMTy = getLCMType(SrcTy, PartTy); 488 489 const unsigned DstSize = DstTy.getSizeInBits(); 490 const unsigned SrcSize = SrcTy.getSizeInBits(); 491 unsigned CoveringSize = LCMTy.getSizeInBits(); 492 493 Register UnmergeSrc = SrcReg; 494 495 if (CoveringSize != SrcSize) { 496 // For scalars, it's common to be able to use a simple extension. 497 if (SrcTy.isScalar() && DstTy.isScalar()) { 498 CoveringSize = alignTo(SrcSize, DstSize); 499 LLT CoverTy = LLT::scalar(CoveringSize); 500 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 501 } else { 502 // Widen to the common type. 503 // FIXME: This should respect the extend type 504 Register Undef = B.buildUndef(SrcTy).getReg(0); 505 SmallVector<Register, 8> MergeParts(1, SrcReg); 506 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 507 MergeParts.push_back(Undef); 508 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 509 } 510 } 511 512 // Unmerge to the original registers and pad with dead defs. 513 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 514 for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize; 515 Size += DstSize) { 516 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 517 } 518 519 B.buildUnmerge(UnmergeResults, UnmergeSrc); 520 } 521 522 bool CallLowering::determineAndHandleAssignments( 523 ValueHandler &Handler, ValueAssigner &Assigner, 524 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 525 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const { 526 MachineFunction &MF = MIRBuilder.getMF(); 527 const Function &F = MF.getFunction(); 528 SmallVector<CCValAssign, 16> ArgLocs; 529 530 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 531 if (!determineAssignments(Assigner, Args, CCInfo)) 532 return false; 533 534 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 535 ThisReturnReg); 536 } 537 538 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 539 if (Flags.isSExt()) 540 return TargetOpcode::G_SEXT; 541 if (Flags.isZExt()) 542 return TargetOpcode::G_ZEXT; 543 return TargetOpcode::G_ANYEXT; 544 } 545 546 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 547 SmallVectorImpl<ArgInfo> &Args, 548 CCState &CCInfo) const { 549 LLVMContext &Ctx = CCInfo.getContext(); 550 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 551 552 unsigned NumArgs = Args.size(); 553 for (unsigned i = 0; i != NumArgs; ++i) { 554 EVT CurVT = EVT::getEVT(Args[i].Ty); 555 556 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 557 558 // If we need to split the type over multiple regs, check it's a scenario 559 // we currently support. 560 unsigned NumParts = 561 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 562 563 if (NumParts == 1) { 564 // Try to use the register type if we couldn't assign the VT. 565 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 566 Args[i].Flags[0], CCInfo)) 567 return false; 568 continue; 569 } 570 571 // For incoming arguments (physregs to vregs), we could have values in 572 // physregs (or memlocs) which we want to extract and copy to vregs. 573 // During this, we might have to deal with the LLT being split across 574 // multiple regs, so we have to record this information for later. 575 // 576 // If we have outgoing args, then we have the opposite case. We have a 577 // vreg with an LLT which we want to assign to a physical location, and 578 // we might have to record that the value has to be split later. 579 580 // We're handling an incoming arg which is split over multiple regs. 581 // E.g. passing an s128 on AArch64. 582 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 583 Args[i].Flags.clear(); 584 585 for (unsigned Part = 0; Part < NumParts; ++Part) { 586 ISD::ArgFlagsTy Flags = OrigFlags; 587 if (Part == 0) { 588 Flags.setSplit(); 589 } else { 590 Flags.setOrigAlign(Align(1)); 591 if (Part == NumParts - 1) 592 Flags.setSplitEnd(); 593 } 594 595 Args[i].Flags.push_back(Flags); 596 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 597 Args[i].Flags[Part], CCInfo)) { 598 // Still couldn't assign this smaller part type for some reason. 599 return false; 600 } 601 } 602 } 603 604 return true; 605 } 606 607 bool CallLowering::handleAssignments(ValueHandler &Handler, 608 SmallVectorImpl<ArgInfo> &Args, 609 CCState &CCInfo, 610 SmallVectorImpl<CCValAssign> &ArgLocs, 611 MachineIRBuilder &MIRBuilder, 612 Register ThisReturnReg) const { 613 MachineFunction &MF = MIRBuilder.getMF(); 614 MachineRegisterInfo &MRI = MF.getRegInfo(); 615 const Function &F = MF.getFunction(); 616 const DataLayout &DL = F.getParent()->getDataLayout(); 617 618 const unsigned NumArgs = Args.size(); 619 620 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 621 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 622 CCValAssign &VA = ArgLocs[j]; 623 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 624 625 if (VA.needsCustom()) { 626 unsigned NumArgRegs = 627 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 628 if (!NumArgRegs) 629 return false; 630 j += NumArgRegs; 631 continue; 632 } 633 634 const MVT ValVT = VA.getValVT(); 635 const MVT LocVT = VA.getLocVT(); 636 637 const LLT LocTy(LocVT); 638 const LLT ValTy(ValVT); 639 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 640 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 641 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 642 643 // Expected to be multiple regs for a single incoming arg. 644 // There should be Regs.size() ArgLocs per argument. 645 // This should be the same as getNumRegistersForCallingConv 646 const unsigned NumParts = Args[i].Flags.size(); 647 648 // Now split the registers into the assigned types. 649 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 650 651 if (NumParts != 1 || NewLLT != OrigTy) { 652 // If we can't directly assign the register, we need one or more 653 // intermediate values. 654 Args[i].Regs.resize(NumParts); 655 656 // For each split register, create and assign a vreg that will store 657 // the incoming component of the larger value. These will later be 658 // merged to form the final vreg. 659 for (unsigned Part = 0; Part < NumParts; ++Part) 660 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 661 } 662 663 assert((j + (NumParts - 1)) < ArgLocs.size() && 664 "Too many regs for number of args"); 665 666 // Coerce into outgoing value types before register assignment. 667 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 668 assert(Args[i].OrigRegs.size() == 1); 669 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 670 ValTy, extendOpFromFlags(Args[i].Flags[0])); 671 } 672 673 for (unsigned Part = 0; Part < NumParts; ++Part) { 674 Register ArgReg = Args[i].Regs[Part]; 675 // There should be Regs.size() ArgLocs per argument. 676 VA = ArgLocs[j + Part]; 677 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 678 679 if (VA.isMemLoc() && !Flags.isByVal()) { 680 // Individual pieces may have been spilled to the stack and others 681 // passed in registers. 682 683 // TODO: The memory size may be larger than the value we need to 684 // store. We may need to adjust the offset for big endian targets. 685 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 686 687 MachinePointerInfo MPO; 688 Register StackAddr = Handler.getStackAddress( 689 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 690 691 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 692 continue; 693 } 694 695 if (VA.isMemLoc() && Flags.isByVal()) { 696 assert(Args[i].Regs.size() == 1 && 697 "didn't expect split byval pointer"); 698 699 if (Handler.isIncomingArgumentHandler()) { 700 // We just need to copy the frame index value to the pointer. 701 MachinePointerInfo MPO; 702 Register StackAddr = Handler.getStackAddress( 703 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 704 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 705 } else { 706 // For outgoing byval arguments, insert the implicit copy byval 707 // implies, such that writes in the callee do not modify the caller's 708 // value. 709 uint64_t MemSize = Flags.getByValSize(); 710 int64_t Offset = VA.getLocMemOffset(); 711 712 MachinePointerInfo DstMPO; 713 Register StackAddr = 714 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 715 716 MachinePointerInfo SrcMPO(Args[i].OrigValue); 717 if (!Args[i].OrigValue) { 718 // We still need to accurately track the stack address space if we 719 // don't know the underlying value. 720 const LLT PtrTy = MRI.getType(StackAddr); 721 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 722 } 723 724 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 725 inferAlignFromPtrInfo(MF, DstMPO)); 726 727 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 728 inferAlignFromPtrInfo(MF, SrcMPO)); 729 730 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 731 DstMPO, DstAlign, SrcMPO, SrcAlign, 732 MemSize, VA); 733 } 734 continue; 735 } 736 737 assert(!VA.needsCustom() && "custom loc should have been handled already"); 738 739 if (i == 0 && ThisReturnReg.isValid() && 740 Handler.isIncomingArgumentHandler() && 741 isTypeIsValidForThisReturn(ValVT)) { 742 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 743 continue; 744 } 745 746 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 747 } 748 749 // Now that all pieces have been assigned, re-pack the register typed values 750 // into the original value typed registers. 751 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 752 // Merge the split registers into the expected larger result vregs of 753 // the original call. 754 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 755 LocTy, Args[i].Flags[0]); 756 } 757 758 j += NumParts - 1; 759 } 760 761 return true; 762 } 763 764 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 765 ArrayRef<Register> VRegs, Register DemoteReg, 766 int FI) const { 767 MachineFunction &MF = MIRBuilder.getMF(); 768 MachineRegisterInfo &MRI = MF.getRegInfo(); 769 const DataLayout &DL = MF.getDataLayout(); 770 771 SmallVector<EVT, 4> SplitVTs; 772 SmallVector<uint64_t, 4> Offsets; 773 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 774 775 assert(VRegs.size() == SplitVTs.size()); 776 777 unsigned NumValues = SplitVTs.size(); 778 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 779 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 780 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 781 782 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 783 784 for (unsigned I = 0; I < NumValues; ++I) { 785 Register Addr; 786 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 787 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 788 MRI.getType(VRegs[I]), 789 commonAlignment(BaseAlign, Offsets[I])); 790 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 791 } 792 } 793 794 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 795 ArrayRef<Register> VRegs, 796 Register DemoteReg) const { 797 MachineFunction &MF = MIRBuilder.getMF(); 798 MachineRegisterInfo &MRI = MF.getRegInfo(); 799 const DataLayout &DL = MF.getDataLayout(); 800 801 SmallVector<EVT, 4> SplitVTs; 802 SmallVector<uint64_t, 4> Offsets; 803 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 804 805 assert(VRegs.size() == SplitVTs.size()); 806 807 unsigned NumValues = SplitVTs.size(); 808 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 809 unsigned AS = DL.getAllocaAddrSpace(); 810 LLT OffsetLLTy = 811 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 812 813 MachinePointerInfo PtrInfo(AS); 814 815 for (unsigned I = 0; I < NumValues; ++I) { 816 Register Addr; 817 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 818 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 819 MRI.getType(VRegs[I]), 820 commonAlignment(BaseAlign, Offsets[I])); 821 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 822 } 823 } 824 825 void CallLowering::insertSRetIncomingArgument( 826 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 827 MachineRegisterInfo &MRI, const DataLayout &DL) const { 828 unsigned AS = DL.getAllocaAddrSpace(); 829 DemoteReg = MRI.createGenericVirtualRegister( 830 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 831 832 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 833 834 SmallVector<EVT, 1> ValueVTs; 835 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 836 837 // NOTE: Assume that a pointer won't get split into more than one VT. 838 assert(ValueVTs.size() == 1); 839 840 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 841 ArgInfo::NoArgIndex); 842 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 843 DemoteArg.Flags[0].setSRet(); 844 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 845 } 846 847 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 848 const CallBase &CB, 849 CallLoweringInfo &Info) const { 850 const DataLayout &DL = MIRBuilder.getDataLayout(); 851 Type *RetTy = CB.getType(); 852 unsigned AS = DL.getAllocaAddrSpace(); 853 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 854 855 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 856 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 857 858 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 859 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 860 ArgInfo::NoArgIndex); 861 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 862 DemoteArg.Flags[0].setSRet(); 863 864 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 865 Info.DemoteStackIndex = FI; 866 Info.DemoteRegister = DemoteReg; 867 } 868 869 bool CallLowering::checkReturn(CCState &CCInfo, 870 SmallVectorImpl<BaseArgInfo> &Outs, 871 CCAssignFn *Fn) const { 872 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 873 MVT VT = MVT::getVT(Outs[I].Ty); 874 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 875 return false; 876 } 877 return true; 878 } 879 880 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 881 AttributeList Attrs, 882 SmallVectorImpl<BaseArgInfo> &Outs, 883 const DataLayout &DL) const { 884 LLVMContext &Context = RetTy->getContext(); 885 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 886 887 SmallVector<EVT, 4> SplitVTs; 888 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 889 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 890 891 for (EVT VT : SplitVTs) { 892 unsigned NumParts = 893 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 894 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 895 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 896 897 for (unsigned I = 0; I < NumParts; ++I) { 898 Outs.emplace_back(PartTy, Flags); 899 } 900 } 901 } 902 903 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 904 const auto &F = MF.getFunction(); 905 Type *ReturnType = F.getReturnType(); 906 CallingConv::ID CallConv = F.getCallingConv(); 907 908 SmallVector<BaseArgInfo, 4> SplitArgs; 909 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 910 MF.getDataLayout()); 911 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 912 } 913 914 bool CallLowering::parametersInCSRMatch( 915 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 916 const SmallVectorImpl<CCValAssign> &OutLocs, 917 const SmallVectorImpl<ArgInfo> &OutArgs) const { 918 for (unsigned i = 0; i < OutLocs.size(); ++i) { 919 auto &ArgLoc = OutLocs[i]; 920 // If it's not a register, it's fine. 921 if (!ArgLoc.isRegLoc()) 922 continue; 923 924 MCRegister PhysReg = ArgLoc.getLocReg(); 925 926 // Only look at callee-saved registers. 927 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 928 continue; 929 930 LLVM_DEBUG( 931 dbgs() 932 << "... Call has an argument passed in a callee-saved register.\n"); 933 934 // Check if it was copied from. 935 const ArgInfo &OutInfo = OutArgs[i]; 936 937 if (OutInfo.Regs.size() > 1) { 938 LLVM_DEBUG( 939 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 940 return false; 941 } 942 943 // Check if we copy the register, walking through copies from virtual 944 // registers. Note that getDefIgnoringCopies does not ignore copies from 945 // physical registers. 946 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 947 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 948 LLVM_DEBUG( 949 dbgs() 950 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 951 return false; 952 } 953 954 // Got a copy. Verify that it's the same as the register we want. 955 Register CopyRHS = RegDef->getOperand(1).getReg(); 956 if (CopyRHS != PhysReg) { 957 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 958 "VReg, cannot tail call.\n"); 959 return false; 960 } 961 } 962 963 return true; 964 } 965 966 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 967 MachineFunction &MF, 968 SmallVectorImpl<ArgInfo> &InArgs, 969 ValueAssigner &CalleeAssigner, 970 ValueAssigner &CallerAssigner) const { 971 const Function &F = MF.getFunction(); 972 CallingConv::ID CalleeCC = Info.CallConv; 973 CallingConv::ID CallerCC = F.getCallingConv(); 974 975 if (CallerCC == CalleeCC) 976 return true; 977 978 SmallVector<CCValAssign, 16> ArgLocs1; 979 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 980 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 981 return false; 982 983 SmallVector<CCValAssign, 16> ArgLocs2; 984 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 985 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 986 return false; 987 988 // We need the argument locations to match up exactly. If there's more in 989 // one than the other, then we are done. 990 if (ArgLocs1.size() != ArgLocs2.size()) 991 return false; 992 993 // Make sure that each location is passed in exactly the same way. 994 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 995 const CCValAssign &Loc1 = ArgLocs1[i]; 996 const CCValAssign &Loc2 = ArgLocs2[i]; 997 998 // We need both of them to be the same. So if one is a register and one 999 // isn't, we're done. 1000 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1001 return false; 1002 1003 if (Loc1.isRegLoc()) { 1004 // If they don't have the same register location, we're done. 1005 if (Loc1.getLocReg() != Loc2.getLocReg()) 1006 return false; 1007 1008 // They matched, so we can move to the next ArgLoc. 1009 continue; 1010 } 1011 1012 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1013 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1014 return false; 1015 } 1016 1017 return true; 1018 } 1019 1020 LLT CallLowering::ValueHandler::getStackValueStoreType( 1021 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1022 const MVT ValVT = VA.getValVT(); 1023 if (ValVT != MVT::iPTR) { 1024 LLT ValTy(ValVT); 1025 1026 // We lost the pointeriness going through CCValAssign, so try to restore it 1027 // based on the flags. 1028 if (Flags.isPointer()) { 1029 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1030 ValTy.getScalarSizeInBits()); 1031 if (ValVT.isVector()) 1032 return LLT::vector(ValTy.getElementCount(), PtrTy); 1033 return PtrTy; 1034 } 1035 1036 return ValTy; 1037 } 1038 1039 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1040 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1041 } 1042 1043 void CallLowering::ValueHandler::copyArgumentMemory( 1044 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1045 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1046 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1047 CCValAssign &VA) const { 1048 MachineFunction &MF = MIRBuilder.getMF(); 1049 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1050 SrcPtrInfo, 1051 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1052 SrcAlign); 1053 1054 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1055 DstPtrInfo, 1056 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1057 MemSize, DstAlign); 1058 1059 const LLT PtrTy = MRI.getType(DstPtr); 1060 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1061 1062 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1063 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1064 } 1065 1066 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1067 CCValAssign &VA, 1068 unsigned MaxSizeBits) { 1069 LLT LocTy{VA.getLocVT()}; 1070 LLT ValTy{VA.getValVT()}; 1071 1072 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1073 return ValReg; 1074 1075 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1076 if (MaxSizeBits <= ValTy.getSizeInBits()) 1077 return ValReg; 1078 LocTy = LLT::scalar(MaxSizeBits); 1079 } 1080 1081 const LLT ValRegTy = MRI.getType(ValReg); 1082 if (ValRegTy.isPointer()) { 1083 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1084 // we have to cast to do the extension. 1085 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1086 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1087 } 1088 1089 switch (VA.getLocInfo()) { 1090 default: break; 1091 case CCValAssign::Full: 1092 case CCValAssign::BCvt: 1093 // FIXME: bitconverting between vector types may or may not be a 1094 // nop in big-endian situations. 1095 return ValReg; 1096 case CCValAssign::AExt: { 1097 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1098 return MIB.getReg(0); 1099 } 1100 case CCValAssign::SExt: { 1101 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1102 MIRBuilder.buildSExt(NewReg, ValReg); 1103 return NewReg; 1104 } 1105 case CCValAssign::ZExt: { 1106 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1107 MIRBuilder.buildZExt(NewReg, ValReg); 1108 return NewReg; 1109 } 1110 } 1111 llvm_unreachable("unable to extend register"); 1112 } 1113 1114 void CallLowering::ValueAssigner::anchor() {} 1115 1116 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1117 Register SrcReg, 1118 LLT NarrowTy) { 1119 switch (VA.getLocInfo()) { 1120 case CCValAssign::LocInfo::ZExt: { 1121 return MIRBuilder 1122 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1123 NarrowTy.getScalarSizeInBits()) 1124 .getReg(0); 1125 } 1126 case CCValAssign::LocInfo::SExt: { 1127 return MIRBuilder 1128 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1129 NarrowTy.getScalarSizeInBits()) 1130 .getReg(0); 1131 break; 1132 } 1133 default: 1134 return SrcReg; 1135 } 1136 } 1137 1138 /// Check if we can use a basic COPY instruction between the two types. 1139 /// 1140 /// We're currently building on top of the infrastructure using MVT, which loses 1141 /// pointer information in the CCValAssign. We accept copies from physical 1142 /// registers that have been reported as integers if it's to an equivalent sized 1143 /// pointer LLT. 1144 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1145 if (SrcTy == DstTy) 1146 return true; 1147 1148 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1149 return false; 1150 1151 SrcTy = SrcTy.getScalarType(); 1152 DstTy = DstTy.getScalarType(); 1153 1154 return (SrcTy.isPointer() && DstTy.isScalar()) || 1155 (DstTy.isScalar() && SrcTy.isPointer()); 1156 } 1157 1158 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1159 Register PhysReg, 1160 CCValAssign &VA) { 1161 const MVT LocVT = VA.getLocVT(); 1162 const LLT LocTy(LocVT); 1163 const LLT RegTy = MRI.getType(ValVReg); 1164 1165 if (isCopyCompatibleType(RegTy, LocTy)) { 1166 MIRBuilder.buildCopy(ValVReg, PhysReg); 1167 return; 1168 } 1169 1170 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1171 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1172 MIRBuilder.buildTrunc(ValVReg, Hint); 1173 } 1174