xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 14afbe9448d5b9ddb0acce5e0ed046c083726f85)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftAsync))
58     Flags.setSwiftAsync();
59   if (AttrFn(Attribute::SwiftError))
60     Flags.setSwiftError();
61 }
62 
63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
64                                                      unsigned ArgIdx) const {
65   ISD::ArgFlagsTy Flags;
66   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
67     return Call.paramHasAttr(ArgIdx, Attr);
68   });
69   return Flags;
70 }
71 
72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
73                                              const AttributeList &Attrs,
74                                              unsigned OpIdx) const {
75   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
76     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
77   });
78 }
79 
80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
81                              ArrayRef<Register> ResRegs,
82                              ArrayRef<ArrayRef<Register>> ArgRegs,
83                              Register SwiftErrorVReg,
84                              std::function<unsigned()> GetCalleeReg) const {
85   CallLoweringInfo Info;
86   const DataLayout &DL = MIRBuilder.getDataLayout();
87   MachineFunction &MF = MIRBuilder.getMF();
88   bool CanBeTailCalled = CB.isTailCall() &&
89                          isInTailCallPosition(CB, MF.getTarget()) &&
90                          (MF.getFunction()
91                               .getFnAttribute("disable-tail-calls")
92                               .getValueAsString() != "true");
93 
94   CallingConv::ID CallConv = CB.getCallingConv();
95   Type *RetTy = CB.getType();
96   bool IsVarArg = CB.getFunctionType()->isVarArg();
97 
98   SmallVector<BaseArgInfo, 4> SplitArgs;
99   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
100   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
101 
102   if (!Info.CanLowerReturn) {
103     // Callee requires sret demotion.
104     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
105 
106     // The sret demotion isn't compatible with tail-calls, since the sret
107     // argument points into the caller's stack frame.
108     CanBeTailCalled = false;
109   }
110 
111   // First step is to marshall all the function's parameters into the correct
112   // physregs and memory locations. Gather the sequence of argument types that
113   // we'll pass to the assigner function.
114   unsigned i = 0;
115   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
116   for (auto &Arg : CB.args()) {
117     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
118                     i < NumFixedArgs};
119     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
120 
121     // If we have an explicit sret argument that is an Instruction, (i.e., it
122     // might point to function-local memory), we can't meaningfully tail-call.
123     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
124       CanBeTailCalled = false;
125 
126     Info.OrigArgs.push_back(OrigArg);
127     ++i;
128   }
129 
130   // Try looking through a bitcast from one function type to another.
131   // Commonly happens with calls to objc_msgSend().
132   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
133   if (const Function *F = dyn_cast<Function>(CalleeV))
134     Info.Callee = MachineOperand::CreateGA(F, 0);
135   else
136     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
137 
138   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
139   if (!Info.OrigRet.Ty->isVoidTy())
140     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
141 
142   Info.CB = &CB;
143   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
144   Info.CallConv = CallConv;
145   Info.SwiftErrorVReg = SwiftErrorVReg;
146   Info.IsMustTailCall = CB.isMustTailCall();
147   Info.IsTailCall = CanBeTailCalled;
148   Info.IsVarArg = IsVarArg;
149   return lowerCall(MIRBuilder, Info);
150 }
151 
152 template <typename FuncInfoTy>
153 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
154                                const DataLayout &DL,
155                                const FuncInfoTy &FuncInfo) const {
156   auto &Flags = Arg.Flags[0];
157   const AttributeList &Attrs = FuncInfo.getAttributes();
158   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
159 
160   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
161   if (PtrTy) {
162     Flags.setPointer();
163     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
164   }
165 
166   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
167   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
168     assert(OpIdx >= AttributeList::FirstArgIndex);
169     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
170 
171     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
172     if (!ElementTy)
173       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
174     if (!ElementTy)
175       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
176     assert(ElementTy && "Must have byval, inalloca or preallocated type");
177     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
178 
179     // For ByVal, alignment should be passed from FE.  BE will guess if
180     // this info is not there but there are cases it cannot get right.
181     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
182       MemAlign = *ParamAlign;
183     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
184       MemAlign = *ParamAlign;
185     else
186       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
187   } else if (OpIdx >= AttributeList::FirstArgIndex) {
188     if (auto ParamAlign =
189             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
190       MemAlign = *ParamAlign;
191   }
192   Flags.setMemAlign(MemAlign);
193   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
194 
195   // Don't try to use the returned attribute if the argument is marked as
196   // swiftself, since it won't be passed in x0.
197   if (Flags.isSwiftSelf())
198     Flags.setReturned(false);
199 }
200 
201 template void
202 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
203                                     const DataLayout &DL,
204                                     const Function &FuncInfo) const;
205 
206 template void
207 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
208                                     const DataLayout &DL,
209                                     const CallBase &FuncInfo) const;
210 
211 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
212                                      SmallVectorImpl<ArgInfo> &SplitArgs,
213                                      const DataLayout &DL,
214                                      CallingConv::ID CallConv,
215                                      SmallVectorImpl<uint64_t> *Offsets) const {
216   LLVMContext &Ctx = OrigArg.Ty->getContext();
217 
218   SmallVector<EVT, 4> SplitVTs;
219   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
220 
221   if (SplitVTs.size() == 0)
222     return;
223 
224   if (SplitVTs.size() == 1) {
225     // No splitting to do, but we want to replace the original type (e.g. [1 x
226     // double] -> double).
227     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
228                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
229                            OrigArg.IsFixed, OrigArg.OrigValue);
230     return;
231   }
232 
233   // Create one ArgInfo for each virtual register in the original ArgInfo.
234   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
235 
236   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
237       OrigArg.Ty, CallConv, false, DL);
238   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
239     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
240     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
241                            OrigArg.Flags[0], OrigArg.IsFixed);
242     if (NeedsRegBlock)
243       SplitArgs.back().Flags[0].setInConsecutiveRegs();
244   }
245 
246   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
247 }
248 
249 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
250 static MachineInstrBuilder
251 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
252                             ArrayRef<Register> SrcRegs) {
253   MachineRegisterInfo &MRI = *B.getMRI();
254   LLT LLTy = MRI.getType(DstRegs[0]);
255   LLT PartLLT = MRI.getType(SrcRegs[0]);
256 
257   // Deal with v3s16 split into v2s16
258   LLT LCMTy = getLCMType(LLTy, PartLLT);
259   if (LCMTy == LLTy) {
260     // Common case where no padding is needed.
261     assert(DstRegs.size() == 1);
262     return B.buildConcatVectors(DstRegs[0], SrcRegs);
263   }
264 
265   // We need to create an unmerge to the result registers, which may require
266   // widening the original value.
267   Register UnmergeSrcReg;
268   if (LCMTy != PartLLT) {
269     // e.g. A <3 x s16> value was split to <2 x s16>
270     // %register_value0:_(<2 x s16>)
271     // %register_value1:_(<2 x s16>)
272     // %undef:_(<2 x s16>) = G_IMPLICIT_DEF
273     // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
274     // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
275     const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
276     Register Undef = B.buildUndef(PartLLT).getReg(0);
277 
278     // Build vector of undefs.
279     SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
280 
281     // Replace the first sources with the real registers.
282     std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
283     UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
284   } else {
285     // We don't need to widen anything if we're extracting a scalar which was
286     // promoted to a vector e.g. s8 -> v4s8 -> s8
287     assert(SrcRegs.size() == 1);
288     UnmergeSrcReg = SrcRegs[0];
289   }
290 
291   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
292 
293   SmallVector<Register, 8> PadDstRegs(NumDst);
294   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
295 
296   // Create the excess dead defs for the unmerge.
297   for (int I = DstRegs.size(); I != NumDst; ++I)
298     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
299 
300   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
301 }
302 
303 /// Create a sequence of instructions to combine pieces split into register
304 /// typed values to the original IR value. \p OrigRegs contains the destination
305 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
306 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
307 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
308                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
309                               const ISD::ArgFlagsTy Flags) {
310   MachineRegisterInfo &MRI = *B.getMRI();
311 
312   if (PartLLT == LLTy) {
313     // We should have avoided introducing a new virtual register, and just
314     // directly assigned here.
315     assert(OrigRegs[0] == Regs[0]);
316     return;
317   }
318 
319   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
320       Regs.size() == 1) {
321     B.buildBitcast(OrigRegs[0], Regs[0]);
322     return;
323   }
324 
325   // A vector PartLLT needs extending to LLTy's element size.
326   // E.g. <2 x s64> = G_SEXT <2 x s32>.
327   if (PartLLT.isVector() == LLTy.isVector() &&
328       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
329       (!PartLLT.isVector() ||
330        PartLLT.getNumElements() == LLTy.getNumElements()) &&
331       OrigRegs.size() == 1 && Regs.size() == 1) {
332     Register SrcReg = Regs[0];
333 
334     LLT LocTy = MRI.getType(SrcReg);
335 
336     if (Flags.isSExt()) {
337       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
338                    .getReg(0);
339     } else if (Flags.isZExt()) {
340       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
341                    .getReg(0);
342     }
343 
344     // Sometimes pointers are passed zero extended.
345     LLT OrigTy = MRI.getType(OrigRegs[0]);
346     if (OrigTy.isPointer()) {
347       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
348       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
349       return;
350     }
351 
352     B.buildTrunc(OrigRegs[0], SrcReg);
353     return;
354   }
355 
356   if (!LLTy.isVector() && !PartLLT.isVector()) {
357     assert(OrigRegs.size() == 1);
358     LLT OrigTy = MRI.getType(OrigRegs[0]);
359 
360     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
361     if (SrcSize == OrigTy.getSizeInBits())
362       B.buildMerge(OrigRegs[0], Regs);
363     else {
364       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
365       B.buildTrunc(OrigRegs[0], Widened);
366     }
367 
368     return;
369   }
370 
371   if (PartLLT.isVector()) {
372     assert(OrigRegs.size() == 1);
373     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
374 
375     // If PartLLT is a mismatched vector in both number of elements and element
376     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
377     // have the same elt type, i.e. v4s32.
378     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
379         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
380         Regs.size() == 1) {
381       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
382                       .changeElementCount(PartLLT.getElementCount() * 2);
383       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
384       PartLLT = NewTy;
385     }
386 
387     if (LLTy.getScalarType() == PartLLT.getElementType()) {
388       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
389     } else {
390       unsigned I = 0;
391       LLT GCDTy = getGCDType(LLTy, PartLLT);
392 
393       // We are both splitting a vector, and bitcasting its element types. Cast
394       // the source pieces into the appropriate number of pieces with the result
395       // element type.
396       for (Register SrcReg : CastRegs)
397         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
398       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
399     }
400 
401     return;
402   }
403 
404   assert(LLTy.isVector() && !PartLLT.isVector());
405 
406   LLT DstEltTy = LLTy.getElementType();
407 
408   // Pointer information was discarded. We'll need to coerce some register types
409   // to avoid violating type constraints.
410   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
411 
412   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
413 
414   if (DstEltTy == PartLLT) {
415     // Vector was trivially scalarized.
416 
417     if (RealDstEltTy.isPointer()) {
418       for (Register Reg : Regs)
419         MRI.setType(Reg, RealDstEltTy);
420     }
421 
422     B.buildBuildVector(OrigRegs[0], Regs);
423   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
424     // Deal with vector with 64-bit elements decomposed to 32-bit
425     // registers. Need to create intermediate 64-bit elements.
426     SmallVector<Register, 8> EltMerges;
427     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
428 
429     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
430 
431     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
432       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
433       // Fix the type in case this is really a vector of pointers.
434       MRI.setType(Merge.getReg(0), RealDstEltTy);
435       EltMerges.push_back(Merge.getReg(0));
436       Regs = Regs.drop_front(PartsPerElt);
437     }
438 
439     B.buildBuildVector(OrigRegs[0], EltMerges);
440   } else {
441     // Vector was split, and elements promoted to a wider type.
442     // FIXME: Should handle floating point promotions.
443     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
444     auto BV = B.buildBuildVector(BVType, Regs);
445     B.buildTrunc(OrigRegs[0], BV);
446   }
447 }
448 
449 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
450 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
451 /// contain the type of scalar value extension if necessary.
452 ///
453 /// This is used for outgoing values (vregs to physregs)
454 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
455                             Register SrcReg, LLT SrcTy, LLT PartTy,
456                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
457   // We could just insert a regular copy, but this is unreachable at the moment.
458   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
459 
460   const unsigned PartSize = PartTy.getSizeInBits();
461 
462   if (PartTy.isVector() == SrcTy.isVector() &&
463       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
464     assert(DstRegs.size() == 1);
465     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
466     return;
467   }
468 
469   if (SrcTy.isVector() && !PartTy.isVector() &&
470       PartSize > SrcTy.getElementType().getSizeInBits()) {
471     // Vector was scalarized, and the elements extended.
472     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
473     for (int i = 0, e = DstRegs.size(); i != e; ++i)
474       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
475     return;
476   }
477 
478   LLT GCDTy = getGCDType(SrcTy, PartTy);
479   if (GCDTy == PartTy) {
480     // If this already evenly divisible, we can create a simple unmerge.
481     B.buildUnmerge(DstRegs, SrcReg);
482     return;
483   }
484 
485   MachineRegisterInfo &MRI = *B.getMRI();
486   LLT DstTy = MRI.getType(DstRegs[0]);
487   LLT LCMTy = getLCMType(SrcTy, PartTy);
488 
489   const unsigned DstSize = DstTy.getSizeInBits();
490   const unsigned SrcSize = SrcTy.getSizeInBits();
491   unsigned CoveringSize = LCMTy.getSizeInBits();
492 
493   Register UnmergeSrc = SrcReg;
494 
495   if (CoveringSize != SrcSize) {
496     // For scalars, it's common to be able to use a simple extension.
497     if (SrcTy.isScalar() && DstTy.isScalar()) {
498       CoveringSize = alignTo(SrcSize, DstSize);
499       LLT CoverTy = LLT::scalar(CoveringSize);
500       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
501     } else {
502       // Widen to the common type.
503       // FIXME: This should respect the extend type
504       Register Undef = B.buildUndef(SrcTy).getReg(0);
505       SmallVector<Register, 8> MergeParts(1, SrcReg);
506       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
507         MergeParts.push_back(Undef);
508       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
509     }
510   }
511 
512   // Unmerge to the original registers and pad with dead defs.
513   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
514   for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize;
515        Size += DstSize) {
516     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
517   }
518 
519   B.buildUnmerge(UnmergeResults, UnmergeSrc);
520 }
521 
522 bool CallLowering::determineAndHandleAssignments(
523     ValueHandler &Handler, ValueAssigner &Assigner,
524     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
525     CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
526   MachineFunction &MF = MIRBuilder.getMF();
527   const Function &F = MF.getFunction();
528   SmallVector<CCValAssign, 16> ArgLocs;
529 
530   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
531   if (!determineAssignments(Assigner, Args, CCInfo))
532     return false;
533 
534   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
535                            ThisReturnReg);
536 }
537 
538 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
539   if (Flags.isSExt())
540     return TargetOpcode::G_SEXT;
541   if (Flags.isZExt())
542     return TargetOpcode::G_ZEXT;
543   return TargetOpcode::G_ANYEXT;
544 }
545 
546 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
547                                         SmallVectorImpl<ArgInfo> &Args,
548                                         CCState &CCInfo) const {
549   LLVMContext &Ctx = CCInfo.getContext();
550   const CallingConv::ID CallConv = CCInfo.getCallingConv();
551 
552   unsigned NumArgs = Args.size();
553   for (unsigned i = 0; i != NumArgs; ++i) {
554     EVT CurVT = EVT::getEVT(Args[i].Ty);
555 
556     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
557 
558     // If we need to split the type over multiple regs, check it's a scenario
559     // we currently support.
560     unsigned NumParts =
561         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
562 
563     if (NumParts == 1) {
564       // Try to use the register type if we couldn't assign the VT.
565       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
566                              Args[i].Flags[0], CCInfo))
567         return false;
568       continue;
569     }
570 
571     // For incoming arguments (physregs to vregs), we could have values in
572     // physregs (or memlocs) which we want to extract and copy to vregs.
573     // During this, we might have to deal with the LLT being split across
574     // multiple regs, so we have to record this information for later.
575     //
576     // If we have outgoing args, then we have the opposite case. We have a
577     // vreg with an LLT which we want to assign to a physical location, and
578     // we might have to record that the value has to be split later.
579 
580     // We're handling an incoming arg which is split over multiple regs.
581     // E.g. passing an s128 on AArch64.
582     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
583     Args[i].Flags.clear();
584 
585     for (unsigned Part = 0; Part < NumParts; ++Part) {
586       ISD::ArgFlagsTy Flags = OrigFlags;
587       if (Part == 0) {
588         Flags.setSplit();
589       } else {
590         Flags.setOrigAlign(Align(1));
591         if (Part == NumParts - 1)
592           Flags.setSplitEnd();
593       }
594 
595       Args[i].Flags.push_back(Flags);
596       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
597                              Args[i].Flags[Part], CCInfo)) {
598         // Still couldn't assign this smaller part type for some reason.
599         return false;
600       }
601     }
602   }
603 
604   return true;
605 }
606 
607 bool CallLowering::handleAssignments(ValueHandler &Handler,
608                                      SmallVectorImpl<ArgInfo> &Args,
609                                      CCState &CCInfo,
610                                      SmallVectorImpl<CCValAssign> &ArgLocs,
611                                      MachineIRBuilder &MIRBuilder,
612                                      Register ThisReturnReg) const {
613   MachineFunction &MF = MIRBuilder.getMF();
614   MachineRegisterInfo &MRI = MF.getRegInfo();
615   const Function &F = MF.getFunction();
616   const DataLayout &DL = F.getParent()->getDataLayout();
617 
618   const unsigned NumArgs = Args.size();
619 
620   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
621     assert(j < ArgLocs.size() && "Skipped too many arg locs");
622     CCValAssign &VA = ArgLocs[j];
623     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
624 
625     if (VA.needsCustom()) {
626       unsigned NumArgRegs =
627           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
628       if (!NumArgRegs)
629         return false;
630       j += NumArgRegs;
631       continue;
632     }
633 
634     const MVT ValVT = VA.getValVT();
635     const MVT LocVT = VA.getLocVT();
636 
637     const LLT LocTy(LocVT);
638     const LLT ValTy(ValVT);
639     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
640     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
641     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
642 
643     // Expected to be multiple regs for a single incoming arg.
644     // There should be Regs.size() ArgLocs per argument.
645     // This should be the same as getNumRegistersForCallingConv
646     const unsigned NumParts = Args[i].Flags.size();
647 
648     // Now split the registers into the assigned types.
649     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
650 
651     if (NumParts != 1 || NewLLT != OrigTy) {
652       // If we can't directly assign the register, we need one or more
653       // intermediate values.
654       Args[i].Regs.resize(NumParts);
655 
656       // For each split register, create and assign a vreg that will store
657       // the incoming component of the larger value. These will later be
658       // merged to form the final vreg.
659       for (unsigned Part = 0; Part < NumParts; ++Part)
660         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
661     }
662 
663     assert((j + (NumParts - 1)) < ArgLocs.size() &&
664            "Too many regs for number of args");
665 
666     // Coerce into outgoing value types before register assignment.
667     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
668       assert(Args[i].OrigRegs.size() == 1);
669       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
670                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
671     }
672 
673     for (unsigned Part = 0; Part < NumParts; ++Part) {
674       Register ArgReg = Args[i].Regs[Part];
675       // There should be Regs.size() ArgLocs per argument.
676       VA = ArgLocs[j + Part];
677       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
678 
679       if (VA.isMemLoc() && !Flags.isByVal()) {
680         // Individual pieces may have been spilled to the stack and others
681         // passed in registers.
682 
683         // TODO: The memory size may be larger than the value we need to
684         // store. We may need to adjust the offset for big endian targets.
685         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
686 
687         MachinePointerInfo MPO;
688         Register StackAddr = Handler.getStackAddress(
689             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
690 
691         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
692         continue;
693       }
694 
695       if (VA.isMemLoc() && Flags.isByVal()) {
696         assert(Args[i].Regs.size() == 1 &&
697                "didn't expect split byval pointer");
698 
699         if (Handler.isIncomingArgumentHandler()) {
700           // We just need to copy the frame index value to the pointer.
701           MachinePointerInfo MPO;
702           Register StackAddr = Handler.getStackAddress(
703               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
704           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
705         } else {
706           // For outgoing byval arguments, insert the implicit copy byval
707           // implies, such that writes in the callee do not modify the caller's
708           // value.
709           uint64_t MemSize = Flags.getByValSize();
710           int64_t Offset = VA.getLocMemOffset();
711 
712           MachinePointerInfo DstMPO;
713           Register StackAddr =
714               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
715 
716           MachinePointerInfo SrcMPO(Args[i].OrigValue);
717           if (!Args[i].OrigValue) {
718             // We still need to accurately track the stack address space if we
719             // don't know the underlying value.
720             const LLT PtrTy = MRI.getType(StackAddr);
721             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
722           }
723 
724           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
725                                     inferAlignFromPtrInfo(MF, DstMPO));
726 
727           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
728                                     inferAlignFromPtrInfo(MF, SrcMPO));
729 
730           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
731                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
732                                      MemSize, VA);
733         }
734         continue;
735       }
736 
737       assert(!VA.needsCustom() && "custom loc should have been handled already");
738 
739       if (i == 0 && ThisReturnReg.isValid() &&
740           Handler.isIncomingArgumentHandler() &&
741           isTypeIsValidForThisReturn(ValVT)) {
742         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
743         continue;
744       }
745 
746       Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
747     }
748 
749     // Now that all pieces have been assigned, re-pack the register typed values
750     // into the original value typed registers.
751     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
752       // Merge the split registers into the expected larger result vregs of
753       // the original call.
754       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
755                         LocTy, Args[i].Flags[0]);
756     }
757 
758     j += NumParts - 1;
759   }
760 
761   return true;
762 }
763 
764 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
765                                    ArrayRef<Register> VRegs, Register DemoteReg,
766                                    int FI) const {
767   MachineFunction &MF = MIRBuilder.getMF();
768   MachineRegisterInfo &MRI = MF.getRegInfo();
769   const DataLayout &DL = MF.getDataLayout();
770 
771   SmallVector<EVT, 4> SplitVTs;
772   SmallVector<uint64_t, 4> Offsets;
773   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
774 
775   assert(VRegs.size() == SplitVTs.size());
776 
777   unsigned NumValues = SplitVTs.size();
778   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
779   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
780   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
781 
782   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
783 
784   for (unsigned I = 0; I < NumValues; ++I) {
785     Register Addr;
786     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
787     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
788                                         MRI.getType(VRegs[I]),
789                                         commonAlignment(BaseAlign, Offsets[I]));
790     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
791   }
792 }
793 
794 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
795                                     ArrayRef<Register> VRegs,
796                                     Register DemoteReg) const {
797   MachineFunction &MF = MIRBuilder.getMF();
798   MachineRegisterInfo &MRI = MF.getRegInfo();
799   const DataLayout &DL = MF.getDataLayout();
800 
801   SmallVector<EVT, 4> SplitVTs;
802   SmallVector<uint64_t, 4> Offsets;
803   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
804 
805   assert(VRegs.size() == SplitVTs.size());
806 
807   unsigned NumValues = SplitVTs.size();
808   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
809   unsigned AS = DL.getAllocaAddrSpace();
810   LLT OffsetLLTy =
811       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
812 
813   MachinePointerInfo PtrInfo(AS);
814 
815   for (unsigned I = 0; I < NumValues; ++I) {
816     Register Addr;
817     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
818     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
819                                         MRI.getType(VRegs[I]),
820                                         commonAlignment(BaseAlign, Offsets[I]));
821     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
822   }
823 }
824 
825 void CallLowering::insertSRetIncomingArgument(
826     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
827     MachineRegisterInfo &MRI, const DataLayout &DL) const {
828   unsigned AS = DL.getAllocaAddrSpace();
829   DemoteReg = MRI.createGenericVirtualRegister(
830       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
831 
832   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
833 
834   SmallVector<EVT, 1> ValueVTs;
835   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
836 
837   // NOTE: Assume that a pointer won't get split into more than one VT.
838   assert(ValueVTs.size() == 1);
839 
840   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
841                     ArgInfo::NoArgIndex);
842   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
843   DemoteArg.Flags[0].setSRet();
844   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
845 }
846 
847 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
848                                               const CallBase &CB,
849                                               CallLoweringInfo &Info) const {
850   const DataLayout &DL = MIRBuilder.getDataLayout();
851   Type *RetTy = CB.getType();
852   unsigned AS = DL.getAllocaAddrSpace();
853   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
854 
855   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
856       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
857 
858   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
859   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
860                     ArgInfo::NoArgIndex);
861   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
862   DemoteArg.Flags[0].setSRet();
863 
864   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
865   Info.DemoteStackIndex = FI;
866   Info.DemoteRegister = DemoteReg;
867 }
868 
869 bool CallLowering::checkReturn(CCState &CCInfo,
870                                SmallVectorImpl<BaseArgInfo> &Outs,
871                                CCAssignFn *Fn) const {
872   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
873     MVT VT = MVT::getVT(Outs[I].Ty);
874     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
875       return false;
876   }
877   return true;
878 }
879 
880 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
881                                  AttributeList Attrs,
882                                  SmallVectorImpl<BaseArgInfo> &Outs,
883                                  const DataLayout &DL) const {
884   LLVMContext &Context = RetTy->getContext();
885   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
886 
887   SmallVector<EVT, 4> SplitVTs;
888   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
889   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
890 
891   for (EVT VT : SplitVTs) {
892     unsigned NumParts =
893         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
894     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
895     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
896 
897     for (unsigned I = 0; I < NumParts; ++I) {
898       Outs.emplace_back(PartTy, Flags);
899     }
900   }
901 }
902 
903 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
904   const auto &F = MF.getFunction();
905   Type *ReturnType = F.getReturnType();
906   CallingConv::ID CallConv = F.getCallingConv();
907 
908   SmallVector<BaseArgInfo, 4> SplitArgs;
909   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
910                 MF.getDataLayout());
911   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
912 }
913 
914 bool CallLowering::parametersInCSRMatch(
915     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
916     const SmallVectorImpl<CCValAssign> &OutLocs,
917     const SmallVectorImpl<ArgInfo> &OutArgs) const {
918   for (unsigned i = 0; i < OutLocs.size(); ++i) {
919     auto &ArgLoc = OutLocs[i];
920     // If it's not a register, it's fine.
921     if (!ArgLoc.isRegLoc())
922       continue;
923 
924     MCRegister PhysReg = ArgLoc.getLocReg();
925 
926     // Only look at callee-saved registers.
927     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
928       continue;
929 
930     LLVM_DEBUG(
931         dbgs()
932         << "... Call has an argument passed in a callee-saved register.\n");
933 
934     // Check if it was copied from.
935     const ArgInfo &OutInfo = OutArgs[i];
936 
937     if (OutInfo.Regs.size() > 1) {
938       LLVM_DEBUG(
939           dbgs() << "... Cannot handle arguments in multiple registers.\n");
940       return false;
941     }
942 
943     // Check if we copy the register, walking through copies from virtual
944     // registers. Note that getDefIgnoringCopies does not ignore copies from
945     // physical registers.
946     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
947     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
948       LLVM_DEBUG(
949           dbgs()
950           << "... Parameter was not copied into a VReg, cannot tail call.\n");
951       return false;
952     }
953 
954     // Got a copy. Verify that it's the same as the register we want.
955     Register CopyRHS = RegDef->getOperand(1).getReg();
956     if (CopyRHS != PhysReg) {
957       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
958                            "VReg, cannot tail call.\n");
959       return false;
960     }
961   }
962 
963   return true;
964 }
965 
966 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
967                                      MachineFunction &MF,
968                                      SmallVectorImpl<ArgInfo> &InArgs,
969                                      ValueAssigner &CalleeAssigner,
970                                      ValueAssigner &CallerAssigner) const {
971   const Function &F = MF.getFunction();
972   CallingConv::ID CalleeCC = Info.CallConv;
973   CallingConv::ID CallerCC = F.getCallingConv();
974 
975   if (CallerCC == CalleeCC)
976     return true;
977 
978   SmallVector<CCValAssign, 16> ArgLocs1;
979   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
980   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
981     return false;
982 
983   SmallVector<CCValAssign, 16> ArgLocs2;
984   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
985   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
986     return false;
987 
988   // We need the argument locations to match up exactly. If there's more in
989   // one than the other, then we are done.
990   if (ArgLocs1.size() != ArgLocs2.size())
991     return false;
992 
993   // Make sure that each location is passed in exactly the same way.
994   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
995     const CCValAssign &Loc1 = ArgLocs1[i];
996     const CCValAssign &Loc2 = ArgLocs2[i];
997 
998     // We need both of them to be the same. So if one is a register and one
999     // isn't, we're done.
1000     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1001       return false;
1002 
1003     if (Loc1.isRegLoc()) {
1004       // If they don't have the same register location, we're done.
1005       if (Loc1.getLocReg() != Loc2.getLocReg())
1006         return false;
1007 
1008       // They matched, so we can move to the next ArgLoc.
1009       continue;
1010     }
1011 
1012     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1013     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1014       return false;
1015   }
1016 
1017   return true;
1018 }
1019 
1020 LLT CallLowering::ValueHandler::getStackValueStoreType(
1021     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1022   const MVT ValVT = VA.getValVT();
1023   if (ValVT != MVT::iPTR) {
1024     LLT ValTy(ValVT);
1025 
1026     // We lost the pointeriness going through CCValAssign, so try to restore it
1027     // based on the flags.
1028     if (Flags.isPointer()) {
1029       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1030                                ValTy.getScalarSizeInBits());
1031       if (ValVT.isVector())
1032         return LLT::vector(ValTy.getElementCount(), PtrTy);
1033       return PtrTy;
1034     }
1035 
1036     return ValTy;
1037   }
1038 
1039   unsigned AddrSpace = Flags.getPointerAddrSpace();
1040   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1041 }
1042 
1043 void CallLowering::ValueHandler::copyArgumentMemory(
1044     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1045     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1046     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1047     CCValAssign &VA) const {
1048   MachineFunction &MF = MIRBuilder.getMF();
1049   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1050       SrcPtrInfo,
1051       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1052       SrcAlign);
1053 
1054   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1055       DstPtrInfo,
1056       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1057       MemSize, DstAlign);
1058 
1059   const LLT PtrTy = MRI.getType(DstPtr);
1060   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1061 
1062   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1063   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1064 }
1065 
1066 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1067                                                     CCValAssign &VA,
1068                                                     unsigned MaxSizeBits) {
1069   LLT LocTy{VA.getLocVT()};
1070   LLT ValTy{VA.getValVT()};
1071 
1072   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1073     return ValReg;
1074 
1075   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1076     if (MaxSizeBits <= ValTy.getSizeInBits())
1077       return ValReg;
1078     LocTy = LLT::scalar(MaxSizeBits);
1079   }
1080 
1081   const LLT ValRegTy = MRI.getType(ValReg);
1082   if (ValRegTy.isPointer()) {
1083     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1084     // we have to cast to do the extension.
1085     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1086     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1087   }
1088 
1089   switch (VA.getLocInfo()) {
1090   default: break;
1091   case CCValAssign::Full:
1092   case CCValAssign::BCvt:
1093     // FIXME: bitconverting between vector types may or may not be a
1094     // nop in big-endian situations.
1095     return ValReg;
1096   case CCValAssign::AExt: {
1097     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1098     return MIB.getReg(0);
1099   }
1100   case CCValAssign::SExt: {
1101     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1102     MIRBuilder.buildSExt(NewReg, ValReg);
1103     return NewReg;
1104   }
1105   case CCValAssign::ZExt: {
1106     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1107     MIRBuilder.buildZExt(NewReg, ValReg);
1108     return NewReg;
1109   }
1110   }
1111   llvm_unreachable("unable to extend register");
1112 }
1113 
1114 void CallLowering::ValueAssigner::anchor() {}
1115 
1116 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1117                                                                 Register SrcReg,
1118                                                                 LLT NarrowTy) {
1119   switch (VA.getLocInfo()) {
1120   case CCValAssign::LocInfo::ZExt: {
1121     return MIRBuilder
1122         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1123                          NarrowTy.getScalarSizeInBits())
1124         .getReg(0);
1125   }
1126   case CCValAssign::LocInfo::SExt: {
1127     return MIRBuilder
1128         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1129                          NarrowTy.getScalarSizeInBits())
1130         .getReg(0);
1131     break;
1132   }
1133   default:
1134     return SrcReg;
1135   }
1136 }
1137 
1138 /// Check if we can use a basic COPY instruction between the two types.
1139 ///
1140 /// We're currently building on top of the infrastructure using MVT, which loses
1141 /// pointer information in the CCValAssign. We accept copies from physical
1142 /// registers that have been reported as integers if it's to an equivalent sized
1143 /// pointer LLT.
1144 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1145   if (SrcTy == DstTy)
1146     return true;
1147 
1148   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1149     return false;
1150 
1151   SrcTy = SrcTy.getScalarType();
1152   DstTy = DstTy.getScalarType();
1153 
1154   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1155          (DstTy.isScalar() && SrcTy.isPointer());
1156 }
1157 
1158 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1159                                                           Register PhysReg,
1160                                                           CCValAssign &VA) {
1161   const MVT LocVT = VA.getLocVT();
1162   const LLT LocTy(LocVT);
1163   const LLT RegTy = MRI.getType(ValVReg);
1164 
1165   if (isCopyCompatibleType(RegTy, LocTy)) {
1166     MIRBuilder.buildCopy(ValVReg, PhysReg);
1167     return;
1168   }
1169 
1170   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1171   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1172   MIRBuilder.buildTrunc(ValVReg, Hint);
1173 }
1174