xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 07ddfa95e3b5ea8464e90545f592624221b854ae)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   if (AttrFn(Attribute::SExt))
39     Flags.setSExt();
40   if (AttrFn(Attribute::ZExt))
41     Flags.setZExt();
42   if (AttrFn(Attribute::InReg))
43     Flags.setInReg();
44   if (AttrFn(Attribute::StructRet))
45     Flags.setSRet();
46   if (AttrFn(Attribute::Nest))
47     Flags.setNest();
48   if (AttrFn(Attribute::ByVal))
49     Flags.setByVal();
50   if (AttrFn(Attribute::Preallocated))
51     Flags.setPreallocated();
52   if (AttrFn(Attribute::InAlloca))
53     Flags.setInAlloca();
54   if (AttrFn(Attribute::Returned))
55     Flags.setReturned();
56   if (AttrFn(Attribute::SwiftSelf))
57     Flags.setSwiftSelf();
58   if (AttrFn(Attribute::SwiftAsync))
59     Flags.setSwiftAsync();
60   if (AttrFn(Attribute::SwiftError))
61     Flags.setSwiftError();
62 }
63 
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65                                                      unsigned ArgIdx) const {
66   ISD::ArgFlagsTy Flags;
67   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68     return Call.paramHasAttr(ArgIdx, Attr);
69   });
70   return Flags;
71 }
72 
73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
74                                              const AttributeList &Attrs,
75                                              unsigned OpIdx) const {
76   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
77     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
78   });
79 }
80 
81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
82                              ArrayRef<Register> ResRegs,
83                              ArrayRef<ArrayRef<Register>> ArgRegs,
84                              Register SwiftErrorVReg,
85                              std::function<unsigned()> GetCalleeReg) const {
86   CallLoweringInfo Info;
87   const DataLayout &DL = MIRBuilder.getDataLayout();
88   MachineFunction &MF = MIRBuilder.getMF();
89   MachineRegisterInfo &MRI = MF.getRegInfo();
90   bool CanBeTailCalled = CB.isTailCall() &&
91                          isInTailCallPosition(CB, MF.getTarget()) &&
92                          (MF.getFunction()
93                               .getFnAttribute("disable-tail-calls")
94                               .getValueAsString() != "true");
95 
96   CallingConv::ID CallConv = CB.getCallingConv();
97   Type *RetTy = CB.getType();
98   bool IsVarArg = CB.getFunctionType()->isVarArg();
99 
100   SmallVector<BaseArgInfo, 4> SplitArgs;
101   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
102   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
103 
104   if (!Info.CanLowerReturn) {
105     // Callee requires sret demotion.
106     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
107 
108     // The sret demotion isn't compatible with tail-calls, since the sret
109     // argument points into the caller's stack frame.
110     CanBeTailCalled = false;
111   }
112 
113 
114   // First step is to marshall all the function's parameters into the correct
115   // physregs and memory locations. Gather the sequence of argument types that
116   // we'll pass to the assigner function.
117   unsigned i = 0;
118   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
119   for (auto &Arg : CB.args()) {
120     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
121                     i < NumFixedArgs};
122     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
123 
124     // If we have an explicit sret argument that is an Instruction, (i.e., it
125     // might point to function-local memory), we can't meaningfully tail-call.
126     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
127       CanBeTailCalled = false;
128 
129     Info.OrigArgs.push_back(OrigArg);
130     ++i;
131   }
132 
133   // Try looking through a bitcast from one function type to another.
134   // Commonly happens with calls to objc_msgSend().
135   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
136   if (const Function *F = dyn_cast<Function>(CalleeV))
137     Info.Callee = MachineOperand::CreateGA(F, 0);
138   else
139     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
140 
141   Register ReturnHintAlignReg;
142   Align ReturnHintAlign;
143 
144   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
145 
146   if (!Info.OrigRet.Ty->isVoidTy()) {
147     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
148 
149     if (MaybeAlign Alignment = CB.getRetAlign()) {
150       if (*Alignment > Align(1)) {
151         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
152         ReturnHintAlign = *Alignment;
153         std::swap(Info.OrigRet.Regs[0], ReturnHintAlignReg);
154       }
155     }
156   }
157 
158   Info.CB = &CB;
159   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
160   Info.CallConv = CallConv;
161   Info.SwiftErrorVReg = SwiftErrorVReg;
162   Info.IsMustTailCall = CB.isMustTailCall();
163   Info.IsTailCall = CanBeTailCalled;
164   Info.IsVarArg = IsVarArg;
165   if (!lowerCall(MIRBuilder, Info))
166     return false;
167 
168   if (ReturnHintAlignReg) {
169     MIRBuilder.buildAssertAlign(ReturnHintAlignReg, Info.OrigRet.Regs[0],
170                                 ReturnHintAlign);
171   }
172 
173   return true;
174 }
175 
176 template <typename FuncInfoTy>
177 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
178                                const DataLayout &DL,
179                                const FuncInfoTy &FuncInfo) const {
180   auto &Flags = Arg.Flags[0];
181   const AttributeList &Attrs = FuncInfo.getAttributes();
182   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
183 
184   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
185   if (PtrTy) {
186     Flags.setPointer();
187     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
188   }
189 
190   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
191   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
192     assert(OpIdx >= AttributeList::FirstArgIndex);
193     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
194 
195     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
196     if (!ElementTy)
197       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
198     if (!ElementTy)
199       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
200     assert(ElementTy && "Must have byval, inalloca or preallocated type");
201     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
202 
203     // For ByVal, alignment should be passed from FE.  BE will guess if
204     // this info is not there but there are cases it cannot get right.
205     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
206       MemAlign = *ParamAlign;
207     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
208       MemAlign = *ParamAlign;
209     else
210       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
211   } else if (OpIdx >= AttributeList::FirstArgIndex) {
212     if (auto ParamAlign =
213             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
214       MemAlign = *ParamAlign;
215   }
216   Flags.setMemAlign(MemAlign);
217   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
218 
219   // Don't try to use the returned attribute if the argument is marked as
220   // swiftself, since it won't be passed in x0.
221   if (Flags.isSwiftSelf())
222     Flags.setReturned(false);
223 }
224 
225 template void
226 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
227                                     const DataLayout &DL,
228                                     const Function &FuncInfo) const;
229 
230 template void
231 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
232                                     const DataLayout &DL,
233                                     const CallBase &FuncInfo) const;
234 
235 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
236                                      SmallVectorImpl<ArgInfo> &SplitArgs,
237                                      const DataLayout &DL,
238                                      CallingConv::ID CallConv,
239                                      SmallVectorImpl<uint64_t> *Offsets) const {
240   LLVMContext &Ctx = OrigArg.Ty->getContext();
241 
242   SmallVector<EVT, 4> SplitVTs;
243   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
244 
245   if (SplitVTs.size() == 0)
246     return;
247 
248   if (SplitVTs.size() == 1) {
249     // No splitting to do, but we want to replace the original type (e.g. [1 x
250     // double] -> double).
251     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
252                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
253                            OrigArg.IsFixed, OrigArg.OrigValue);
254     return;
255   }
256 
257   // Create one ArgInfo for each virtual register in the original ArgInfo.
258   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
259 
260   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
261       OrigArg.Ty, CallConv, false, DL);
262   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
263     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
264     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
265                            OrigArg.Flags[0], OrigArg.IsFixed);
266     if (NeedsRegBlock)
267       SplitArgs.back().Flags[0].setInConsecutiveRegs();
268   }
269 
270   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
271 }
272 
273 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
274 static MachineInstrBuilder
275 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
276                             ArrayRef<Register> SrcRegs) {
277   MachineRegisterInfo &MRI = *B.getMRI();
278   LLT LLTy = MRI.getType(DstRegs[0]);
279   LLT PartLLT = MRI.getType(SrcRegs[0]);
280 
281   // Deal with v3s16 split into v2s16
282   LLT LCMTy = getCoverTy(LLTy, PartLLT);
283   if (LCMTy == LLTy) {
284     // Common case where no padding is needed.
285     assert(DstRegs.size() == 1);
286     return B.buildConcatVectors(DstRegs[0], SrcRegs);
287   }
288 
289   // We need to create an unmerge to the result registers, which may require
290   // widening the original value.
291   Register UnmergeSrcReg;
292   if (LCMTy != PartLLT) {
293     assert(DstRegs.size() == 1);
294     return B.buildDeleteTrailingVectorElements(DstRegs[0],
295                                                B.buildMerge(LCMTy, SrcRegs));
296   } else {
297     // We don't need to widen anything if we're extracting a scalar which was
298     // promoted to a vector e.g. s8 -> v4s8 -> s8
299     assert(SrcRegs.size() == 1);
300     UnmergeSrcReg = SrcRegs[0];
301   }
302 
303   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
304 
305   SmallVector<Register, 8> PadDstRegs(NumDst);
306   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
307 
308   // Create the excess dead defs for the unmerge.
309   for (int I = DstRegs.size(); I != NumDst; ++I)
310     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
311 
312   if (PadDstRegs.size() == 1)
313     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
314   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
315 }
316 
317 /// Create a sequence of instructions to combine pieces split into register
318 /// typed values to the original IR value. \p OrigRegs contains the destination
319 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
320 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
321 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
322                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
323                               const ISD::ArgFlagsTy Flags) {
324   MachineRegisterInfo &MRI = *B.getMRI();
325 
326   if (PartLLT == LLTy) {
327     // We should have avoided introducing a new virtual register, and just
328     // directly assigned here.
329     assert(OrigRegs[0] == Regs[0]);
330     return;
331   }
332 
333   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
334       Regs.size() == 1) {
335     B.buildBitcast(OrigRegs[0], Regs[0]);
336     return;
337   }
338 
339   // A vector PartLLT needs extending to LLTy's element size.
340   // E.g. <2 x s64> = G_SEXT <2 x s32>.
341   if (PartLLT.isVector() == LLTy.isVector() &&
342       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
343       (!PartLLT.isVector() ||
344        PartLLT.getNumElements() == LLTy.getNumElements()) &&
345       OrigRegs.size() == 1 && Regs.size() == 1) {
346     Register SrcReg = Regs[0];
347 
348     LLT LocTy = MRI.getType(SrcReg);
349 
350     if (Flags.isSExt()) {
351       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
352                    .getReg(0);
353     } else if (Flags.isZExt()) {
354       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
355                    .getReg(0);
356     }
357 
358     // Sometimes pointers are passed zero extended.
359     LLT OrigTy = MRI.getType(OrigRegs[0]);
360     if (OrigTy.isPointer()) {
361       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
362       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
363       return;
364     }
365 
366     B.buildTrunc(OrigRegs[0], SrcReg);
367     return;
368   }
369 
370   if (!LLTy.isVector() && !PartLLT.isVector()) {
371     assert(OrigRegs.size() == 1);
372     LLT OrigTy = MRI.getType(OrigRegs[0]);
373 
374     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
375     if (SrcSize == OrigTy.getSizeInBits())
376       B.buildMerge(OrigRegs[0], Regs);
377     else {
378       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
379       B.buildTrunc(OrigRegs[0], Widened);
380     }
381 
382     return;
383   }
384 
385   if (PartLLT.isVector()) {
386     assert(OrigRegs.size() == 1);
387     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
388 
389     // If PartLLT is a mismatched vector in both number of elements and element
390     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
391     // have the same elt type, i.e. v4s32.
392     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
393         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
394         Regs.size() == 1) {
395       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
396                       .changeElementCount(PartLLT.getElementCount() * 2);
397       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
398       PartLLT = NewTy;
399     }
400 
401     if (LLTy.getScalarType() == PartLLT.getElementType()) {
402       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
403     } else {
404       unsigned I = 0;
405       LLT GCDTy = getGCDType(LLTy, PartLLT);
406 
407       // We are both splitting a vector, and bitcasting its element types. Cast
408       // the source pieces into the appropriate number of pieces with the result
409       // element type.
410       for (Register SrcReg : CastRegs)
411         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
412       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
413     }
414 
415     return;
416   }
417 
418   assert(LLTy.isVector() && !PartLLT.isVector());
419 
420   LLT DstEltTy = LLTy.getElementType();
421 
422   // Pointer information was discarded. We'll need to coerce some register types
423   // to avoid violating type constraints.
424   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
425 
426   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
427 
428   if (DstEltTy == PartLLT) {
429     // Vector was trivially scalarized.
430 
431     if (RealDstEltTy.isPointer()) {
432       for (Register Reg : Regs)
433         MRI.setType(Reg, RealDstEltTy);
434     }
435 
436     B.buildBuildVector(OrigRegs[0], Regs);
437   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
438     // Deal with vector with 64-bit elements decomposed to 32-bit
439     // registers. Need to create intermediate 64-bit elements.
440     SmallVector<Register, 8> EltMerges;
441     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
442 
443     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
444 
445     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
446       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
447       // Fix the type in case this is really a vector of pointers.
448       MRI.setType(Merge.getReg(0), RealDstEltTy);
449       EltMerges.push_back(Merge.getReg(0));
450       Regs = Regs.drop_front(PartsPerElt);
451     }
452 
453     B.buildBuildVector(OrigRegs[0], EltMerges);
454   } else {
455     // Vector was split, and elements promoted to a wider type.
456     // FIXME: Should handle floating point promotions.
457     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
458     auto BV = B.buildBuildVector(BVType, Regs);
459     B.buildTrunc(OrigRegs[0], BV);
460   }
461 }
462 
463 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
464 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
465 /// contain the type of scalar value extension if necessary.
466 ///
467 /// This is used for outgoing values (vregs to physregs)
468 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
469                             Register SrcReg, LLT SrcTy, LLT PartTy,
470                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
471   // We could just insert a regular copy, but this is unreachable at the moment.
472   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
473 
474   const unsigned PartSize = PartTy.getSizeInBits();
475 
476   if (PartTy.isVector() == SrcTy.isVector() &&
477       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
478     assert(DstRegs.size() == 1);
479     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
480     return;
481   }
482 
483   if (SrcTy.isVector() && !PartTy.isVector() &&
484       PartSize > SrcTy.getElementType().getSizeInBits()) {
485     // Vector was scalarized, and the elements extended.
486     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
487     for (int i = 0, e = DstRegs.size(); i != e; ++i)
488       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
489     return;
490   }
491 
492   LLT GCDTy = getGCDType(SrcTy, PartTy);
493   if (GCDTy == PartTy) {
494     // If this already evenly divisible, we can create a simple unmerge.
495     B.buildUnmerge(DstRegs, SrcReg);
496     return;
497   }
498 
499   MachineRegisterInfo &MRI = *B.getMRI();
500   LLT DstTy = MRI.getType(DstRegs[0]);
501   LLT LCMTy = getCoverTy(SrcTy, PartTy);
502 
503   const unsigned DstSize = DstTy.getSizeInBits();
504   const unsigned SrcSize = SrcTy.getSizeInBits();
505   unsigned CoveringSize = LCMTy.getSizeInBits();
506 
507   Register UnmergeSrc = SrcReg;
508 
509   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
510     // For scalars, it's common to be able to use a simple extension.
511     if (SrcTy.isScalar() && DstTy.isScalar()) {
512       CoveringSize = alignTo(SrcSize, DstSize);
513       LLT CoverTy = LLT::scalar(CoveringSize);
514       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
515     } else {
516       // Widen to the common type.
517       // FIXME: This should respect the extend type
518       Register Undef = B.buildUndef(SrcTy).getReg(0);
519       SmallVector<Register, 8> MergeParts(1, SrcReg);
520       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
521         MergeParts.push_back(Undef);
522       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
523     }
524   }
525 
526   if (LCMTy.isVector() && CoveringSize != SrcSize)
527     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
528 
529   B.buildUnmerge(DstRegs, UnmergeSrc);
530 }
531 
532 bool CallLowering::determineAndHandleAssignments(
533     ValueHandler &Handler, ValueAssigner &Assigner,
534     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
535     CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
536   MachineFunction &MF = MIRBuilder.getMF();
537   const Function &F = MF.getFunction();
538   SmallVector<CCValAssign, 16> ArgLocs;
539 
540   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
541   if (!determineAssignments(Assigner, Args, CCInfo))
542     return false;
543 
544   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
545                            ThisReturnReg);
546 }
547 
548 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
549   if (Flags.isSExt())
550     return TargetOpcode::G_SEXT;
551   if (Flags.isZExt())
552     return TargetOpcode::G_ZEXT;
553   return TargetOpcode::G_ANYEXT;
554 }
555 
556 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
557                                         SmallVectorImpl<ArgInfo> &Args,
558                                         CCState &CCInfo) const {
559   LLVMContext &Ctx = CCInfo.getContext();
560   const CallingConv::ID CallConv = CCInfo.getCallingConv();
561 
562   unsigned NumArgs = Args.size();
563   for (unsigned i = 0; i != NumArgs; ++i) {
564     EVT CurVT = EVT::getEVT(Args[i].Ty);
565 
566     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
567 
568     // If we need to split the type over multiple regs, check it's a scenario
569     // we currently support.
570     unsigned NumParts =
571         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
572 
573     if (NumParts == 1) {
574       // Try to use the register type if we couldn't assign the VT.
575       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
576                              Args[i].Flags[0], CCInfo))
577         return false;
578       continue;
579     }
580 
581     // For incoming arguments (physregs to vregs), we could have values in
582     // physregs (or memlocs) which we want to extract and copy to vregs.
583     // During this, we might have to deal with the LLT being split across
584     // multiple regs, so we have to record this information for later.
585     //
586     // If we have outgoing args, then we have the opposite case. We have a
587     // vreg with an LLT which we want to assign to a physical location, and
588     // we might have to record that the value has to be split later.
589 
590     // We're handling an incoming arg which is split over multiple regs.
591     // E.g. passing an s128 on AArch64.
592     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
593     Args[i].Flags.clear();
594 
595     for (unsigned Part = 0; Part < NumParts; ++Part) {
596       ISD::ArgFlagsTy Flags = OrigFlags;
597       if (Part == 0) {
598         Flags.setSplit();
599       } else {
600         Flags.setOrigAlign(Align(1));
601         if (Part == NumParts - 1)
602           Flags.setSplitEnd();
603       }
604 
605       Args[i].Flags.push_back(Flags);
606       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
607                              Args[i].Flags[Part], CCInfo)) {
608         // Still couldn't assign this smaller part type for some reason.
609         return false;
610       }
611     }
612   }
613 
614   return true;
615 }
616 
617 bool CallLowering::handleAssignments(ValueHandler &Handler,
618                                      SmallVectorImpl<ArgInfo> &Args,
619                                      CCState &CCInfo,
620                                      SmallVectorImpl<CCValAssign> &ArgLocs,
621                                      MachineIRBuilder &MIRBuilder,
622                                      Register ThisReturnReg) const {
623   MachineFunction &MF = MIRBuilder.getMF();
624   MachineRegisterInfo &MRI = MF.getRegInfo();
625   const Function &F = MF.getFunction();
626   const DataLayout &DL = F.getParent()->getDataLayout();
627 
628   const unsigned NumArgs = Args.size();
629 
630   // Stores thunks for outgoing register assignments. This is used so we delay
631   // generating register copies until mem loc assignments are done. We do this
632   // so that if the target is using the delayed stack protector feature, we can
633   // find the split point of the block accurately. E.g. if we have:
634   // G_STORE %val, %memloc
635   // $x0 = COPY %foo
636   // $x1 = COPY %bar
637   // CALL func
638   // ... then the split point for the block will correctly be at, and including,
639   // the copy to $x0. If instead the G_STORE instruction immediately precedes
640   // the CALL, then we'd prematurely choose the CALL as the split point, thus
641   // generating a split block with a CALL that uses undefined physregs.
642   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
643 
644   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
645     assert(j < ArgLocs.size() && "Skipped too many arg locs");
646     CCValAssign &VA = ArgLocs[j];
647     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
648 
649     if (VA.needsCustom()) {
650       std::function<void()> Thunk;
651       unsigned NumArgRegs = Handler.assignCustomValue(
652           Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
653       if (Thunk)
654         DelayedOutgoingRegAssignments.emplace_back(Thunk);
655       if (!NumArgRegs)
656         return false;
657       j += NumArgRegs;
658       continue;
659     }
660 
661     const MVT ValVT = VA.getValVT();
662     const MVT LocVT = VA.getLocVT();
663 
664     const LLT LocTy(LocVT);
665     const LLT ValTy(ValVT);
666     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
667     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
668     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
669 
670     // Expected to be multiple regs for a single incoming arg.
671     // There should be Regs.size() ArgLocs per argument.
672     // This should be the same as getNumRegistersForCallingConv
673     const unsigned NumParts = Args[i].Flags.size();
674 
675     // Now split the registers into the assigned types.
676     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
677 
678     if (NumParts != 1 || NewLLT != OrigTy) {
679       // If we can't directly assign the register, we need one or more
680       // intermediate values.
681       Args[i].Regs.resize(NumParts);
682 
683       // For each split register, create and assign a vreg that will store
684       // the incoming component of the larger value. These will later be
685       // merged to form the final vreg.
686       for (unsigned Part = 0; Part < NumParts; ++Part)
687         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
688     }
689 
690     assert((j + (NumParts - 1)) < ArgLocs.size() &&
691            "Too many regs for number of args");
692 
693     // Coerce into outgoing value types before register assignment.
694     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
695       assert(Args[i].OrigRegs.size() == 1);
696       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
697                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
698     }
699 
700     for (unsigned Part = 0; Part < NumParts; ++Part) {
701       Register ArgReg = Args[i].Regs[Part];
702       // There should be Regs.size() ArgLocs per argument.
703       VA = ArgLocs[j + Part];
704       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
705 
706       if (VA.isMemLoc() && !Flags.isByVal()) {
707         // Individual pieces may have been spilled to the stack and others
708         // passed in registers.
709 
710         // TODO: The memory size may be larger than the value we need to
711         // store. We may need to adjust the offset for big endian targets.
712         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
713 
714         MachinePointerInfo MPO;
715         Register StackAddr = Handler.getStackAddress(
716             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
717 
718         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
719         continue;
720       }
721 
722       if (VA.isMemLoc() && Flags.isByVal()) {
723         assert(Args[i].Regs.size() == 1 &&
724                "didn't expect split byval pointer");
725 
726         if (Handler.isIncomingArgumentHandler()) {
727           // We just need to copy the frame index value to the pointer.
728           MachinePointerInfo MPO;
729           Register StackAddr = Handler.getStackAddress(
730               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
731           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
732         } else {
733           // For outgoing byval arguments, insert the implicit copy byval
734           // implies, such that writes in the callee do not modify the caller's
735           // value.
736           uint64_t MemSize = Flags.getByValSize();
737           int64_t Offset = VA.getLocMemOffset();
738 
739           MachinePointerInfo DstMPO;
740           Register StackAddr =
741               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
742 
743           MachinePointerInfo SrcMPO(Args[i].OrigValue);
744           if (!Args[i].OrigValue) {
745             // We still need to accurately track the stack address space if we
746             // don't know the underlying value.
747             const LLT PtrTy = MRI.getType(StackAddr);
748             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
749           }
750 
751           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
752                                     inferAlignFromPtrInfo(MF, DstMPO));
753 
754           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
755                                     inferAlignFromPtrInfo(MF, SrcMPO));
756 
757           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
758                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
759                                      MemSize, VA);
760         }
761         continue;
762       }
763 
764       assert(!VA.needsCustom() && "custom loc should have been handled already");
765 
766       if (i == 0 && ThisReturnReg.isValid() &&
767           Handler.isIncomingArgumentHandler() &&
768           isTypeIsValidForThisReturn(ValVT)) {
769         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
770         continue;
771       }
772 
773       if (Handler.isIncomingArgumentHandler())
774         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
775       else {
776         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
777           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
778         });
779       }
780     }
781 
782     // Now that all pieces have been assigned, re-pack the register typed values
783     // into the original value typed registers.
784     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
785       // Merge the split registers into the expected larger result vregs of
786       // the original call.
787       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
788                         LocTy, Args[i].Flags[0]);
789     }
790 
791     j += NumParts - 1;
792   }
793   for (auto &Fn : DelayedOutgoingRegAssignments)
794     Fn();
795 
796   return true;
797 }
798 
799 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
800                                    ArrayRef<Register> VRegs, Register DemoteReg,
801                                    int FI) const {
802   MachineFunction &MF = MIRBuilder.getMF();
803   MachineRegisterInfo &MRI = MF.getRegInfo();
804   const DataLayout &DL = MF.getDataLayout();
805 
806   SmallVector<EVT, 4> SplitVTs;
807   SmallVector<uint64_t, 4> Offsets;
808   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
809 
810   assert(VRegs.size() == SplitVTs.size());
811 
812   unsigned NumValues = SplitVTs.size();
813   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
814   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
815   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
816 
817   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
818 
819   for (unsigned I = 0; I < NumValues; ++I) {
820     Register Addr;
821     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
822     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
823                                         MRI.getType(VRegs[I]),
824                                         commonAlignment(BaseAlign, Offsets[I]));
825     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
826   }
827 }
828 
829 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
830                                     ArrayRef<Register> VRegs,
831                                     Register DemoteReg) const {
832   MachineFunction &MF = MIRBuilder.getMF();
833   MachineRegisterInfo &MRI = MF.getRegInfo();
834   const DataLayout &DL = MF.getDataLayout();
835 
836   SmallVector<EVT, 4> SplitVTs;
837   SmallVector<uint64_t, 4> Offsets;
838   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
839 
840   assert(VRegs.size() == SplitVTs.size());
841 
842   unsigned NumValues = SplitVTs.size();
843   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
844   unsigned AS = DL.getAllocaAddrSpace();
845   LLT OffsetLLTy =
846       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
847 
848   MachinePointerInfo PtrInfo(AS);
849 
850   for (unsigned I = 0; I < NumValues; ++I) {
851     Register Addr;
852     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
853     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
854                                         MRI.getType(VRegs[I]),
855                                         commonAlignment(BaseAlign, Offsets[I]));
856     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
857   }
858 }
859 
860 void CallLowering::insertSRetIncomingArgument(
861     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
862     MachineRegisterInfo &MRI, const DataLayout &DL) const {
863   unsigned AS = DL.getAllocaAddrSpace();
864   DemoteReg = MRI.createGenericVirtualRegister(
865       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
866 
867   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
868 
869   SmallVector<EVT, 1> ValueVTs;
870   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
871 
872   // NOTE: Assume that a pointer won't get split into more than one VT.
873   assert(ValueVTs.size() == 1);
874 
875   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
876                     ArgInfo::NoArgIndex);
877   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
878   DemoteArg.Flags[0].setSRet();
879   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
880 }
881 
882 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
883                                               const CallBase &CB,
884                                               CallLoweringInfo &Info) const {
885   const DataLayout &DL = MIRBuilder.getDataLayout();
886   Type *RetTy = CB.getType();
887   unsigned AS = DL.getAllocaAddrSpace();
888   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
889 
890   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
891       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
892 
893   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
894   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
895                     ArgInfo::NoArgIndex);
896   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
897   DemoteArg.Flags[0].setSRet();
898 
899   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
900   Info.DemoteStackIndex = FI;
901   Info.DemoteRegister = DemoteReg;
902 }
903 
904 bool CallLowering::checkReturn(CCState &CCInfo,
905                                SmallVectorImpl<BaseArgInfo> &Outs,
906                                CCAssignFn *Fn) const {
907   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
908     MVT VT = MVT::getVT(Outs[I].Ty);
909     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
910       return false;
911   }
912   return true;
913 }
914 
915 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
916                                  AttributeList Attrs,
917                                  SmallVectorImpl<BaseArgInfo> &Outs,
918                                  const DataLayout &DL) const {
919   LLVMContext &Context = RetTy->getContext();
920   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
921 
922   SmallVector<EVT, 4> SplitVTs;
923   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
924   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
925 
926   for (EVT VT : SplitVTs) {
927     unsigned NumParts =
928         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
929     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
930     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
931 
932     for (unsigned I = 0; I < NumParts; ++I) {
933       Outs.emplace_back(PartTy, Flags);
934     }
935   }
936 }
937 
938 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
939   const auto &F = MF.getFunction();
940   Type *ReturnType = F.getReturnType();
941   CallingConv::ID CallConv = F.getCallingConv();
942 
943   SmallVector<BaseArgInfo, 4> SplitArgs;
944   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
945                 MF.getDataLayout());
946   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
947 }
948 
949 bool CallLowering::parametersInCSRMatch(
950     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
951     const SmallVectorImpl<CCValAssign> &OutLocs,
952     const SmallVectorImpl<ArgInfo> &OutArgs) const {
953   for (unsigned i = 0; i < OutLocs.size(); ++i) {
954     auto &ArgLoc = OutLocs[i];
955     // If it's not a register, it's fine.
956     if (!ArgLoc.isRegLoc())
957       continue;
958 
959     MCRegister PhysReg = ArgLoc.getLocReg();
960 
961     // Only look at callee-saved registers.
962     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
963       continue;
964 
965     LLVM_DEBUG(
966         dbgs()
967         << "... Call has an argument passed in a callee-saved register.\n");
968 
969     // Check if it was copied from.
970     const ArgInfo &OutInfo = OutArgs[i];
971 
972     if (OutInfo.Regs.size() > 1) {
973       LLVM_DEBUG(
974           dbgs() << "... Cannot handle arguments in multiple registers.\n");
975       return false;
976     }
977 
978     // Check if we copy the register, walking through copies from virtual
979     // registers. Note that getDefIgnoringCopies does not ignore copies from
980     // physical registers.
981     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
982     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
983       LLVM_DEBUG(
984           dbgs()
985           << "... Parameter was not copied into a VReg, cannot tail call.\n");
986       return false;
987     }
988 
989     // Got a copy. Verify that it's the same as the register we want.
990     Register CopyRHS = RegDef->getOperand(1).getReg();
991     if (CopyRHS != PhysReg) {
992       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
993                            "VReg, cannot tail call.\n");
994       return false;
995     }
996   }
997 
998   return true;
999 }
1000 
1001 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1002                                      MachineFunction &MF,
1003                                      SmallVectorImpl<ArgInfo> &InArgs,
1004                                      ValueAssigner &CalleeAssigner,
1005                                      ValueAssigner &CallerAssigner) const {
1006   const Function &F = MF.getFunction();
1007   CallingConv::ID CalleeCC = Info.CallConv;
1008   CallingConv::ID CallerCC = F.getCallingConv();
1009 
1010   if (CallerCC == CalleeCC)
1011     return true;
1012 
1013   SmallVector<CCValAssign, 16> ArgLocs1;
1014   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1015   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1016     return false;
1017 
1018   SmallVector<CCValAssign, 16> ArgLocs2;
1019   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1020   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1021     return false;
1022 
1023   // We need the argument locations to match up exactly. If there's more in
1024   // one than the other, then we are done.
1025   if (ArgLocs1.size() != ArgLocs2.size())
1026     return false;
1027 
1028   // Make sure that each location is passed in exactly the same way.
1029   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1030     const CCValAssign &Loc1 = ArgLocs1[i];
1031     const CCValAssign &Loc2 = ArgLocs2[i];
1032 
1033     // We need both of them to be the same. So if one is a register and one
1034     // isn't, we're done.
1035     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1036       return false;
1037 
1038     if (Loc1.isRegLoc()) {
1039       // If they don't have the same register location, we're done.
1040       if (Loc1.getLocReg() != Loc2.getLocReg())
1041         return false;
1042 
1043       // They matched, so we can move to the next ArgLoc.
1044       continue;
1045     }
1046 
1047     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1048     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1049       return false;
1050   }
1051 
1052   return true;
1053 }
1054 
1055 LLT CallLowering::ValueHandler::getStackValueStoreType(
1056     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1057   const MVT ValVT = VA.getValVT();
1058   if (ValVT != MVT::iPTR) {
1059     LLT ValTy(ValVT);
1060 
1061     // We lost the pointeriness going through CCValAssign, so try to restore it
1062     // based on the flags.
1063     if (Flags.isPointer()) {
1064       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1065                                ValTy.getScalarSizeInBits());
1066       if (ValVT.isVector())
1067         return LLT::vector(ValTy.getElementCount(), PtrTy);
1068       return PtrTy;
1069     }
1070 
1071     return ValTy;
1072   }
1073 
1074   unsigned AddrSpace = Flags.getPointerAddrSpace();
1075   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1076 }
1077 
1078 void CallLowering::ValueHandler::copyArgumentMemory(
1079     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1080     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1081     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1082     CCValAssign &VA) const {
1083   MachineFunction &MF = MIRBuilder.getMF();
1084   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1085       SrcPtrInfo,
1086       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1087       SrcAlign);
1088 
1089   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1090       DstPtrInfo,
1091       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1092       MemSize, DstAlign);
1093 
1094   const LLT PtrTy = MRI.getType(DstPtr);
1095   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1096 
1097   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1098   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1099 }
1100 
1101 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1102                                                     CCValAssign &VA,
1103                                                     unsigned MaxSizeBits) {
1104   LLT LocTy{VA.getLocVT()};
1105   LLT ValTy{VA.getValVT()};
1106 
1107   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1108     return ValReg;
1109 
1110   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1111     if (MaxSizeBits <= ValTy.getSizeInBits())
1112       return ValReg;
1113     LocTy = LLT::scalar(MaxSizeBits);
1114   }
1115 
1116   const LLT ValRegTy = MRI.getType(ValReg);
1117   if (ValRegTy.isPointer()) {
1118     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1119     // we have to cast to do the extension.
1120     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1121     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1122   }
1123 
1124   switch (VA.getLocInfo()) {
1125   default: break;
1126   case CCValAssign::Full:
1127   case CCValAssign::BCvt:
1128     // FIXME: bitconverting between vector types may or may not be a
1129     // nop in big-endian situations.
1130     return ValReg;
1131   case CCValAssign::AExt: {
1132     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1133     return MIB.getReg(0);
1134   }
1135   case CCValAssign::SExt: {
1136     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1137     MIRBuilder.buildSExt(NewReg, ValReg);
1138     return NewReg;
1139   }
1140   case CCValAssign::ZExt: {
1141     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1142     MIRBuilder.buildZExt(NewReg, ValReg);
1143     return NewReg;
1144   }
1145   }
1146   llvm_unreachable("unable to extend register");
1147 }
1148 
1149 void CallLowering::ValueAssigner::anchor() {}
1150 
1151 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1152                                                                 Register SrcReg,
1153                                                                 LLT NarrowTy) {
1154   switch (VA.getLocInfo()) {
1155   case CCValAssign::LocInfo::ZExt: {
1156     return MIRBuilder
1157         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1158                          NarrowTy.getScalarSizeInBits())
1159         .getReg(0);
1160   }
1161   case CCValAssign::LocInfo::SExt: {
1162     return MIRBuilder
1163         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1164                          NarrowTy.getScalarSizeInBits())
1165         .getReg(0);
1166     break;
1167   }
1168   default:
1169     return SrcReg;
1170   }
1171 }
1172 
1173 /// Check if we can use a basic COPY instruction between the two types.
1174 ///
1175 /// We're currently building on top of the infrastructure using MVT, which loses
1176 /// pointer information in the CCValAssign. We accept copies from physical
1177 /// registers that have been reported as integers if it's to an equivalent sized
1178 /// pointer LLT.
1179 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1180   if (SrcTy == DstTy)
1181     return true;
1182 
1183   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1184     return false;
1185 
1186   SrcTy = SrcTy.getScalarType();
1187   DstTy = DstTy.getScalarType();
1188 
1189   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1190          (DstTy.isScalar() && SrcTy.isPointer());
1191 }
1192 
1193 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1194                                                           Register PhysReg,
1195                                                           CCValAssign VA) {
1196   const MVT LocVT = VA.getLocVT();
1197   const LLT LocTy(LocVT);
1198   const LLT RegTy = MRI.getType(ValVReg);
1199 
1200   if (isCopyCompatibleType(RegTy, LocTy)) {
1201     MIRBuilder.buildCopy(ValVReg, PhysReg);
1202     return;
1203   }
1204 
1205   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1206   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1207   MIRBuilder.buildTrunc(ValVReg, Hint);
1208 }
1209