1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftError)) 58 Flags.setSwiftError(); 59 } 60 61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 62 unsigned ArgIdx) const { 63 ISD::ArgFlagsTy Flags; 64 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 65 return Call.paramHasAttr(ArgIdx, Attr); 66 }); 67 return Flags; 68 } 69 70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 71 const AttributeList &Attrs, 72 unsigned OpIdx) const { 73 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 74 return Attrs.hasAttribute(OpIdx, Attr); 75 }); 76 } 77 78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 79 ArrayRef<Register> ResRegs, 80 ArrayRef<ArrayRef<Register>> ArgRegs, 81 Register SwiftErrorVReg, 82 std::function<unsigned()> GetCalleeReg) const { 83 CallLoweringInfo Info; 84 const DataLayout &DL = MIRBuilder.getDataLayout(); 85 MachineFunction &MF = MIRBuilder.getMF(); 86 bool CanBeTailCalled = CB.isTailCall() && 87 isInTailCallPosition(CB, MF.getTarget()) && 88 (MF.getFunction() 89 .getFnAttribute("disable-tail-calls") 90 .getValueAsString() != "true"); 91 92 CallingConv::ID CallConv = CB.getCallingConv(); 93 Type *RetTy = CB.getType(); 94 bool IsVarArg = CB.getFunctionType()->isVarArg(); 95 96 SmallVector<BaseArgInfo, 4> SplitArgs; 97 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 98 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 99 100 if (!Info.CanLowerReturn) { 101 // Callee requires sret demotion. 102 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 103 104 // The sret demotion isn't compatible with tail-calls, since the sret 105 // argument points into the caller's stack frame. 106 CanBeTailCalled = false; 107 } 108 109 // First step is to marshall all the function's parameters into the correct 110 // physregs and memory locations. Gather the sequence of argument types that 111 // we'll pass to the assigner function. 112 unsigned i = 0; 113 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 114 for (auto &Arg : CB.args()) { 115 ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i), 116 i < NumFixedArgs}; 117 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 118 119 // If we have an explicit sret argument that is an Instruction, (i.e., it 120 // might point to function-local memory), we can't meaningfully tail-call. 121 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 122 CanBeTailCalled = false; 123 124 Info.OrigArgs.push_back(OrigArg); 125 ++i; 126 } 127 128 // Try looking through a bitcast from one function type to another. 129 // Commonly happens with calls to objc_msgSend(). 130 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 131 if (const Function *F = dyn_cast<Function>(CalleeV)) 132 Info.Callee = MachineOperand::CreateGA(F, 0); 133 else 134 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 135 136 Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}}; 137 if (!Info.OrigRet.Ty->isVoidTy()) 138 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 139 140 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 141 Info.CallConv = CallConv; 142 Info.SwiftErrorVReg = SwiftErrorVReg; 143 Info.IsMustTailCall = CB.isMustTailCall(); 144 Info.IsTailCall = CanBeTailCalled; 145 Info.IsVarArg = IsVarArg; 146 return lowerCall(MIRBuilder, Info); 147 } 148 149 template <typename FuncInfoTy> 150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 151 const DataLayout &DL, 152 const FuncInfoTy &FuncInfo) const { 153 auto &Flags = Arg.Flags[0]; 154 const AttributeList &Attrs = FuncInfo.getAttributes(); 155 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 156 157 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 158 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType(); 159 160 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 161 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 162 163 // For ByVal, alignment should be passed from FE. BE will guess if 164 // this info is not there but there are cases it cannot get right. 165 Align FrameAlign; 166 if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2)) 167 FrameAlign = *ParamAlign; 168 else 169 FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 170 Flags.setByValAlign(FrameAlign); 171 } 172 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 173 174 // Don't try to use the returned attribute if the argument is marked as 175 // swiftself, since it won't be passed in x0. 176 if (Flags.isSwiftSelf()) 177 Flags.setReturned(false); 178 } 179 180 template void 181 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 182 const DataLayout &DL, 183 const Function &FuncInfo) const; 184 185 template void 186 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 187 const DataLayout &DL, 188 const CallBase &FuncInfo) const; 189 190 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 191 SmallVectorImpl<ArgInfo> &SplitArgs, 192 const DataLayout &DL, 193 CallingConv::ID CallConv) const { 194 LLVMContext &Ctx = OrigArg.Ty->getContext(); 195 196 SmallVector<EVT, 4> SplitVTs; 197 SmallVector<uint64_t, 4> Offsets; 198 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 199 200 if (SplitVTs.size() == 0) 201 return; 202 203 if (SplitVTs.size() == 1) { 204 // No splitting to do, but we want to replace the original type (e.g. [1 x 205 // double] -> double). 206 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 207 OrigArg.Flags[0], OrigArg.IsFixed); 208 return; 209 } 210 211 // Create one ArgInfo for each virtual register in the original ArgInfo. 212 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 213 214 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 215 OrigArg.Ty, CallConv, false); 216 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 217 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 218 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 219 OrigArg.IsFixed); 220 if (NeedsRegBlock) 221 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 222 } 223 224 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 225 } 226 227 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 228 Type *PackedTy, 229 MachineIRBuilder &MIRBuilder) const { 230 assert(DstRegs.size() > 1 && "Nothing to unpack"); 231 232 const DataLayout &DL = MIRBuilder.getDataLayout(); 233 234 SmallVector<LLT, 8> LLTs; 235 SmallVector<uint64_t, 8> Offsets; 236 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 237 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 238 239 for (unsigned i = 0; i < DstRegs.size(); ++i) 240 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 241 } 242 243 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 244 static MachineInstrBuilder 245 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 246 ArrayRef<Register> SrcRegs) { 247 MachineRegisterInfo &MRI = *B.getMRI(); 248 LLT LLTy = MRI.getType(DstRegs[0]); 249 LLT PartLLT = MRI.getType(SrcRegs[0]); 250 251 // Deal with v3s16 split into v2s16 252 LLT LCMTy = getLCMType(LLTy, PartLLT); 253 if (LCMTy == LLTy) { 254 // Common case where no padding is needed. 255 assert(DstRegs.size() == 1); 256 return B.buildConcatVectors(DstRegs[0], SrcRegs); 257 } 258 259 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 260 Register Undef = B.buildUndef(PartLLT).getReg(0); 261 262 // Build vector of undefs. 263 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 264 265 // Replace the first sources with the real registers. 266 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 267 268 auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs); 269 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 270 271 SmallVector<Register, 8> PadDstRegs(NumDst); 272 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 273 274 // Create the excess dead defs for the unmerge. 275 for (int I = DstRegs.size(); I != NumDst; ++I) 276 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 277 278 return B.buildUnmerge(PadDstRegs, Widened); 279 } 280 281 /// Create a sequence of instructions to combine pieces split into register 282 /// typed values to the original IR value. \p OrigRegs contains the destination 283 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 284 /// with type \p PartLLT. 285 static void buildCopyToParts(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 286 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) { 287 MachineRegisterInfo &MRI = *B.getMRI(); 288 289 if (!LLTy.isVector() && !PartLLT.isVector()) { 290 assert(OrigRegs.size() == 1); 291 LLT OrigTy = MRI.getType(OrigRegs[0]); 292 293 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size(); 294 if (SrcSize == OrigTy.getSizeInBits()) 295 B.buildMerge(OrigRegs[0], Regs); 296 else { 297 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 298 B.buildTrunc(OrigRegs[0], Widened); 299 } 300 301 return; 302 } 303 304 if (LLTy.isVector() && PartLLT.isVector()) { 305 assert(OrigRegs.size() == 1); 306 assert(LLTy.getElementType() == PartLLT.getElementType()); 307 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 308 return; 309 } 310 311 assert(LLTy.isVector() && !PartLLT.isVector()); 312 313 LLT DstEltTy = LLTy.getElementType(); 314 315 // Pointer information was discarded. We'll need to coerce some register types 316 // to avoid violating type constraints. 317 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 318 319 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 320 321 if (DstEltTy == PartLLT) { 322 // Vector was trivially scalarized. 323 324 if (RealDstEltTy.isPointer()) { 325 for (Register Reg : Regs) 326 MRI.setType(Reg, RealDstEltTy); 327 } 328 329 B.buildBuildVector(OrigRegs[0], Regs); 330 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 331 // Deal with vector with 64-bit elements decomposed to 32-bit 332 // registers. Need to create intermediate 64-bit elements. 333 SmallVector<Register, 8> EltMerges; 334 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 335 336 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 337 338 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 339 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 340 // Fix the type in case this is really a vector of pointers. 341 MRI.setType(Merge.getReg(0), RealDstEltTy); 342 EltMerges.push_back(Merge.getReg(0)); 343 Regs = Regs.drop_front(PartsPerElt); 344 } 345 346 B.buildBuildVector(OrigRegs[0], EltMerges); 347 } else { 348 // Vector was split, and elements promoted to a wider type. 349 // FIXME: Should handle floating point promotions. 350 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 351 auto BV = B.buildBuildVector(BVType, Regs); 352 B.buildTrunc(OrigRegs[0], BV); 353 } 354 } 355 356 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder, 357 SmallVectorImpl<ArgInfo> &Args, 358 ValueHandler &Handler, 359 CallingConv::ID CallConv, bool IsVarArg, 360 Register ThisReturnReg) const { 361 MachineFunction &MF = MIRBuilder.getMF(); 362 const Function &F = MF.getFunction(); 363 SmallVector<CCValAssign, 16> ArgLocs; 364 365 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 366 return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler, 367 ThisReturnReg); 368 } 369 370 bool CallLowering::handleAssignments(CCState &CCInfo, 371 SmallVectorImpl<CCValAssign> &ArgLocs, 372 MachineIRBuilder &MIRBuilder, 373 SmallVectorImpl<ArgInfo> &Args, 374 ValueHandler &Handler, 375 Register ThisReturnReg) const { 376 MachineFunction &MF = MIRBuilder.getMF(); 377 const Function &F = MF.getFunction(); 378 const DataLayout &DL = F.getParent()->getDataLayout(); 379 380 unsigned NumArgs = Args.size(); 381 for (unsigned i = 0; i != NumArgs; ++i) { 382 EVT CurVT = EVT::getEVT(Args[i].Ty); 383 if (CurVT.isSimple() && 384 !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(), 385 CCValAssign::Full, Args[i], Args[i].Flags[0], 386 CCInfo)) 387 continue; 388 389 MVT NewVT = TLI->getRegisterTypeForCallingConv( 390 F.getContext(), CCInfo.getCallingConv(), EVT(CurVT)); 391 392 // If we need to split the type over multiple regs, check it's a scenario 393 // we currently support. 394 unsigned NumParts = TLI->getNumRegistersForCallingConv( 395 F.getContext(), CCInfo.getCallingConv(), CurVT); 396 397 if (NumParts == 1) { 398 // Try to use the register type if we couldn't assign the VT. 399 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 400 Args[i].Flags[0], CCInfo)) 401 return false; 402 continue; 403 } 404 405 assert(NumParts > 1); 406 407 // For incoming arguments (physregs to vregs), we could have values in 408 // physregs (or memlocs) which we want to extract and copy to vregs. 409 // During this, we might have to deal with the LLT being split across 410 // multiple regs, so we have to record this information for later. 411 // 412 // If we have outgoing args, then we have the opposite case. We have a 413 // vreg with an LLT which we want to assign to a physical location, and 414 // we might have to record that the value has to be split later. 415 if (Handler.isIncomingArgumentHandler()) { 416 // We're handling an incoming arg which is split over multiple regs. 417 // E.g. passing an s128 on AArch64. 418 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 419 Args[i].OrigRegs.push_back(Args[i].Regs[0]); 420 Args[i].Regs.clear(); 421 Args[i].Flags.clear(); 422 LLT NewLLT = getLLTForMVT(NewVT); 423 // For each split register, create and assign a vreg that will store 424 // the incoming component of the larger value. These will later be 425 // merged to form the final vreg. 426 for (unsigned Part = 0; Part < NumParts; ++Part) { 427 Register Reg = 428 MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT); 429 ISD::ArgFlagsTy Flags = OrigFlags; 430 if (Part == 0) { 431 Flags.setSplit(); 432 } else { 433 Flags.setOrigAlign(Align(1)); 434 if (Part == NumParts - 1) 435 Flags.setSplitEnd(); 436 } 437 Args[i].Regs.push_back(Reg); 438 Args[i].Flags.push_back(Flags); 439 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 440 Args[i].Flags[Part], CCInfo)) { 441 // Still couldn't assign this smaller part type for some reason. 442 return false; 443 } 444 } 445 } else { 446 // This type is passed via multiple registers in the calling convention. 447 // We need to extract the individual parts. 448 Register LargeReg = Args[i].Regs[0]; 449 LLT SmallTy = LLT::scalar(NewVT.getSizeInBits()); 450 auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg); 451 assert(Unmerge->getNumOperands() == NumParts + 1); 452 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 453 // We're going to replace the regs and flags with the split ones. 454 Args[i].Regs.clear(); 455 Args[i].Flags.clear(); 456 for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) { 457 ISD::ArgFlagsTy Flags = OrigFlags; 458 if (PartIdx == 0) { 459 Flags.setSplit(); 460 } else { 461 Flags.setOrigAlign(Align(1)); 462 if (PartIdx == NumParts - 1) 463 Flags.setSplitEnd(); 464 } 465 466 // TODO: Also check if there is a valid extension that preserves the 467 // bits. However currently this call lowering doesn't support non-exact 468 // split parts, so that can't be tested. 469 if (OrigFlags.isReturned() && 470 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 471 Flags.setReturned(false); 472 } 473 474 Args[i].Regs.push_back(Unmerge.getReg(PartIdx)); 475 Args[i].Flags.push_back(Flags); 476 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, 477 Args[i], Args[i].Flags[PartIdx], CCInfo)) 478 return false; 479 } 480 } 481 } 482 483 for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) { 484 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 485 486 CCValAssign &VA = ArgLocs[j]; 487 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 488 489 if (VA.needsCustom()) { 490 unsigned NumArgRegs = 491 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 492 if (!NumArgRegs) 493 return false; 494 j += NumArgRegs; 495 continue; 496 } 497 498 EVT OrigVT = EVT::getEVT(Args[i].Ty); 499 EVT VAVT = VA.getValVT(); 500 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 501 const LLT VATy(VAVT.getSimpleVT()); 502 503 // Expected to be multiple regs for a single incoming arg. 504 // There should be Regs.size() ArgLocs per argument. 505 unsigned NumArgRegs = Args[i].Regs.size(); 506 MachineRegisterInfo &MRI = MF.getRegInfo(); 507 assert((j + (NumArgRegs - 1)) < ArgLocs.size() && 508 "Too many regs for number of args"); 509 for (unsigned Part = 0; Part < NumArgRegs; ++Part) { 510 Register ArgReg = Args[i].Regs[Part]; 511 LLT ArgRegTy = MRI.getType(ArgReg); 512 // There should be Regs.size() ArgLocs per argument. 513 VA = ArgLocs[j + Part]; 514 if (VA.isMemLoc()) { 515 // Individual pieces may have been spilled to the stack and others 516 // passed in registers. 517 518 // FIXME: Use correct address space for pointer size 519 EVT LocVT = VA.getValVT(); 520 unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize() 521 : LocVT.getStoreSize(); 522 unsigned Offset = VA.getLocMemOffset(); 523 MachinePointerInfo MPO; 524 Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO); 525 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO, 526 VA); 527 continue; 528 } 529 530 assert(VA.isRegLoc() && "custom loc should have been handled already"); 531 532 if (i == 0 && ThisReturnReg.isValid() && 533 Handler.isIncomingArgumentHandler() && 534 isTypeIsValidForThisReturn(VAVT)) { 535 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 536 continue; 537 } 538 539 // GlobalISel does not currently work for scalable vectors. 540 if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() || 541 !Handler.isIncomingArgumentHandler()) { 542 // This is an argument that might have been split. There should be 543 // Regs.size() ArgLocs per argument. 544 545 // Insert the argument copies. If VAVT < OrigVT, we'll insert the merge 546 // to the original register after handling all of the parts. 547 Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA); 548 continue; 549 } 550 551 // This ArgLoc covers multiple pieces, so we need to split it. 552 Register NewReg = MRI.createGenericVirtualRegister(VATy); 553 Handler.assignValueToReg(NewReg, VA.getLocReg(), VA); 554 // If it's a vector type, we either need to truncate the elements 555 // or do an unmerge to get the lower block of elements. 556 if (VATy.isVector() && 557 VATy.getNumElements() > OrigVT.getVectorNumElements()) { 558 // Just handle the case where the VA type is a multiple of original 559 // type. 560 if (VATy.getNumElements() % OrigVT.getVectorNumElements() != 0) { 561 LLVM_DEBUG(dbgs() << "Incoming promoted vector arg elts is not a " 562 "multiple of orig type elt: " 563 << VATy << " vs " << OrigTy); 564 return false; 565 } 566 SmallVector<Register, 4> DstRegs = {ArgReg}; 567 unsigned NumParts = 568 VATy.getNumElements() / OrigVT.getVectorNumElements() - 1; 569 for (unsigned Idx = 0; Idx < NumParts; ++Idx) 570 DstRegs.push_back( 571 MIRBuilder.getMRI()->createGenericVirtualRegister(OrigTy)); 572 MIRBuilder.buildUnmerge(DstRegs, {NewReg}); 573 } else if (VATy.getScalarSizeInBits() > ArgRegTy.getScalarSizeInBits()) { 574 MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0); 575 } else { 576 MIRBuilder.buildCopy(ArgReg, NewReg); 577 } 578 } 579 580 // Now that all pieces have been handled, re-pack any arguments into any 581 // wider, original registers. 582 if (Handler.isIncomingArgumentHandler()) { 583 // Merge the split registers into the expected larger result vregs of 584 // the original call. 585 586 if (OrigTy != VATy && !Args[i].OrigRegs.empty()) { 587 buildCopyToParts(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 588 VATy); 589 } 590 } 591 592 j += NumArgRegs - 1; 593 } 594 595 return true; 596 } 597 598 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 599 ArrayRef<Register> VRegs, Register DemoteReg, 600 int FI) const { 601 MachineFunction &MF = MIRBuilder.getMF(); 602 MachineRegisterInfo &MRI = MF.getRegInfo(); 603 const DataLayout &DL = MF.getDataLayout(); 604 605 SmallVector<EVT, 4> SplitVTs; 606 SmallVector<uint64_t, 4> Offsets; 607 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 608 609 assert(VRegs.size() == SplitVTs.size()); 610 611 unsigned NumValues = SplitVTs.size(); 612 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 613 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 614 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 615 616 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 617 618 for (unsigned I = 0; I < NumValues; ++I) { 619 Register Addr; 620 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 621 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 622 MRI.getType(VRegs[I]).getSizeInBytes(), 623 commonAlignment(BaseAlign, Offsets[I])); 624 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 625 } 626 } 627 628 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 629 ArrayRef<Register> VRegs, 630 Register DemoteReg) const { 631 MachineFunction &MF = MIRBuilder.getMF(); 632 MachineRegisterInfo &MRI = MF.getRegInfo(); 633 const DataLayout &DL = MF.getDataLayout(); 634 635 SmallVector<EVT, 4> SplitVTs; 636 SmallVector<uint64_t, 4> Offsets; 637 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 638 639 assert(VRegs.size() == SplitVTs.size()); 640 641 unsigned NumValues = SplitVTs.size(); 642 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 643 unsigned AS = DL.getAllocaAddrSpace(); 644 LLT OffsetLLTy = 645 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 646 647 MachinePointerInfo PtrInfo(AS); 648 649 for (unsigned I = 0; I < NumValues; ++I) { 650 Register Addr; 651 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 652 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 653 MRI.getType(VRegs[I]).getSizeInBytes(), 654 commonAlignment(BaseAlign, Offsets[I])); 655 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 656 } 657 } 658 659 void CallLowering::insertSRetIncomingArgument( 660 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 661 MachineRegisterInfo &MRI, const DataLayout &DL) const { 662 unsigned AS = DL.getAllocaAddrSpace(); 663 DemoteReg = MRI.createGenericVirtualRegister( 664 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 665 666 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 667 668 SmallVector<EVT, 1> ValueVTs; 669 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 670 671 // NOTE: Assume that a pointer won't get split into more than one VT. 672 assert(ValueVTs.size() == 1); 673 674 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext())); 675 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 676 DemoteArg.Flags[0].setSRet(); 677 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 678 } 679 680 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 681 const CallBase &CB, 682 CallLoweringInfo &Info) const { 683 const DataLayout &DL = MIRBuilder.getDataLayout(); 684 Type *RetTy = CB.getType(); 685 unsigned AS = DL.getAllocaAddrSpace(); 686 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 687 688 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 689 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 690 691 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 692 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS)); 693 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 694 DemoteArg.Flags[0].setSRet(); 695 696 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 697 Info.DemoteStackIndex = FI; 698 Info.DemoteRegister = DemoteReg; 699 } 700 701 bool CallLowering::checkReturn(CCState &CCInfo, 702 SmallVectorImpl<BaseArgInfo> &Outs, 703 CCAssignFn *Fn) const { 704 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 705 MVT VT = MVT::getVT(Outs[I].Ty); 706 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 707 return false; 708 } 709 return true; 710 } 711 712 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 713 AttributeList Attrs, 714 SmallVectorImpl<BaseArgInfo> &Outs, 715 const DataLayout &DL) const { 716 LLVMContext &Context = RetTy->getContext(); 717 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 718 719 SmallVector<EVT, 4> SplitVTs; 720 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 721 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 722 723 for (EVT VT : SplitVTs) { 724 unsigned NumParts = 725 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 726 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 727 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 728 729 for (unsigned I = 0; I < NumParts; ++I) { 730 Outs.emplace_back(PartTy, Flags); 731 } 732 } 733 } 734 735 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 736 const auto &F = MF.getFunction(); 737 Type *ReturnType = F.getReturnType(); 738 CallingConv::ID CallConv = F.getCallingConv(); 739 740 SmallVector<BaseArgInfo, 4> SplitArgs; 741 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 742 MF.getDataLayout()); 743 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 744 } 745 746 bool CallLowering::analyzeArgInfo(CCState &CCState, 747 SmallVectorImpl<ArgInfo> &Args, 748 CCAssignFn &AssignFnFixed, 749 CCAssignFn &AssignFnVarArg) const { 750 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 751 MVT VT = MVT::getVT(Args[i].Ty); 752 CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg; 753 if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) { 754 // Bail out on anything we can't handle. 755 LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString() 756 << " (arg number = " << i << "\n"); 757 return false; 758 } 759 } 760 return true; 761 } 762 763 bool CallLowering::parametersInCSRMatch( 764 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 765 const SmallVectorImpl<CCValAssign> &OutLocs, 766 const SmallVectorImpl<ArgInfo> &OutArgs) const { 767 for (unsigned i = 0; i < OutLocs.size(); ++i) { 768 auto &ArgLoc = OutLocs[i]; 769 // If it's not a register, it's fine. 770 if (!ArgLoc.isRegLoc()) 771 continue; 772 773 MCRegister PhysReg = ArgLoc.getLocReg(); 774 775 // Only look at callee-saved registers. 776 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 777 continue; 778 779 LLVM_DEBUG( 780 dbgs() 781 << "... Call has an argument passed in a callee-saved register.\n"); 782 783 // Check if it was copied from. 784 const ArgInfo &OutInfo = OutArgs[i]; 785 786 if (OutInfo.Regs.size() > 1) { 787 LLVM_DEBUG( 788 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 789 return false; 790 } 791 792 // Check if we copy the register, walking through copies from virtual 793 // registers. Note that getDefIgnoringCopies does not ignore copies from 794 // physical registers. 795 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 796 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 797 LLVM_DEBUG( 798 dbgs() 799 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 800 return false; 801 } 802 803 // Got a copy. Verify that it's the same as the register we want. 804 Register CopyRHS = RegDef->getOperand(1).getReg(); 805 if (CopyRHS != PhysReg) { 806 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 807 "VReg, cannot tail call.\n"); 808 return false; 809 } 810 } 811 812 return true; 813 } 814 815 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 816 MachineFunction &MF, 817 SmallVectorImpl<ArgInfo> &InArgs, 818 CCAssignFn &CalleeAssignFnFixed, 819 CCAssignFn &CalleeAssignFnVarArg, 820 CCAssignFn &CallerAssignFnFixed, 821 CCAssignFn &CallerAssignFnVarArg) const { 822 const Function &F = MF.getFunction(); 823 CallingConv::ID CalleeCC = Info.CallConv; 824 CallingConv::ID CallerCC = F.getCallingConv(); 825 826 if (CallerCC == CalleeCC) 827 return true; 828 829 SmallVector<CCValAssign, 16> ArgLocs1; 830 CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext()); 831 if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed, 832 CalleeAssignFnVarArg)) 833 return false; 834 835 SmallVector<CCValAssign, 16> ArgLocs2; 836 CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext()); 837 if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed, 838 CalleeAssignFnVarArg)) 839 return false; 840 841 // We need the argument locations to match up exactly. If there's more in 842 // one than the other, then we are done. 843 if (ArgLocs1.size() != ArgLocs2.size()) 844 return false; 845 846 // Make sure that each location is passed in exactly the same way. 847 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 848 const CCValAssign &Loc1 = ArgLocs1[i]; 849 const CCValAssign &Loc2 = ArgLocs2[i]; 850 851 // We need both of them to be the same. So if one is a register and one 852 // isn't, we're done. 853 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 854 return false; 855 856 if (Loc1.isRegLoc()) { 857 // If they don't have the same register location, we're done. 858 if (Loc1.getLocReg() != Loc2.getLocReg()) 859 return false; 860 861 // They matched, so we can move to the next ArgLoc. 862 continue; 863 } 864 865 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 866 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 867 return false; 868 } 869 870 return true; 871 } 872 873 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 874 CCValAssign &VA, 875 unsigned MaxSizeBits) { 876 LLT LocTy{VA.getLocVT()}; 877 LLT ValTy = MRI.getType(ValReg); 878 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 879 return ValReg; 880 881 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 882 if (MaxSizeBits <= ValTy.getSizeInBits()) 883 return ValReg; 884 LocTy = LLT::scalar(MaxSizeBits); 885 } 886 887 switch (VA.getLocInfo()) { 888 default: break; 889 case CCValAssign::Full: 890 case CCValAssign::BCvt: 891 // FIXME: bitconverting between vector types may or may not be a 892 // nop in big-endian situations. 893 return ValReg; 894 case CCValAssign::AExt: { 895 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 896 return MIB.getReg(0); 897 } 898 case CCValAssign::SExt: { 899 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 900 MIRBuilder.buildSExt(NewReg, ValReg); 901 return NewReg; 902 } 903 case CCValAssign::ZExt: { 904 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 905 MIRBuilder.buildZExt(NewReg, ValReg); 906 return NewReg; 907 } 908 } 909 llvm_unreachable("unable to extend register"); 910 } 911 912 void CallLowering::ValueHandler::anchor() {} 913