xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 0131498402acbae4cfb445a5a98fcf93b3a0e676)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftError))
58     Flags.setSwiftError();
59 }
60 
61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
62                                                      unsigned ArgIdx) const {
63   ISD::ArgFlagsTy Flags;
64   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
65     return Call.paramHasAttr(ArgIdx, Attr);
66   });
67   return Flags;
68 }
69 
70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
71                                              const AttributeList &Attrs,
72                                              unsigned OpIdx) const {
73   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
74     return Attrs.hasAttribute(OpIdx, Attr);
75   });
76 }
77 
78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
79                              ArrayRef<Register> ResRegs,
80                              ArrayRef<ArrayRef<Register>> ArgRegs,
81                              Register SwiftErrorVReg,
82                              std::function<unsigned()> GetCalleeReg) const {
83   CallLoweringInfo Info;
84   const DataLayout &DL = MIRBuilder.getDataLayout();
85   MachineFunction &MF = MIRBuilder.getMF();
86   bool CanBeTailCalled = CB.isTailCall() &&
87                          isInTailCallPosition(CB, MF.getTarget()) &&
88                          (MF.getFunction()
89                               .getFnAttribute("disable-tail-calls")
90                               .getValueAsString() != "true");
91 
92   CallingConv::ID CallConv = CB.getCallingConv();
93   Type *RetTy = CB.getType();
94   bool IsVarArg = CB.getFunctionType()->isVarArg();
95 
96   SmallVector<BaseArgInfo, 4> SplitArgs;
97   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
98   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
99 
100   if (!Info.CanLowerReturn) {
101     // Callee requires sret demotion.
102     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
103 
104     // The sret demotion isn't compatible with tail-calls, since the sret
105     // argument points into the caller's stack frame.
106     CanBeTailCalled = false;
107   }
108 
109   // First step is to marshall all the function's parameters into the correct
110   // physregs and memory locations. Gather the sequence of argument types that
111   // we'll pass to the assigner function.
112   unsigned i = 0;
113   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
114   for (auto &Arg : CB.args()) {
115     ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i),
116                     i < NumFixedArgs};
117     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
118 
119     // If we have an explicit sret argument that is an Instruction, (i.e., it
120     // might point to function-local memory), we can't meaningfully tail-call.
121     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
122       CanBeTailCalled = false;
123 
124     Info.OrigArgs.push_back(OrigArg);
125     ++i;
126   }
127 
128   // Try looking through a bitcast from one function type to another.
129   // Commonly happens with calls to objc_msgSend().
130   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
131   if (const Function *F = dyn_cast<Function>(CalleeV))
132     Info.Callee = MachineOperand::CreateGA(F, 0);
133   else
134     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
135 
136   Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
137   if (!Info.OrigRet.Ty->isVoidTy())
138     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
139 
140   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
141   Info.CallConv = CallConv;
142   Info.SwiftErrorVReg = SwiftErrorVReg;
143   Info.IsMustTailCall = CB.isMustTailCall();
144   Info.IsTailCall = CanBeTailCalled;
145   Info.IsVarArg = IsVarArg;
146   return lowerCall(MIRBuilder, Info);
147 }
148 
149 template <typename FuncInfoTy>
150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
151                                const DataLayout &DL,
152                                const FuncInfoTy &FuncInfo) const {
153   auto &Flags = Arg.Flags[0];
154   const AttributeList &Attrs = FuncInfo.getAttributes();
155   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
156 
157   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
158     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
159 
160     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
161     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
162 
163     // For ByVal, alignment should be passed from FE.  BE will guess if
164     // this info is not there but there are cases it cannot get right.
165     Align FrameAlign;
166     if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2))
167       FrameAlign = *ParamAlign;
168     else
169       FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
170     Flags.setByValAlign(FrameAlign);
171   }
172   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
173 
174   // Don't try to use the returned attribute if the argument is marked as
175   // swiftself, since it won't be passed in x0.
176   if (Flags.isSwiftSelf())
177     Flags.setReturned(false);
178 }
179 
180 template void
181 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
182                                     const DataLayout &DL,
183                                     const Function &FuncInfo) const;
184 
185 template void
186 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
187                                     const DataLayout &DL,
188                                     const CallBase &FuncInfo) const;
189 
190 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
191                                      SmallVectorImpl<ArgInfo> &SplitArgs,
192                                      const DataLayout &DL,
193                                      CallingConv::ID CallConv) const {
194   LLVMContext &Ctx = OrigArg.Ty->getContext();
195 
196   SmallVector<EVT, 4> SplitVTs;
197   SmallVector<uint64_t, 4> Offsets;
198   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
199 
200   if (SplitVTs.size() == 0)
201     return;
202 
203   if (SplitVTs.size() == 1) {
204     // No splitting to do, but we want to replace the original type (e.g. [1 x
205     // double] -> double).
206     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
207                            OrigArg.Flags[0], OrigArg.IsFixed);
208     return;
209   }
210 
211   // Create one ArgInfo for each virtual register in the original ArgInfo.
212   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
213 
214   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
215       OrigArg.Ty, CallConv, false);
216   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
217     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
218     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
219                            OrigArg.IsFixed);
220     if (NeedsRegBlock)
221       SplitArgs.back().Flags[0].setInConsecutiveRegs();
222   }
223 
224   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
225 }
226 
227 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
228                               Type *PackedTy,
229                               MachineIRBuilder &MIRBuilder) const {
230   assert(DstRegs.size() > 1 && "Nothing to unpack");
231 
232   const DataLayout &DL = MIRBuilder.getDataLayout();
233 
234   SmallVector<LLT, 8> LLTs;
235   SmallVector<uint64_t, 8> Offsets;
236   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
237   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
238 
239   for (unsigned i = 0; i < DstRegs.size(); ++i)
240     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
241 }
242 
243 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
244 static MachineInstrBuilder
245 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
246                             ArrayRef<Register> SrcRegs) {
247   MachineRegisterInfo &MRI = *B.getMRI();
248   LLT LLTy = MRI.getType(DstRegs[0]);
249   LLT PartLLT = MRI.getType(SrcRegs[0]);
250 
251   // Deal with v3s16 split into v2s16
252   LLT LCMTy = getLCMType(LLTy, PartLLT);
253   if (LCMTy == LLTy) {
254     // Common case where no padding is needed.
255     assert(DstRegs.size() == 1);
256     return B.buildConcatVectors(DstRegs[0], SrcRegs);
257   }
258 
259   const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
260   Register Undef = B.buildUndef(PartLLT).getReg(0);
261 
262   // Build vector of undefs.
263   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
264 
265   // Replace the first sources with the real registers.
266   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
267 
268   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
269   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
270 
271   SmallVector<Register, 8> PadDstRegs(NumDst);
272   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
273 
274   // Create the excess dead defs for the unmerge.
275   for (int I = DstRegs.size(); I != NumDst; ++I)
276     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
277 
278   return B.buildUnmerge(PadDstRegs, Widened);
279 }
280 
281 /// Create a sequence of instructions to combine pieces split into register
282 /// typed values to the original IR value. \p OrigRegs contains the destination
283 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
284 /// with type \p PartLLT.
285 static void buildCopyToParts(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
286                              ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) {
287   MachineRegisterInfo &MRI = *B.getMRI();
288 
289   if (!LLTy.isVector() && !PartLLT.isVector()) {
290     assert(OrigRegs.size() == 1);
291     LLT OrigTy = MRI.getType(OrigRegs[0]);
292 
293     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
294     if (SrcSize == OrigTy.getSizeInBits())
295       B.buildMerge(OrigRegs[0], Regs);
296     else {
297       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
298       B.buildTrunc(OrigRegs[0], Widened);
299     }
300 
301     return;
302   }
303 
304   if (LLTy.isVector() && PartLLT.isVector()) {
305     assert(OrigRegs.size() == 1);
306     assert(LLTy.getElementType() == PartLLT.getElementType());
307     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
308     return;
309   }
310 
311   assert(LLTy.isVector() && !PartLLT.isVector());
312 
313   LLT DstEltTy = LLTy.getElementType();
314 
315   // Pointer information was discarded. We'll need to coerce some register types
316   // to avoid violating type constraints.
317   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
318 
319   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
320 
321   if (DstEltTy == PartLLT) {
322     // Vector was trivially scalarized.
323 
324     if (RealDstEltTy.isPointer()) {
325       for (Register Reg : Regs)
326         MRI.setType(Reg, RealDstEltTy);
327     }
328 
329     B.buildBuildVector(OrigRegs[0], Regs);
330   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
331     // Deal with vector with 64-bit elements decomposed to 32-bit
332     // registers. Need to create intermediate 64-bit elements.
333     SmallVector<Register, 8> EltMerges;
334     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
335 
336     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
337 
338     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
339       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
340       // Fix the type in case this is really a vector of pointers.
341       MRI.setType(Merge.getReg(0), RealDstEltTy);
342       EltMerges.push_back(Merge.getReg(0));
343       Regs = Regs.drop_front(PartsPerElt);
344     }
345 
346     B.buildBuildVector(OrigRegs[0], EltMerges);
347   } else {
348     // Vector was split, and elements promoted to a wider type.
349     // FIXME: Should handle floating point promotions.
350     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
351     auto BV = B.buildBuildVector(BVType, Regs);
352     B.buildTrunc(OrigRegs[0], BV);
353   }
354 }
355 
356 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
357                                      SmallVectorImpl<ArgInfo> &Args,
358                                      ValueHandler &Handler,
359                                      CallingConv::ID CallConv, bool IsVarArg,
360                                      Register ThisReturnReg) const {
361   MachineFunction &MF = MIRBuilder.getMF();
362   const Function &F = MF.getFunction();
363   SmallVector<CCValAssign, 16> ArgLocs;
364 
365   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
366   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler,
367                            ThisReturnReg);
368 }
369 
370 bool CallLowering::handleAssignments(CCState &CCInfo,
371                                      SmallVectorImpl<CCValAssign> &ArgLocs,
372                                      MachineIRBuilder &MIRBuilder,
373                                      SmallVectorImpl<ArgInfo> &Args,
374                                      ValueHandler &Handler,
375                                      Register ThisReturnReg) const {
376   MachineFunction &MF = MIRBuilder.getMF();
377   const Function &F = MF.getFunction();
378   const DataLayout &DL = F.getParent()->getDataLayout();
379 
380   unsigned NumArgs = Args.size();
381   for (unsigned i = 0; i != NumArgs; ++i) {
382     EVT CurVT = EVT::getEVT(Args[i].Ty);
383     if (CurVT.isSimple() &&
384         !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(),
385                            CCValAssign::Full, Args[i], Args[i].Flags[0],
386                            CCInfo))
387       continue;
388 
389     MVT NewVT = TLI->getRegisterTypeForCallingConv(
390         F.getContext(), CCInfo.getCallingConv(), EVT(CurVT));
391 
392     // If we need to split the type over multiple regs, check it's a scenario
393     // we currently support.
394     unsigned NumParts = TLI->getNumRegistersForCallingConv(
395         F.getContext(), CCInfo.getCallingConv(), CurVT);
396 
397     if (NumParts == 1) {
398       // Try to use the register type if we couldn't assign the VT.
399       if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
400                             Args[i].Flags[0], CCInfo))
401         return false;
402       continue;
403     }
404 
405     assert(NumParts > 1);
406 
407     // For incoming arguments (physregs to vregs), we could have values in
408     // physregs (or memlocs) which we want to extract and copy to vregs.
409     // During this, we might have to deal with the LLT being split across
410     // multiple regs, so we have to record this information for later.
411     //
412     // If we have outgoing args, then we have the opposite case. We have a
413     // vreg with an LLT which we want to assign to a physical location, and
414     // we might have to record that the value has to be split later.
415     if (Handler.isIncomingArgumentHandler()) {
416       // We're handling an incoming arg which is split over multiple regs.
417       // E.g. passing an s128 on AArch64.
418       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
419       Args[i].OrigRegs.push_back(Args[i].Regs[0]);
420       Args[i].Regs.clear();
421       Args[i].Flags.clear();
422       LLT NewLLT = getLLTForMVT(NewVT);
423       // For each split register, create and assign a vreg that will store
424       // the incoming component of the larger value. These will later be
425       // merged to form the final vreg.
426       for (unsigned Part = 0; Part < NumParts; ++Part) {
427         Register Reg =
428             MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
429         ISD::ArgFlagsTy Flags = OrigFlags;
430         if (Part == 0) {
431           Flags.setSplit();
432         } else {
433           Flags.setOrigAlign(Align(1));
434           if (Part == NumParts - 1)
435             Flags.setSplitEnd();
436         }
437         Args[i].Regs.push_back(Reg);
438         Args[i].Flags.push_back(Flags);
439         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
440                               Args[i].Flags[Part], CCInfo)) {
441           // Still couldn't assign this smaller part type for some reason.
442           return false;
443         }
444       }
445     } else {
446       // This type is passed via multiple registers in the calling convention.
447       // We need to extract the individual parts.
448       Register LargeReg = Args[i].Regs[0];
449       LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
450       auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
451       assert(Unmerge->getNumOperands() == NumParts + 1);
452       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
453       // We're going to replace the regs and flags with the split ones.
454       Args[i].Regs.clear();
455       Args[i].Flags.clear();
456       for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
457         ISD::ArgFlagsTy Flags = OrigFlags;
458         if (PartIdx == 0) {
459           Flags.setSplit();
460         } else {
461           Flags.setOrigAlign(Align(1));
462           if (PartIdx == NumParts - 1)
463             Flags.setSplitEnd();
464         }
465 
466         // TODO: Also check if there is a valid extension that preserves the
467         // bits. However currently this call lowering doesn't support non-exact
468         // split parts, so that can't be tested.
469         if (OrigFlags.isReturned() &&
470             (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) {
471           Flags.setReturned(false);
472         }
473 
474         Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
475         Args[i].Flags.push_back(Flags);
476         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full,
477                               Args[i], Args[i].Flags[PartIdx], CCInfo))
478           return false;
479       }
480     }
481   }
482 
483   for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
484     assert(j < ArgLocs.size() && "Skipped too many arg locs");
485 
486     CCValAssign &VA = ArgLocs[j];
487     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
488 
489     if (VA.needsCustom()) {
490       unsigned NumArgRegs =
491           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
492       if (!NumArgRegs)
493         return false;
494       j += NumArgRegs;
495       continue;
496     }
497 
498     EVT OrigVT = EVT::getEVT(Args[i].Ty);
499     EVT VAVT = VA.getValVT();
500     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
501     const LLT VATy(VAVT.getSimpleVT());
502 
503     // Expected to be multiple regs for a single incoming arg.
504     // There should be Regs.size() ArgLocs per argument.
505     unsigned NumArgRegs = Args[i].Regs.size();
506     MachineRegisterInfo &MRI = MF.getRegInfo();
507     assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
508            "Too many regs for number of args");
509     for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
510       Register ArgReg = Args[i].Regs[Part];
511       LLT ArgRegTy = MRI.getType(ArgReg);
512       // There should be Regs.size() ArgLocs per argument.
513       VA = ArgLocs[j + Part];
514       if (VA.isMemLoc()) {
515         // Individual pieces may have been spilled to the stack and others
516         // passed in registers.
517 
518         // FIXME: Use correct address space for pointer size
519         EVT LocVT = VA.getValVT();
520         unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize()
521                                               : LocVT.getStoreSize();
522         unsigned Offset = VA.getLocMemOffset();
523         MachinePointerInfo MPO;
524         Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO);
525         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO,
526                                      VA);
527         continue;
528       }
529 
530       assert(VA.isRegLoc() && "custom loc should have been handled already");
531 
532       if (i == 0 && ThisReturnReg.isValid() &&
533           Handler.isIncomingArgumentHandler() &&
534           isTypeIsValidForThisReturn(VAVT)) {
535         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
536         continue;
537       }
538 
539       // GlobalISel does not currently work for scalable vectors.
540       if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() ||
541           !Handler.isIncomingArgumentHandler()) {
542         // This is an argument that might have been split. There should be
543         // Regs.size() ArgLocs per argument.
544 
545         // Insert the argument copies. If VAVT < OrigVT, we'll insert the merge
546         // to the original register after handling all of the parts.
547         Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
548         continue;
549       }
550 
551       // This ArgLoc covers multiple pieces, so we need to split it.
552       Register NewReg = MRI.createGenericVirtualRegister(VATy);
553       Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
554       // If it's a vector type, we either need to truncate the elements
555       // or do an unmerge to get the lower block of elements.
556       if (VATy.isVector() &&
557           VATy.getNumElements() > OrigVT.getVectorNumElements()) {
558         // Just handle the case where the VA type is a multiple of original
559         // type.
560         if (VATy.getNumElements() % OrigVT.getVectorNumElements() != 0) {
561           LLVM_DEBUG(dbgs() << "Incoming promoted vector arg elts is not a "
562                                "multiple of orig type elt: "
563                             << VATy << " vs " << OrigTy);
564           return false;
565         }
566         SmallVector<Register, 4> DstRegs = {ArgReg};
567         unsigned NumParts =
568             VATy.getNumElements() / OrigVT.getVectorNumElements() - 1;
569         for (unsigned Idx = 0; Idx < NumParts; ++Idx)
570           DstRegs.push_back(
571               MIRBuilder.getMRI()->createGenericVirtualRegister(OrigTy));
572         MIRBuilder.buildUnmerge(DstRegs, {NewReg});
573       } else if (VATy.getScalarSizeInBits() > ArgRegTy.getScalarSizeInBits()) {
574         MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
575       } else {
576         MIRBuilder.buildCopy(ArgReg, NewReg);
577       }
578     }
579 
580     // Now that all pieces have been handled, re-pack any arguments into any
581     // wider, original registers.
582     if (Handler.isIncomingArgumentHandler()) {
583       // Merge the split registers into the expected larger result vregs of
584       // the original call.
585 
586       if (OrigTy != VATy && !Args[i].OrigRegs.empty()) {
587         buildCopyToParts(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
588                          VATy);
589       }
590     }
591 
592     j += NumArgRegs - 1;
593   }
594 
595   return true;
596 }
597 
598 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
599                                    ArrayRef<Register> VRegs, Register DemoteReg,
600                                    int FI) const {
601   MachineFunction &MF = MIRBuilder.getMF();
602   MachineRegisterInfo &MRI = MF.getRegInfo();
603   const DataLayout &DL = MF.getDataLayout();
604 
605   SmallVector<EVT, 4> SplitVTs;
606   SmallVector<uint64_t, 4> Offsets;
607   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
608 
609   assert(VRegs.size() == SplitVTs.size());
610 
611   unsigned NumValues = SplitVTs.size();
612   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
613   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
614   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
615 
616   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
617 
618   for (unsigned I = 0; I < NumValues; ++I) {
619     Register Addr;
620     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
621     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
622                                         MRI.getType(VRegs[I]).getSizeInBytes(),
623                                         commonAlignment(BaseAlign, Offsets[I]));
624     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
625   }
626 }
627 
628 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
629                                     ArrayRef<Register> VRegs,
630                                     Register DemoteReg) const {
631   MachineFunction &MF = MIRBuilder.getMF();
632   MachineRegisterInfo &MRI = MF.getRegInfo();
633   const DataLayout &DL = MF.getDataLayout();
634 
635   SmallVector<EVT, 4> SplitVTs;
636   SmallVector<uint64_t, 4> Offsets;
637   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
638 
639   assert(VRegs.size() == SplitVTs.size());
640 
641   unsigned NumValues = SplitVTs.size();
642   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
643   unsigned AS = DL.getAllocaAddrSpace();
644   LLT OffsetLLTy =
645       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
646 
647   MachinePointerInfo PtrInfo(AS);
648 
649   for (unsigned I = 0; I < NumValues; ++I) {
650     Register Addr;
651     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
652     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
653                                         MRI.getType(VRegs[I]).getSizeInBytes(),
654                                         commonAlignment(BaseAlign, Offsets[I]));
655     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
656   }
657 }
658 
659 void CallLowering::insertSRetIncomingArgument(
660     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
661     MachineRegisterInfo &MRI, const DataLayout &DL) const {
662   unsigned AS = DL.getAllocaAddrSpace();
663   DemoteReg = MRI.createGenericVirtualRegister(
664       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
665 
666   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
667 
668   SmallVector<EVT, 1> ValueVTs;
669   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
670 
671   // NOTE: Assume that a pointer won't get split into more than one VT.
672   assert(ValueVTs.size() == 1);
673 
674   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
675   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
676   DemoteArg.Flags[0].setSRet();
677   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
678 }
679 
680 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
681                                               const CallBase &CB,
682                                               CallLoweringInfo &Info) const {
683   const DataLayout &DL = MIRBuilder.getDataLayout();
684   Type *RetTy = CB.getType();
685   unsigned AS = DL.getAllocaAddrSpace();
686   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
687 
688   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
689       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
690 
691   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
692   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
693   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
694   DemoteArg.Flags[0].setSRet();
695 
696   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
697   Info.DemoteStackIndex = FI;
698   Info.DemoteRegister = DemoteReg;
699 }
700 
701 bool CallLowering::checkReturn(CCState &CCInfo,
702                                SmallVectorImpl<BaseArgInfo> &Outs,
703                                CCAssignFn *Fn) const {
704   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
705     MVT VT = MVT::getVT(Outs[I].Ty);
706     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
707       return false;
708   }
709   return true;
710 }
711 
712 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
713                                  AttributeList Attrs,
714                                  SmallVectorImpl<BaseArgInfo> &Outs,
715                                  const DataLayout &DL) const {
716   LLVMContext &Context = RetTy->getContext();
717   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
718 
719   SmallVector<EVT, 4> SplitVTs;
720   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
721   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
722 
723   for (EVT VT : SplitVTs) {
724     unsigned NumParts =
725         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
726     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
727     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
728 
729     for (unsigned I = 0; I < NumParts; ++I) {
730       Outs.emplace_back(PartTy, Flags);
731     }
732   }
733 }
734 
735 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
736   const auto &F = MF.getFunction();
737   Type *ReturnType = F.getReturnType();
738   CallingConv::ID CallConv = F.getCallingConv();
739 
740   SmallVector<BaseArgInfo, 4> SplitArgs;
741   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
742                 MF.getDataLayout());
743   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
744 }
745 
746 bool CallLowering::analyzeArgInfo(CCState &CCState,
747                                   SmallVectorImpl<ArgInfo> &Args,
748                                   CCAssignFn &AssignFnFixed,
749                                   CCAssignFn &AssignFnVarArg) const {
750   for (unsigned i = 0, e = Args.size(); i < e; ++i) {
751     MVT VT = MVT::getVT(Args[i].Ty);
752     CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
753     if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
754       // Bail out on anything we can't handle.
755       LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
756                         << " (arg number = " << i << "\n");
757       return false;
758     }
759   }
760   return true;
761 }
762 
763 bool CallLowering::parametersInCSRMatch(
764     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
765     const SmallVectorImpl<CCValAssign> &OutLocs,
766     const SmallVectorImpl<ArgInfo> &OutArgs) const {
767   for (unsigned i = 0; i < OutLocs.size(); ++i) {
768     auto &ArgLoc = OutLocs[i];
769     // If it's not a register, it's fine.
770     if (!ArgLoc.isRegLoc())
771       continue;
772 
773     MCRegister PhysReg = ArgLoc.getLocReg();
774 
775     // Only look at callee-saved registers.
776     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
777       continue;
778 
779     LLVM_DEBUG(
780         dbgs()
781         << "... Call has an argument passed in a callee-saved register.\n");
782 
783     // Check if it was copied from.
784     const ArgInfo &OutInfo = OutArgs[i];
785 
786     if (OutInfo.Regs.size() > 1) {
787       LLVM_DEBUG(
788           dbgs() << "... Cannot handle arguments in multiple registers.\n");
789       return false;
790     }
791 
792     // Check if we copy the register, walking through copies from virtual
793     // registers. Note that getDefIgnoringCopies does not ignore copies from
794     // physical registers.
795     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
796     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
797       LLVM_DEBUG(
798           dbgs()
799           << "... Parameter was not copied into a VReg, cannot tail call.\n");
800       return false;
801     }
802 
803     // Got a copy. Verify that it's the same as the register we want.
804     Register CopyRHS = RegDef->getOperand(1).getReg();
805     if (CopyRHS != PhysReg) {
806       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
807                            "VReg, cannot tail call.\n");
808       return false;
809     }
810   }
811 
812   return true;
813 }
814 
815 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
816                                      MachineFunction &MF,
817                                      SmallVectorImpl<ArgInfo> &InArgs,
818                                      CCAssignFn &CalleeAssignFnFixed,
819                                      CCAssignFn &CalleeAssignFnVarArg,
820                                      CCAssignFn &CallerAssignFnFixed,
821                                      CCAssignFn &CallerAssignFnVarArg) const {
822   const Function &F = MF.getFunction();
823   CallingConv::ID CalleeCC = Info.CallConv;
824   CallingConv::ID CallerCC = F.getCallingConv();
825 
826   if (CallerCC == CalleeCC)
827     return true;
828 
829   SmallVector<CCValAssign, 16> ArgLocs1;
830   CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
831   if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
832                       CalleeAssignFnVarArg))
833     return false;
834 
835   SmallVector<CCValAssign, 16> ArgLocs2;
836   CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
837   if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
838                       CalleeAssignFnVarArg))
839     return false;
840 
841   // We need the argument locations to match up exactly. If there's more in
842   // one than the other, then we are done.
843   if (ArgLocs1.size() != ArgLocs2.size())
844     return false;
845 
846   // Make sure that each location is passed in exactly the same way.
847   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
848     const CCValAssign &Loc1 = ArgLocs1[i];
849     const CCValAssign &Loc2 = ArgLocs2[i];
850 
851     // We need both of them to be the same. So if one is a register and one
852     // isn't, we're done.
853     if (Loc1.isRegLoc() != Loc2.isRegLoc())
854       return false;
855 
856     if (Loc1.isRegLoc()) {
857       // If they don't have the same register location, we're done.
858       if (Loc1.getLocReg() != Loc2.getLocReg())
859         return false;
860 
861       // They matched, so we can move to the next ArgLoc.
862       continue;
863     }
864 
865     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
866     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
867       return false;
868   }
869 
870   return true;
871 }
872 
873 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
874                                                     CCValAssign &VA,
875                                                     unsigned MaxSizeBits) {
876   LLT LocTy{VA.getLocVT()};
877   LLT ValTy = MRI.getType(ValReg);
878   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
879     return ValReg;
880 
881   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
882     if (MaxSizeBits <= ValTy.getSizeInBits())
883       return ValReg;
884     LocTy = LLT::scalar(MaxSizeBits);
885   }
886 
887   switch (VA.getLocInfo()) {
888   default: break;
889   case CCValAssign::Full:
890   case CCValAssign::BCvt:
891     // FIXME: bitconverting between vector types may or may not be a
892     // nop in big-endian situations.
893     return ValReg;
894   case CCValAssign::AExt: {
895     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
896     return MIB.getReg(0);
897   }
898   case CCValAssign::SExt: {
899     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
900     MIRBuilder.buildSExt(NewReg, ValReg);
901     return NewReg;
902   }
903   case CCValAssign::ZExt: {
904     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
905     MIRBuilder.buildZExt(NewReg, ValReg);
906     return NewReg;
907   }
908   }
909   llvm_unreachable("unable to extend register");
910 }
911 
912 void CallLowering::ValueHandler::anchor() {}
913