xref: /llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp (revision a278250b0f85949d4f98e641786e5eb2b540c6b0)
1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CCState class, used for lowering and implementing
10 // calling conventions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetLowering.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/SaveAndRestore.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 
28 using namespace llvm;
29 
30 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf,
31                  SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
32     : CallingConv(CC), IsVarArg(isVarArg), MF(mf),
33       TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) {
34   // No stack is used.
35   StackOffset = 0;
36 
37   clearByValRegsInfo();
38   UsedRegs.resize((TRI.getNumRegs()+31)/32);
39 }
40 
41 /// Allocate space on the stack large enough to pass an argument by value.
42 /// The size and alignment information of the argument is encoded in
43 /// its parameter attribute.
44 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
45                           CCValAssign::LocInfo LocInfo, int MinSize,
46                           Align MinAlign, ISD::ArgFlagsTy ArgFlags) {
47   Align Alignment = ArgFlags.getNonZeroByValAlign();
48   unsigned Size  = ArgFlags.getByValSize();
49   if (MinSize > (int)Size)
50     Size = MinSize;
51   if (MinAlign > Alignment)
52     Alignment = MinAlign;
53   ensureMaxAlignment(Alignment);
54   MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment);
55   Size = unsigned(alignTo(Size, MinAlign));
56   unsigned Offset = AllocateStack(Size, Alignment);
57   addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
58 }
59 
60 /// Mark a register and all of its aliases as allocated.
61 void CCState::MarkAllocated(MCPhysReg Reg) {
62   for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
63     UsedRegs[*AI / 32] |= 1 << (*AI & 31);
64 }
65 
66 void CCState::MarkUnallocated(MCPhysReg Reg) {
67   for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
68     UsedRegs[*AI / 32] &= ~(1 << (*AI & 31));
69 }
70 
71 bool CCState::IsShadowAllocatedReg(MCRegister Reg) const {
72   if (!isAllocated(Reg))
73     return false;
74 
75   for (auto const &ValAssign : Locs)
76     if (ValAssign.isRegLoc() && TRI.regsOverlap(ValAssign.getLocReg(), Reg))
77       return false;
78   return true;
79 }
80 
81 /// Analyze an array of argument values,
82 /// incorporating info about the formals into this state.
83 void
84 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
85                                 CCAssignFn Fn) {
86   unsigned NumArgs = Ins.size();
87 
88   for (unsigned i = 0; i != NumArgs; ++i) {
89     MVT ArgVT = Ins[i].VT;
90     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
91     if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this))
92       report_fatal_error("unable to allocate function argument #" + Twine(i));
93   }
94 }
95 
96 /// Analyze the return values of a function, returning true if the return can
97 /// be performed without sret-demotion and false otherwise.
98 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
99                           CCAssignFn Fn) {
100   // Determine which register each value should be copied into.
101   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
102     MVT VT = Outs[i].VT;
103     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
104     if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
105       return false;
106   }
107   return true;
108 }
109 
110 /// Analyze the returned values of a return,
111 /// incorporating info about the result values into this state.
112 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
113                             CCAssignFn Fn) {
114   // Determine which register each value should be copied into.
115   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
116     MVT VT = Outs[i].VT;
117     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
118     if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
119       report_fatal_error("unable to allocate function return #" + Twine(i));
120   }
121 }
122 
123 /// Analyze the outgoing arguments to a call,
124 /// incorporating info about the passed values into this state.
125 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
126                                   CCAssignFn Fn) {
127   unsigned NumOps = Outs.size();
128   for (unsigned i = 0; i != NumOps; ++i) {
129     MVT ArgVT = Outs[i].VT;
130     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
131     if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
132 #ifndef NDEBUG
133       dbgs() << "Call operand #" << i << " has unhandled type "
134              << EVT(ArgVT).getEVTString() << '\n';
135 #endif
136       llvm_unreachable(nullptr);
137     }
138   }
139 }
140 
141 /// Same as above except it takes vectors of types and argument flags.
142 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
143                                   SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
144                                   CCAssignFn Fn) {
145   unsigned NumOps = ArgVTs.size();
146   for (unsigned i = 0; i != NumOps; ++i) {
147     MVT ArgVT = ArgVTs[i];
148     ISD::ArgFlagsTy ArgFlags = Flags[i];
149     if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
150 #ifndef NDEBUG
151       dbgs() << "Call operand #" << i << " has unhandled type "
152              << EVT(ArgVT).getEVTString() << '\n';
153 #endif
154       llvm_unreachable(nullptr);
155     }
156   }
157 }
158 
159 /// Analyze the return values of a call, incorporating info about the passed
160 /// values into this state.
161 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
162                                 CCAssignFn Fn) {
163   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
164     MVT VT = Ins[i].VT;
165     ISD::ArgFlagsTy Flags = Ins[i].Flags;
166     if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
167 #ifndef NDEBUG
168       dbgs() << "Call result #" << i << " has unhandled type "
169              << EVT(VT).getEVTString() << '\n';
170 #endif
171       llvm_unreachable(nullptr);
172     }
173   }
174 }
175 
176 /// Same as above except it's specialized for calls that produce a single value.
177 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
178   if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
179 #ifndef NDEBUG
180     dbgs() << "Call result has unhandled type "
181            << EVT(VT).getEVTString() << '\n';
182 #endif
183     llvm_unreachable(nullptr);
184   }
185 }
186 
187 void CCState::ensureMaxAlignment(Align Alignment) {
188   if (!AnalyzingMustTailForwardedRegs)
189     MF.getFrameInfo().ensureMaxAlignment(Alignment);
190 }
191 
192 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
193   if (VT.isVector())
194     return true; // Assume -msse-regparm might be in effect.
195   if (!VT.isInteger())
196     return false;
197   return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall);
198 }
199 
200 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
201                                           MVT VT, CCAssignFn Fn) {
202   unsigned SavedStackOffset = StackOffset;
203   Align SavedMaxStackArgAlign = MaxStackArgAlign;
204   unsigned NumLocs = Locs.size();
205 
206   // Set the 'inreg' flag if it is used for this calling convention.
207   ISD::ArgFlagsTy Flags;
208   if (isValueTypeInRegForCC(CallingConv, VT))
209     Flags.setInReg();
210 
211   // Allocate something of this value type repeatedly until we get assigned a
212   // location in memory.
213   bool HaveRegParm;
214   do {
215     if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
216 #ifndef NDEBUG
217       dbgs() << "Call has unhandled type " << EVT(VT).getEVTString()
218              << " while computing remaining regparms\n";
219 #endif
220       llvm_unreachable(nullptr);
221     }
222     HaveRegParm = Locs.back().isRegLoc();
223   } while (HaveRegParm);
224 
225   // Copy all the registers from the value locations we added.
226   assert(NumLocs < Locs.size() && "CC assignment failed to add location");
227   for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
228     if (Locs[I].isRegLoc())
229       Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
230 
231   // Clear the assigned values and stack memory. We leave the registers marked
232   // as allocated so that future queries don't return the same registers, i.e.
233   // when i64 and f64 are both passed in GPRs.
234   StackOffset = SavedStackOffset;
235   MaxStackArgAlign = SavedMaxStackArgAlign;
236   Locs.resize(NumLocs);
237 }
238 
239 void CCState::analyzeMustTailForwardedRegisters(
240     SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
241     CCAssignFn Fn) {
242   // Oftentimes calling conventions will not user register parameters for
243   // variadic functions, so we need to assume we're not variadic so that we get
244   // all the registers that might be used in a non-variadic call.
245   SaveAndRestore<bool> SavedVarArg(IsVarArg, false);
246   SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true);
247 
248   for (MVT RegVT : RegParmTypes) {
249     SmallVector<MCPhysReg, 8> RemainingRegs;
250     getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
251     const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
252     const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
253     for (MCPhysReg PReg : RemainingRegs) {
254       Register VReg = MF.addLiveIn(PReg, RC);
255       Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));
256     }
257   }
258 }
259 
260 bool CCState::resultsCompatible(CallingConv::ID CalleeCC,
261                                 CallingConv::ID CallerCC, MachineFunction &MF,
262                                 LLVMContext &C,
263                                 const SmallVectorImpl<ISD::InputArg> &Ins,
264                                 CCAssignFn CalleeFn, CCAssignFn CallerFn) {
265   if (CalleeCC == CallerCC)
266     return true;
267   SmallVector<CCValAssign, 4> RVLocs1;
268   CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C);
269   CCInfo1.AnalyzeCallResult(Ins, CalleeFn);
270 
271   SmallVector<CCValAssign, 4> RVLocs2;
272   CCState CCInfo2(CallerCC, false, MF, RVLocs2, C);
273   CCInfo2.AnalyzeCallResult(Ins, CallerFn);
274 
275   if (RVLocs1.size() != RVLocs2.size())
276     return false;
277   for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) {
278     const CCValAssign &Loc1 = RVLocs1[I];
279     const CCValAssign &Loc2 = RVLocs2[I];
280 
281     if ( // Must both be in registers, or both in memory
282         Loc1.isRegLoc() != Loc2.isRegLoc() ||
283         // Must fill the same part of their locations
284         Loc1.getLocInfo() != Loc2.getLocInfo() ||
285         // Memory offset/register number must be the same
286         Loc1.getExtraInfo() != Loc2.getExtraInfo())
287       return false;
288   }
289   return true;
290 }
291