1 //===-- BasicBlockSections.cpp ---=========--------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BasicBlockSections implementation. 10 // 11 // The purpose of this pass is to assign sections to basic blocks when 12 // -fbasic-block-sections= option is used. Further, with profile information 13 // only the subset of basic blocks with profiles are placed in separate sections 14 // and the rest are grouped in a cold section. The exception handling blocks are 15 // treated specially to ensure they are all in one seciton. 16 // 17 // Basic Block Sections 18 // ==================== 19 // 20 // With option, -fbasic-block-sections=list, every function may be split into 21 // clusters of basic blocks. Every cluster will be emitted into a separate 22 // section with its basic blocks sequenced in the given order. To get the 23 // optimized performance, the clusters must form an optimal BB layout for the 24 // function. We insert a symbol at the beginning of every cluster's section to 25 // allow the linker to reorder the sections in any arbitrary sequence. A global 26 // order of these sections would encapsulate the function layout. 27 // For example, consider the following clusters for a function foo (consisting 28 // of 6 basic blocks 0, 1, ..., 5). 29 // 30 // 0 2 31 // 1 3 5 32 // 33 // * Basic blocks 0 and 2 are placed in one section with symbol `foo` 34 // referencing the beginning of this section. 35 // * Basic blocks 1, 3, 5 are placed in a separate section. A new symbol 36 // `foo.__part.1` will reference the beginning of this section. 37 // * Basic block 4 (note that it is not referenced in the list) is placed in 38 // one section, and a new symbol `foo.cold` will point to it. 39 // 40 // There are a couple of challenges to be addressed: 41 // 42 // 1. The last basic block of every cluster should not have any implicit 43 // fallthrough to its next basic block, as it can be reordered by the linker. 44 // The compiler should make these fallthroughs explicit by adding 45 // unconditional jumps.. 46 // 47 // 2. All inter-cluster branch targets would now need to be resolved by the 48 // linker as they cannot be calculated during compile time. This is done 49 // using static relocations. Further, the compiler tries to use short branch 50 // instructions on some ISAs for small branch offsets. This is not possible 51 // for inter-cluster branches as the offset is not determined at compile 52 // time, and therefore, long branch instructions have to be used for those. 53 // 54 // 3. Debug Information (DebugInfo) and Call Frame Information (CFI) emission 55 // needs special handling with basic block sections. DebugInfo needs to be 56 // emitted with more relocations as basic block sections can break a 57 // function into potentially several disjoint pieces, and CFI needs to be 58 // emitted per cluster. This also bloats the object file and binary sizes. 59 // 60 // Basic Block Labels 61 // ================== 62 // 63 // With -fbasic-block-sections=labels, we encode the offsets of BB addresses of 64 // every function into the .llvm_bb_addr_map section. Along with the function 65 // symbols, this allows for mapping of virtual addresses in PMU profiles back to 66 // the corresponding basic blocks. This logic is implemented in AsmPrinter. This 67 // pass only assigns the BBSectionType of every function to ``labels``. 68 // 69 //===----------------------------------------------------------------------===// 70 71 #include "llvm/ADT/SmallVector.h" 72 #include "llvm/ADT/StringRef.h" 73 #include "llvm/CodeGen/BasicBlockSectionUtils.h" 74 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 75 #include "llvm/CodeGen/MachineFunction.h" 76 #include "llvm/CodeGen/MachineFunctionPass.h" 77 #include "llvm/CodeGen/Passes.h" 78 #include "llvm/CodeGen/TargetInstrInfo.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Target/TargetMachine.h" 81 #include <optional> 82 83 using namespace llvm; 84 85 // Placing the cold clusters in a separate section mitigates against poor 86 // profiles and allows optimizations such as hugepage mapping to be applied at a 87 // section granularity. Defaults to ".text.split." which is recognized by lld 88 // via the `-z keep-text-section-prefix` flag. 89 cl::opt<std::string> llvm::BBSectionsColdTextPrefix( 90 "bbsections-cold-text-prefix", 91 cl::desc("The text prefix to use for cold basic block clusters"), 92 cl::init(".text.split."), cl::Hidden); 93 94 static cl::opt<bool> BBSectionsDetectSourceDrift( 95 "bbsections-detect-source-drift", 96 cl::desc("This checks if there is a fdo instr. profile hash " 97 "mismatch for this function"), 98 cl::init(true), cl::Hidden); 99 100 namespace { 101 102 class BasicBlockSections : public MachineFunctionPass { 103 public: 104 static char ID; 105 106 BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 107 108 BasicBlockSections() : MachineFunctionPass(ID) { 109 initializeBasicBlockSectionsPass(*PassRegistry::getPassRegistry()); 110 } 111 112 StringRef getPassName() const override { 113 return "Basic Block Sections Analysis"; 114 } 115 116 void getAnalysisUsage(AnalysisUsage &AU) const override; 117 118 /// Identify basic blocks that need separate sections and prepare to emit them 119 /// accordingly. 120 bool runOnMachineFunction(MachineFunction &MF) override; 121 }; 122 123 } // end anonymous namespace 124 125 char BasicBlockSections::ID = 0; 126 INITIALIZE_PASS_BEGIN( 127 BasicBlockSections, "bbsections-prepare", 128 "Prepares for basic block sections, by splitting functions " 129 "into clusters of basic blocks.", 130 false, false) 131 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader) 132 INITIALIZE_PASS_END(BasicBlockSections, "bbsections-prepare", 133 "Prepares for basic block sections, by splitting functions " 134 "into clusters of basic blocks.", 135 false, false) 136 137 // Returns whether the given basic block has an unconditional branch. 138 bool hasUnconditionalBranch(const MachineBasicBlock &MBB) { 139 if (MBB.terminators().empty()) 140 return false; 141 const MachineInstr &Terminator = *(--MBB.terminators().end()); 142 return Terminator.isUnconditionalBranch(); 143 } 144 145 // This function updates and optimizes the branching instructions of every basic 146 // block in a given function to account for changes in the layout. 147 static void 148 updateBranches(MachineFunction &MF, 149 const SmallVector<MachineBasicBlock *> &PreLayoutFallThroughs) { 150 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 151 SmallVector<MachineOperand, 4> Cond; 152 for (auto &MBB : MF) { 153 auto NextMBBI = std::next(MBB.getIterator()); 154 auto *FTMBB = PreLayoutFallThroughs[MBB.getNumber()]; 155 // If this block had a fallthrough before we need an explicit unconditional 156 // branch to that block if either one of these two conditions hold and the 157 // block doesn't currently have an unconditional branch. 158 // 1- the block ends a section, which means its next block may be 159 // reorderd by the linker, or 160 // 2- the fallthrough block is not adjacent to the block in the new 161 // order. 162 if (FTMBB && (MBB.isEndSection() || &*NextMBBI != FTMBB) && 163 !hasUnconditionalBranch(MBB)) 164 TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc()); 165 166 // We do not optimize branches for machine basic blocks ending sections, as 167 // their adjacent block might be reordered by the linker. 168 if (MBB.isEndSection()) 169 continue; 170 171 // It might be possible to optimize branches by flipping the branch 172 // condition. 173 Cond.clear(); 174 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 175 if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) 176 continue; 177 MBB.updateTerminator(FTMBB); 178 } 179 } 180 181 // This function provides the BBCluster information associated with a function. 182 // Returns true if a valid association exists and false otherwise. 183 bool getBBClusterInfoForFunction( 184 const MachineFunction &MF, 185 BasicBlockSectionsProfileReader *BBSectionsProfileReader, 186 DenseMap<unsigned, BBClusterInfo> &V) { 187 188 // Find the assoicated cluster information. 189 std::pair<bool, SmallVector<BBClusterInfo, 4>> P = 190 BBSectionsProfileReader->getBBClusterInfoForFunction(MF.getName()); 191 if (!P.first) 192 return false; 193 194 if (P.second.empty()) { 195 // This indicates that sections are desired for all basic blocks of this 196 // function. We clear the BBClusterInfo vector to denote this. 197 V.clear(); 198 return true; 199 } 200 201 for (const BBClusterInfo &BBCI : P.second) 202 V[BBCI.BBID] = BBCI; 203 return true; 204 } 205 206 // This function sorts basic blocks according to the cluster's information. 207 // All explicitly specified clusters of basic blocks will be ordered 208 // accordingly. All non-specified BBs go into a separate "Cold" section. 209 // Additionally, if exception handling landing pads end up in more than one 210 // clusters, they are moved into a single "Exception" section. Eventually, 211 // clusters are ordered in increasing order of their IDs, with the "Exception" 212 // and "Cold" succeeding all other clusters. 213 // FuncBBClusterInfo represent the cluster information for basic blocks. It 214 // maps from BBID of basic blocks to their cluster information. If this is 215 // empty, it means unique sections for all basic blocks in the function. 216 static void 217 assignSections(MachineFunction &MF, 218 const DenseMap<unsigned, BBClusterInfo> &FuncBBClusterInfo) { 219 assert(MF.hasBBSections() && "BB Sections is not set for function."); 220 // This variable stores the section ID of the cluster containing eh_pads (if 221 // all eh_pads are one cluster). If more than one cluster contain eh_pads, we 222 // set it equal to ExceptionSectionID. 223 std::optional<MBBSectionID> EHPadsSectionID; 224 225 for (auto &MBB : MF) { 226 // With the 'all' option, every basic block is placed in a unique section. 227 // With the 'list' option, every basic block is placed in a section 228 // associated with its cluster, unless we want individual unique sections 229 // for every basic block in this function (if FuncBBClusterInfo is empty). 230 if (MF.getTarget().getBBSectionsType() == llvm::BasicBlockSection::All || 231 FuncBBClusterInfo.empty()) { 232 // If unique sections are desired for all basic blocks of the function, we 233 // set every basic block's section ID equal to its original position in 234 // the layout (which is equal to its number). This ensures that basic 235 // blocks are ordered canonically. 236 MBB.setSectionID(MBB.getNumber()); 237 } else { 238 auto I = FuncBBClusterInfo.find(*MBB.getBBID()); 239 if (I != FuncBBClusterInfo.end()) { 240 MBB.setSectionID(I->second.ClusterID); 241 } else { 242 // BB goes into the special cold section if it is not specified in the 243 // cluster info map. 244 MBB.setSectionID(MBBSectionID::ColdSectionID); 245 } 246 } 247 248 if (MBB.isEHPad() && EHPadsSectionID != MBB.getSectionID() && 249 EHPadsSectionID != MBBSectionID::ExceptionSectionID) { 250 // If we already have one cluster containing eh_pads, this must be updated 251 // to ExceptionSectionID. Otherwise, we set it equal to the current 252 // section ID. 253 EHPadsSectionID = EHPadsSectionID ? MBBSectionID::ExceptionSectionID 254 : MBB.getSectionID(); 255 } 256 } 257 258 // If EHPads are in more than one section, this places all of them in the 259 // special exception section. 260 if (EHPadsSectionID == MBBSectionID::ExceptionSectionID) 261 for (auto &MBB : MF) 262 if (MBB.isEHPad()) 263 MBB.setSectionID(*EHPadsSectionID); 264 } 265 266 void llvm::sortBasicBlocksAndUpdateBranches( 267 MachineFunction &MF, MachineBasicBlockComparator MBBCmp) { 268 [[maybe_unused]] const MachineBasicBlock *EntryBlock = &MF.front(); 269 SmallVector<MachineBasicBlock *> PreLayoutFallThroughs(MF.getNumBlockIDs()); 270 for (auto &MBB : MF) 271 PreLayoutFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); 272 273 MF.sort(MBBCmp); 274 assert(&MF.front() == EntryBlock && 275 "Entry block should not be displaced by basic block sections"); 276 277 // Set IsBeginSection and IsEndSection according to the assigned section IDs. 278 MF.assignBeginEndSections(); 279 280 // After reordering basic blocks, we must update basic block branches to 281 // insert explicit fallthrough branches when required and optimize branches 282 // when possible. 283 updateBranches(MF, PreLayoutFallThroughs); 284 } 285 286 // If the exception section begins with a landing pad, that landing pad will 287 // assume a zero offset (relative to @LPStart) in the LSDA. However, a value of 288 // zero implies "no landing pad." This function inserts a NOP just before the EH 289 // pad label to ensure a nonzero offset. 290 void llvm::avoidZeroOffsetLandingPad(MachineFunction &MF) { 291 for (auto &MBB : MF) { 292 if (MBB.isBeginSection() && MBB.isEHPad()) { 293 MachineBasicBlock::iterator MI = MBB.begin(); 294 while (!MI->isEHLabel()) 295 ++MI; 296 MF.getSubtarget().getInstrInfo()->insertNoop(MBB, MI); 297 } 298 } 299 } 300 301 // This checks if the source of this function has drifted since this binary was 302 // profiled previously. For now, we are piggy backing on what PGO does to 303 // detect this with instrumented profiles. PGO emits an hash of the IR and 304 // checks if the hash has changed. Advanced basic block layout is usually done 305 // on top of PGO optimized binaries and hence this check works well in practice. 306 static bool hasInstrProfHashMismatch(MachineFunction &MF) { 307 if (!BBSectionsDetectSourceDrift) 308 return false; 309 310 const char MetadataName[] = "instr_prof_hash_mismatch"; 311 auto *Existing = MF.getFunction().getMetadata(LLVMContext::MD_annotation); 312 if (Existing) { 313 MDTuple *Tuple = cast<MDTuple>(Existing); 314 for (const auto &N : Tuple->operands()) 315 if (N.equalsStr(MetadataName)) 316 return true; 317 } 318 319 return false; 320 } 321 322 bool BasicBlockSections::runOnMachineFunction(MachineFunction &MF) { 323 auto BBSectionsType = MF.getTarget().getBBSectionsType(); 324 assert(BBSectionsType != BasicBlockSection::None && 325 "BB Sections not enabled!"); 326 327 // Check for source drift. If the source has changed since the profiles 328 // were obtained, optimizing basic blocks might be sub-optimal. 329 // This only applies to BasicBlockSection::List as it creates 330 // clusters of basic blocks using basic block ids. Source drift can 331 // invalidate these groupings leading to sub-optimal code generation with 332 // regards to performance. 333 if (BBSectionsType == BasicBlockSection::List && 334 hasInstrProfHashMismatch(MF)) 335 return true; 336 // Renumber blocks before sorting them. This is useful for accessing the 337 // original layout positions and finding the original fallthroughs. 338 MF.RenumberBlocks(); 339 340 if (BBSectionsType == BasicBlockSection::Labels) { 341 MF.setBBSectionsType(BBSectionsType); 342 return true; 343 } 344 345 BBSectionsProfileReader = &getAnalysis<BasicBlockSectionsProfileReader>(); 346 347 // Map from BBID of blocks to their cluster information. 348 DenseMap<unsigned, BBClusterInfo> FuncBBClusterInfo; 349 if (BBSectionsType == BasicBlockSection::List && 350 !getBBClusterInfoForFunction(MF, BBSectionsProfileReader, 351 FuncBBClusterInfo)) 352 return true; 353 MF.setBBSectionsType(BBSectionsType); 354 assignSections(MF, FuncBBClusterInfo); 355 356 // We make sure that the cluster including the entry basic block precedes all 357 // other clusters. 358 auto EntryBBSectionID = MF.front().getSectionID(); 359 360 // Helper function for ordering BB sections as follows: 361 // * Entry section (section including the entry block). 362 // * Regular sections (in increasing order of their Number). 363 // ... 364 // * Exception section 365 // * Cold section 366 auto MBBSectionOrder = [EntryBBSectionID](const MBBSectionID &LHS, 367 const MBBSectionID &RHS) { 368 // We make sure that the section containing the entry block precedes all the 369 // other sections. 370 if (LHS == EntryBBSectionID || RHS == EntryBBSectionID) 371 return LHS == EntryBBSectionID; 372 return LHS.Type == RHS.Type ? LHS.Number < RHS.Number : LHS.Type < RHS.Type; 373 }; 374 375 // We sort all basic blocks to make sure the basic blocks of every cluster are 376 // contiguous and ordered accordingly. Furthermore, clusters are ordered in 377 // increasing order of their section IDs, with the exception and the 378 // cold section placed at the end of the function. 379 auto Comparator = [&](const MachineBasicBlock &X, 380 const MachineBasicBlock &Y) { 381 auto XSectionID = X.getSectionID(); 382 auto YSectionID = Y.getSectionID(); 383 if (XSectionID != YSectionID) 384 return MBBSectionOrder(XSectionID, YSectionID); 385 // If the two basic block are in the same section, the order is decided by 386 // their position within the section. 387 if (XSectionID.Type == MBBSectionID::SectionType::Default) 388 return FuncBBClusterInfo.lookup(*X.getBBID()).PositionInCluster < 389 FuncBBClusterInfo.lookup(*Y.getBBID()).PositionInCluster; 390 return X.getNumber() < Y.getNumber(); 391 }; 392 393 sortBasicBlocksAndUpdateBranches(MF, Comparator); 394 avoidZeroOffsetLandingPad(MF); 395 return true; 396 } 397 398 void BasicBlockSections::getAnalysisUsage(AnalysisUsage &AU) const { 399 AU.setPreservesAll(); 400 AU.addRequired<BasicBlockSectionsProfileReader>(); 401 MachineFunctionPass::getAnalysisUsage(AU); 402 } 403 404 MachineFunctionPass *llvm::createBasicBlockSectionsPass() { 405 return new BasicBlockSections(); 406 } 407