1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstSimplifyFolder.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/CodeGen/AtomicExpand.h" 23 #include "llvm/CodeGen/AtomicExpandUtils.h" 24 #include "llvm/CodeGen/RuntimeLibcalls.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstIterator.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/User.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/AtomicOrdering.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Transforms/Utils/LowerAtomic.h" 54 #include <cassert> 55 #include <cstdint> 56 #include <iterator> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "atomic-expand" 61 62 namespace { 63 64 class AtomicExpandImpl { 65 const TargetLowering *TLI = nullptr; 66 const DataLayout *DL = nullptr; 67 68 private: 69 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 70 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 71 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 72 bool tryExpandAtomicLoad(LoadInst *LI); 73 bool expandAtomicLoadToLL(LoadInst *LI); 74 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 75 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 76 bool tryExpandAtomicStore(StoreInst *SI); 77 void expandAtomicStore(StoreInst *SI); 78 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 79 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 80 Value * 81 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, 82 Align AddrAlign, AtomicOrdering MemOpOrder, 83 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 84 void expandAtomicOpToLLSC( 85 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 86 AtomicOrdering MemOpOrder, 87 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 88 void expandPartwordAtomicRMW( 89 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 90 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 91 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 92 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 93 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 94 95 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 96 static Value *insertRMWCmpXchgLoop( 97 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 98 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 99 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 100 CreateCmpXchgInstFun CreateCmpXchg); 101 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 102 103 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 104 bool isIdempotentRMW(AtomicRMWInst *RMWI); 105 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 106 107 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 108 Value *PointerOperand, Value *ValueOperand, 109 Value *CASExpected, AtomicOrdering Ordering, 110 AtomicOrdering Ordering2, 111 ArrayRef<RTLIB::Libcall> Libcalls); 112 void expandAtomicLoadToLibcall(LoadInst *LI); 113 void expandAtomicStoreToLibcall(StoreInst *LI); 114 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 115 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 116 117 friend bool 118 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 119 CreateCmpXchgInstFun CreateCmpXchg); 120 121 public: 122 bool run(Function &F, const TargetMachine *TM); 123 }; 124 125 class AtomicExpandLegacy : public FunctionPass { 126 public: 127 static char ID; // Pass identification, replacement for typeid 128 129 AtomicExpandLegacy() : FunctionPass(ID) { 130 initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry()); 131 } 132 133 bool runOnFunction(Function &F) override; 134 }; 135 136 // IRBuilder to be used for replacement atomic instructions. 137 struct ReplacementIRBuilder 138 : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> { 139 MDNode *MMRAMD = nullptr; 140 141 // Preserves the DebugLoc from I, and preserves still valid metadata. 142 // Enable StrictFP builder mode when appropriate. 143 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) 144 : IRBuilder(I->getContext(), DL, 145 IRBuilderCallbackInserter( 146 [this](Instruction *I) { addMMRAMD(I); })) { 147 SetInsertPoint(I); 148 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections}); 149 if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP)) 150 this->setIsFPConstrained(true); 151 152 MMRAMD = I->getMetadata(LLVMContext::MD_mmra); 153 } 154 155 void addMMRAMD(Instruction *I) { 156 if (canInstructionHaveMMRAs(*I)) 157 I->setMetadata(LLVMContext::MD_mmra, MMRAMD); 158 } 159 }; 160 161 } // end anonymous namespace 162 163 char AtomicExpandLegacy::ID = 0; 164 165 char &llvm::AtomicExpandID = AtomicExpandLegacy::ID; 166 167 INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE, 168 "Expand Atomic instructions", false, false) 169 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 170 INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE, 171 "Expand Atomic instructions", false, false) 172 173 // Helper functions to retrieve the size of atomic instructions. 174 static unsigned getAtomicOpSize(LoadInst *LI) { 175 const DataLayout &DL = LI->getModule()->getDataLayout(); 176 return DL.getTypeStoreSize(LI->getType()); 177 } 178 179 static unsigned getAtomicOpSize(StoreInst *SI) { 180 const DataLayout &DL = SI->getModule()->getDataLayout(); 181 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 182 } 183 184 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 185 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 186 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 187 } 188 189 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 190 const DataLayout &DL = CASI->getModule()->getDataLayout(); 191 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 192 } 193 194 // Determine if a particular atomic operation has a supported size, 195 // and is of appropriate alignment, to be passed through for target 196 // lowering. (Versus turning into a __atomic libcall) 197 template <typename Inst> 198 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 199 unsigned Size = getAtomicOpSize(I); 200 Align Alignment = I->getAlign(); 201 return Alignment >= Size && 202 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 203 } 204 205 bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) { 206 const auto *Subtarget = TM->getSubtargetImpl(F); 207 if (!Subtarget->enableAtomicExpand()) 208 return false; 209 TLI = Subtarget->getTargetLowering(); 210 DL = &F.getParent()->getDataLayout(); 211 212 SmallVector<Instruction *, 1> AtomicInsts; 213 214 // Changing control-flow while iterating through it is a bad idea, so gather a 215 // list of all atomic instructions before we start. 216 for (Instruction &I : instructions(F)) 217 if (I.isAtomic() && !isa<FenceInst>(&I)) 218 AtomicInsts.push_back(&I); 219 220 bool MadeChange = false; 221 for (auto *I : AtomicInsts) { 222 auto LI = dyn_cast<LoadInst>(I); 223 auto SI = dyn_cast<StoreInst>(I); 224 auto RMWI = dyn_cast<AtomicRMWInst>(I); 225 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 226 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 227 228 // If the Size/Alignment is not supported, replace with a libcall. 229 if (LI) { 230 if (!atomicSizeSupported(TLI, LI)) { 231 expandAtomicLoadToLibcall(LI); 232 MadeChange = true; 233 continue; 234 } 235 } else if (SI) { 236 if (!atomicSizeSupported(TLI, SI)) { 237 expandAtomicStoreToLibcall(SI); 238 MadeChange = true; 239 continue; 240 } 241 } else if (RMWI) { 242 if (!atomicSizeSupported(TLI, RMWI)) { 243 expandAtomicRMWToLibcall(RMWI); 244 MadeChange = true; 245 continue; 246 } 247 } else if (CASI) { 248 if (!atomicSizeSupported(TLI, CASI)) { 249 expandAtomicCASToLibcall(CASI); 250 MadeChange = true; 251 continue; 252 } 253 } 254 255 if (LI && TLI->shouldCastAtomicLoadInIR(LI) == 256 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 257 I = LI = convertAtomicLoadToIntegerType(LI); 258 MadeChange = true; 259 } else if (SI && 260 TLI->shouldCastAtomicStoreInIR(SI) == 261 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 262 I = SI = convertAtomicStoreToIntegerType(SI); 263 MadeChange = true; 264 } else if (RMWI && 265 TLI->shouldCastAtomicRMWIInIR(RMWI) == 266 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 267 I = RMWI = convertAtomicXchgToIntegerType(RMWI); 268 MadeChange = true; 269 } else if (CASI) { 270 // TODO: when we're ready to make the change at the IR level, we can 271 // extend convertCmpXchgToInteger for floating point too. 272 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 273 // TODO: add a TLI hook to control this so that each target can 274 // convert to lowering the original type one at a time. 275 I = CASI = convertCmpXchgToIntegerType(CASI); 276 MadeChange = true; 277 } 278 } 279 280 if (TLI->shouldInsertFencesForAtomic(I)) { 281 auto FenceOrdering = AtomicOrdering::Monotonic; 282 if (LI && isAcquireOrStronger(LI->getOrdering())) { 283 FenceOrdering = LI->getOrdering(); 284 LI->setOrdering(AtomicOrdering::Monotonic); 285 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 286 FenceOrdering = SI->getOrdering(); 287 SI->setOrdering(AtomicOrdering::Monotonic); 288 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 289 isAcquireOrStronger(RMWI->getOrdering()))) { 290 FenceOrdering = RMWI->getOrdering(); 291 RMWI->setOrdering(AtomicOrdering::Monotonic); 292 } else if (CASI && 293 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 294 TargetLoweringBase::AtomicExpansionKind::None && 295 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 296 isAcquireOrStronger(CASI->getSuccessOrdering()) || 297 isAcquireOrStronger(CASI->getFailureOrdering()))) { 298 // If a compare and swap is lowered to LL/SC, we can do smarter fence 299 // insertion, with a stronger one on the success path than on the 300 // failure path. As a result, fence insertion is directly done by 301 // expandAtomicCmpXchg in that case. 302 FenceOrdering = CASI->getMergedOrdering(); 303 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 304 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 305 } 306 307 if (FenceOrdering != AtomicOrdering::Monotonic) { 308 MadeChange |= bracketInstWithFences(I, FenceOrdering); 309 } 310 } else if (I->hasAtomicStore() && 311 TLI->shouldInsertTrailingFenceForAtomicStore(I)) { 312 auto FenceOrdering = AtomicOrdering::Monotonic; 313 if (SI) 314 FenceOrdering = SI->getOrdering(); 315 else if (RMWI) 316 FenceOrdering = RMWI->getOrdering(); 317 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) != 318 TargetLoweringBase::AtomicExpansionKind::LLSC) 319 // LLSC is handled in expandAtomicCmpXchg(). 320 FenceOrdering = CASI->getSuccessOrdering(); 321 322 IRBuilder Builder(I); 323 if (auto TrailingFence = 324 TLI->emitTrailingFence(Builder, I, FenceOrdering)) { 325 TrailingFence->moveAfter(I); 326 MadeChange = true; 327 } 328 } 329 330 if (LI) 331 MadeChange |= tryExpandAtomicLoad(LI); 332 else if (SI) 333 MadeChange |= tryExpandAtomicStore(SI); 334 else if (RMWI) { 335 // There are two different ways of expanding RMW instructions: 336 // - into a load if it is idempotent 337 // - into a Cmpxchg/LL-SC loop otherwise 338 // we try them in that order. 339 340 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 341 MadeChange = true; 342 } else { 343 MadeChange |= tryExpandAtomicRMW(RMWI); 344 } 345 } else if (CASI) 346 MadeChange |= tryExpandAtomicCmpXchg(CASI); 347 } 348 return MadeChange; 349 } 350 351 bool AtomicExpandLegacy::runOnFunction(Function &F) { 352 353 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 354 if (!TPC) 355 return false; 356 auto *TM = &TPC->getTM<TargetMachine>(); 357 AtomicExpandImpl AE; 358 return AE.run(F, TM); 359 } 360 361 FunctionPass *llvm::createAtomicExpandLegacyPass() { 362 return new AtomicExpandLegacy(); 363 } 364 365 PreservedAnalyses AtomicExpandPass::run(Function &F, 366 FunctionAnalysisManager &AM) { 367 AtomicExpandImpl AE; 368 369 bool Changed = AE.run(F, TM); 370 if (!Changed) 371 return PreservedAnalyses::all(); 372 373 return PreservedAnalyses::none(); 374 } 375 376 bool AtomicExpandImpl::bracketInstWithFences(Instruction *I, 377 AtomicOrdering Order) { 378 ReplacementIRBuilder Builder(I, *DL); 379 380 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 381 382 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 383 // We have a guard here because not every atomic operation generates a 384 // trailing fence. 385 if (TrailingFence) 386 TrailingFence->moveAfter(I); 387 388 return (LeadingFence || TrailingFence); 389 } 390 391 /// Get the iX type with the same bitwidth as T. 392 IntegerType * 393 AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { 394 EVT VT = TLI->getMemValueType(DL, T); 395 unsigned BitWidth = VT.getStoreSizeInBits(); 396 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 397 return IntegerType::get(T->getContext(), BitWidth); 398 } 399 400 /// Convert an atomic load of a non-integral type to an integer load of the 401 /// equivalent bitwidth. See the function comment on 402 /// convertAtomicStoreToIntegerType for background. 403 LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) { 404 auto *M = LI->getModule(); 405 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 406 407 ReplacementIRBuilder Builder(LI, *DL); 408 409 Value *Addr = LI->getPointerOperand(); 410 411 auto *NewLI = Builder.CreateLoad(NewTy, Addr); 412 NewLI->setAlignment(LI->getAlign()); 413 NewLI->setVolatile(LI->isVolatile()); 414 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 415 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 416 417 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 418 LI->replaceAllUsesWith(NewVal); 419 LI->eraseFromParent(); 420 return NewLI; 421 } 422 423 AtomicRMWInst * 424 AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 425 auto *M = RMWI->getModule(); 426 Type *NewTy = 427 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 428 429 ReplacementIRBuilder Builder(RMWI, *DL); 430 431 Value *Addr = RMWI->getPointerOperand(); 432 Value *Val = RMWI->getValOperand(); 433 Value *NewVal = Val->getType()->isPointerTy() 434 ? Builder.CreatePtrToInt(Val, NewTy) 435 : Builder.CreateBitCast(Val, NewTy); 436 437 auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal, 438 RMWI->getAlign(), RMWI->getOrdering(), 439 RMWI->getSyncScopeID()); 440 NewRMWI->setVolatile(RMWI->isVolatile()); 441 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 442 443 Value *NewRVal = RMWI->getType()->isPointerTy() 444 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType()) 445 : Builder.CreateBitCast(NewRMWI, RMWI->getType()); 446 RMWI->replaceAllUsesWith(NewRVal); 447 RMWI->eraseFromParent(); 448 return NewRMWI; 449 } 450 451 bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) { 452 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 453 case TargetLoweringBase::AtomicExpansionKind::None: 454 return false; 455 case TargetLoweringBase::AtomicExpansionKind::LLSC: 456 expandAtomicOpToLLSC( 457 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 458 LI->getOrdering(), 459 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); 460 return true; 461 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 462 return expandAtomicLoadToLL(LI); 463 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 464 return expandAtomicLoadToCmpXchg(LI); 465 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 466 LI->setAtomic(AtomicOrdering::NotAtomic); 467 return true; 468 default: 469 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 470 } 471 } 472 473 bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) { 474 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 475 case TargetLoweringBase::AtomicExpansionKind::None: 476 return false; 477 case TargetLoweringBase::AtomicExpansionKind::Expand: 478 expandAtomicStore(SI); 479 return true; 480 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 481 SI->setAtomic(AtomicOrdering::NotAtomic); 482 return true; 483 default: 484 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 485 } 486 } 487 488 bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) { 489 ReplacementIRBuilder Builder(LI, *DL); 490 491 // On some architectures, load-linked instructions are atomic for larger 492 // sizes than normal loads. For example, the only 64-bit load guaranteed 493 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 494 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 495 LI->getPointerOperand(), LI->getOrdering()); 496 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 497 498 LI->replaceAllUsesWith(Val); 499 LI->eraseFromParent(); 500 501 return true; 502 } 503 504 bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) { 505 ReplacementIRBuilder Builder(LI, *DL); 506 AtomicOrdering Order = LI->getOrdering(); 507 if (Order == AtomicOrdering::Unordered) 508 Order = AtomicOrdering::Monotonic; 509 510 Value *Addr = LI->getPointerOperand(); 511 Type *Ty = LI->getType(); 512 Constant *DummyVal = Constant::getNullValue(Ty); 513 514 Value *Pair = Builder.CreateAtomicCmpXchg( 515 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 516 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 517 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 518 519 LI->replaceAllUsesWith(Loaded); 520 LI->eraseFromParent(); 521 522 return true; 523 } 524 525 /// Convert an atomic store of a non-integral type to an integer store of the 526 /// equivalent bitwidth. We used to not support floating point or vector 527 /// atomics in the IR at all. The backends learned to deal with the bitcast 528 /// idiom because that was the only way of expressing the notion of a atomic 529 /// float or vector store. The long term plan is to teach each backend to 530 /// instruction select from the original atomic store, but as a migration 531 /// mechanism, we convert back to the old format which the backends understand. 532 /// Each backend will need individual work to recognize the new format. 533 StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) { 534 ReplacementIRBuilder Builder(SI, *DL); 535 auto *M = SI->getModule(); 536 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 537 M->getDataLayout()); 538 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 539 540 Value *Addr = SI->getPointerOperand(); 541 542 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr); 543 NewSI->setAlignment(SI->getAlign()); 544 NewSI->setVolatile(SI->isVolatile()); 545 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 546 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 547 SI->eraseFromParent(); 548 return NewSI; 549 } 550 551 void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) { 552 // This function is only called on atomic stores that are too large to be 553 // atomic if implemented as a native store. So we replace them by an 554 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 555 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 556 // It is the responsibility of the target to only signal expansion via 557 // shouldExpandAtomicRMW in cases where this is required and possible. 558 ReplacementIRBuilder Builder(SI, *DL); 559 AtomicOrdering Ordering = SI->getOrdering(); 560 assert(Ordering != AtomicOrdering::NotAtomic); 561 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered 562 ? AtomicOrdering::Monotonic 563 : Ordering; 564 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 565 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 566 SI->getAlign(), RMWOrdering); 567 SI->eraseFromParent(); 568 569 // Now we have an appropriate swap instruction, lower it as usual. 570 tryExpandAtomicRMW(AI); 571 } 572 573 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, 574 Value *Loaded, Value *NewVal, Align AddrAlign, 575 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 576 Value *&Success, Value *&NewLoaded) { 577 Type *OrigTy = NewVal->getType(); 578 579 // This code can go away when cmpxchg supports FP and vector types. 580 assert(!OrigTy->isPointerTy()); 581 bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy(); 582 if (NeedBitcast) { 583 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 584 NewVal = Builder.CreateBitCast(NewVal, IntTy); 585 Loaded = Builder.CreateBitCast(Loaded, IntTy); 586 } 587 588 Value *Pair = Builder.CreateAtomicCmpXchg( 589 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 590 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 591 Success = Builder.CreateExtractValue(Pair, 1, "success"); 592 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 593 594 if (NeedBitcast) 595 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 596 } 597 598 bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) { 599 LLVMContext &Ctx = AI->getModule()->getContext(); 600 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 601 switch (Kind) { 602 case TargetLoweringBase::AtomicExpansionKind::None: 603 return false; 604 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 605 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 606 unsigned ValueSize = getAtomicOpSize(AI); 607 if (ValueSize < MinCASSize) { 608 expandPartwordAtomicRMW(AI, 609 TargetLoweringBase::AtomicExpansionKind::LLSC); 610 } else { 611 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { 612 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 613 AI->getValOperand()); 614 }; 615 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 616 AI->getAlign(), AI->getOrdering(), PerformOp); 617 } 618 return true; 619 } 620 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 621 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 622 unsigned ValueSize = getAtomicOpSize(AI); 623 if (ValueSize < MinCASSize) { 624 expandPartwordAtomicRMW(AI, 625 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 626 } else { 627 SmallVector<StringRef> SSNs; 628 Ctx.getSyncScopeNames(SSNs); 629 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 630 ? "system" 631 : SSNs[AI->getSyncScopeID()]; 632 OptimizationRemarkEmitter ORE(AI->getFunction()); 633 ORE.emit([&]() { 634 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 635 << "A compare and swap loop was generated for an atomic " 636 << AI->getOperationName(AI->getOperation()) << " operation at " 637 << MemScope << " memory scope"; 638 }); 639 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 640 } 641 return true; 642 } 643 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 644 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 645 unsigned ValueSize = getAtomicOpSize(AI); 646 if (ValueSize < MinCASSize) { 647 AtomicRMWInst::BinOp Op = AI->getOperation(); 648 // Widen And/Or/Xor and give the target another chance at expanding it. 649 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 650 Op == AtomicRMWInst::And) { 651 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 652 return true; 653 } 654 } 655 expandAtomicRMWToMaskedIntrinsic(AI); 656 return true; 657 } 658 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 659 TLI->emitBitTestAtomicRMWIntrinsic(AI); 660 return true; 661 } 662 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { 663 TLI->emitCmpArithAtomicRMWIntrinsic(AI); 664 return true; 665 } 666 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 667 return lowerAtomicRMWInst(AI); 668 case TargetLoweringBase::AtomicExpansionKind::Expand: 669 TLI->emitExpandAtomicRMW(AI); 670 return true; 671 default: 672 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 673 } 674 } 675 676 namespace { 677 678 struct PartwordMaskValues { 679 // These three fields are guaranteed to be set by createMaskInstrs. 680 Type *WordType = nullptr; 681 Type *ValueType = nullptr; 682 Type *IntValueType = nullptr; 683 Value *AlignedAddr = nullptr; 684 Align AlignedAddrAlignment; 685 // The remaining fields can be null. 686 Value *ShiftAmt = nullptr; 687 Value *Mask = nullptr; 688 Value *Inv_Mask = nullptr; 689 }; 690 691 LLVM_ATTRIBUTE_UNUSED 692 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 693 auto PrintObj = [&O](auto *V) { 694 if (V) 695 O << *V; 696 else 697 O << "nullptr"; 698 O << '\n'; 699 }; 700 O << "PartwordMaskValues {\n"; 701 O << " WordType: "; 702 PrintObj(PMV.WordType); 703 O << " ValueType: "; 704 PrintObj(PMV.ValueType); 705 O << " AlignedAddr: "; 706 PrintObj(PMV.AlignedAddr); 707 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 708 O << " ShiftAmt: "; 709 PrintObj(PMV.ShiftAmt); 710 O << " Mask: "; 711 PrintObj(PMV.Mask); 712 O << " Inv_Mask: "; 713 PrintObj(PMV.Inv_Mask); 714 O << "}\n"; 715 return O; 716 } 717 718 } // end anonymous namespace 719 720 /// This is a helper function which builds instructions to provide 721 /// values necessary for partword atomic operations. It takes an 722 /// incoming address, Addr, and ValueType, and constructs the address, 723 /// shift-amounts and masks needed to work with a larger value of size 724 /// WordSize. 725 /// 726 /// AlignedAddr: Addr rounded down to a multiple of WordSize 727 /// 728 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 729 /// from AlignAddr for it to have the same value as if 730 /// ValueType was loaded from Addr. 731 /// 732 /// Mask: Value to mask with the value loaded from AlignAddr to 733 /// include only the part that would've been loaded from Addr. 734 /// 735 /// Inv_Mask: The inverse of Mask. 736 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, 737 Instruction *I, Type *ValueType, 738 Value *Addr, Align AddrAlign, 739 unsigned MinWordSize) { 740 PartwordMaskValues PMV; 741 742 Module *M = I->getModule(); 743 LLVMContext &Ctx = M->getContext(); 744 const DataLayout &DL = M->getDataLayout(); 745 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 746 747 PMV.ValueType = PMV.IntValueType = ValueType; 748 if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy()) 749 PMV.IntValueType = 750 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits()); 751 752 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 753 : ValueType; 754 if (PMV.ValueType == PMV.WordType) { 755 PMV.AlignedAddr = Addr; 756 PMV.AlignedAddrAlignment = AddrAlign; 757 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 758 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 759 return PMV; 760 } 761 762 PMV.AlignedAddrAlignment = Align(MinWordSize); 763 764 assert(ValueSize < MinWordSize); 765 766 PointerType *PtrTy = cast<PointerType>(Addr->getType()); 767 IntegerType *IntTy = DL.getIntPtrType(Ctx, PtrTy->getAddressSpace()); 768 Value *PtrLSB; 769 770 if (AddrAlign < MinWordSize) { 771 PMV.AlignedAddr = Builder.CreateIntrinsic( 772 Intrinsic::ptrmask, {PtrTy, IntTy}, 773 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr, 774 "AlignedAddr"); 775 776 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy); 777 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 778 } else { 779 // If the alignment is high enough, the LSB are known 0. 780 PMV.AlignedAddr = Addr; 781 PtrLSB = ConstantInt::getNullValue(IntTy); 782 } 783 784 if (DL.isLittleEndian()) { 785 // turn bytes into bits 786 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 787 } else { 788 // turn bytes into bits, and count from the other side. 789 PMV.ShiftAmt = Builder.CreateShl( 790 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 791 } 792 793 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 794 PMV.Mask = Builder.CreateShl( 795 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 796 "Mask"); 797 798 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 799 800 return PMV; 801 } 802 803 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord, 804 const PartwordMaskValues &PMV) { 805 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 806 if (PMV.WordType == PMV.ValueType) 807 return WideWord; 808 809 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 810 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted"); 811 return Builder.CreateBitCast(Trunc, PMV.ValueType); 812 } 813 814 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, 815 Value *Updated, const PartwordMaskValues &PMV) { 816 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 817 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 818 if (PMV.WordType == PMV.ValueType) 819 return Updated; 820 821 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType); 822 823 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 824 Value *Shift = 825 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 826 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 827 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 828 return Or; 829 } 830 831 /// Emit IR to implement a masked version of a given atomicrmw 832 /// operation. (That is, only the bits under the Mask should be 833 /// affected by the operation) 834 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 835 IRBuilderBase &Builder, Value *Loaded, 836 Value *Shifted_Inc, Value *Inc, 837 const PartwordMaskValues &PMV) { 838 // TODO: update to use 839 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 840 // to merge bits from two values without requiring PMV.Inv_Mask. 841 switch (Op) { 842 case AtomicRMWInst::Xchg: { 843 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 844 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 845 return FinalVal; 846 } 847 case AtomicRMWInst::Or: 848 case AtomicRMWInst::Xor: 849 case AtomicRMWInst::And: 850 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 851 case AtomicRMWInst::Add: 852 case AtomicRMWInst::Sub: 853 case AtomicRMWInst::Nand: { 854 // The other arithmetic ops need to be masked into place. 855 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 856 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 857 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 858 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 859 return FinalVal; 860 } 861 case AtomicRMWInst::Max: 862 case AtomicRMWInst::Min: 863 case AtomicRMWInst::UMax: 864 case AtomicRMWInst::UMin: 865 case AtomicRMWInst::FAdd: 866 case AtomicRMWInst::FSub: 867 case AtomicRMWInst::FMin: 868 case AtomicRMWInst::FMax: 869 case AtomicRMWInst::UIncWrap: 870 case AtomicRMWInst::UDecWrap: { 871 // Finally, other ops will operate on the full value, so truncate down to 872 // the original size, and expand out again after doing the 873 // operation. Bitcasts will be inserted for FP values. 874 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 875 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 876 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 877 return FinalVal; 878 } 879 default: 880 llvm_unreachable("Unknown atomic op"); 881 } 882 } 883 884 /// Expand a sub-word atomicrmw operation into an appropriate 885 /// word-sized operation. 886 /// 887 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 888 /// way as a typical atomicrmw expansion. The only difference here is 889 /// that the operation inside of the loop may operate upon only a 890 /// part of the value. 891 void AtomicExpandImpl::expandPartwordAtomicRMW( 892 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 893 // Widen And/Or/Xor and give the target another chance at expanding it. 894 AtomicRMWInst::BinOp Op = AI->getOperation(); 895 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 896 Op == AtomicRMWInst::And) { 897 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 898 return; 899 } 900 AtomicOrdering MemOpOrder = AI->getOrdering(); 901 SyncScope::ID SSID = AI->getSyncScopeID(); 902 903 ReplacementIRBuilder Builder(AI, *DL); 904 905 PartwordMaskValues PMV = 906 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 907 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 908 909 Value *ValOperand_Shifted = nullptr; 910 if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add || 911 Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) { 912 ValOperand_Shifted = 913 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 914 PMV.ShiftAmt, "ValOperand_Shifted"); 915 } 916 917 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { 918 return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted, 919 AI->getValOperand(), PMV); 920 }; 921 922 Value *OldResult; 923 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 924 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 925 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 926 PerformPartwordOp, createCmpXchgInstFun); 927 } else { 928 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 929 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 930 PMV.AlignedAddrAlignment, MemOpOrder, 931 PerformPartwordOp); 932 } 933 934 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 935 AI->replaceAllUsesWith(FinalOldResult); 936 AI->eraseFromParent(); 937 } 938 939 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 940 AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 941 ReplacementIRBuilder Builder(AI, *DL); 942 AtomicRMWInst::BinOp Op = AI->getOperation(); 943 944 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 945 Op == AtomicRMWInst::And) && 946 "Unable to widen operation"); 947 948 PartwordMaskValues PMV = 949 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 950 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 951 952 Value *ValOperand_Shifted = 953 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 954 PMV.ShiftAmt, "ValOperand_Shifted"); 955 956 Value *NewOperand; 957 958 if (Op == AtomicRMWInst::And) 959 NewOperand = 960 Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand"); 961 else 962 NewOperand = ValOperand_Shifted; 963 964 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( 965 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment, 966 AI->getOrdering(), AI->getSyncScopeID()); 967 // TODO: Preserve metadata 968 969 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 970 AI->replaceAllUsesWith(FinalOldResult); 971 AI->eraseFromParent(); 972 return NewAI; 973 } 974 975 bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 976 // The basic idea here is that we're expanding a cmpxchg of a 977 // smaller memory size up to a word-sized cmpxchg. To do this, we 978 // need to add a retry-loop for strong cmpxchg, so that 979 // modifications to other parts of the word don't cause a spurious 980 // failure. 981 982 // This generates code like the following: 983 // [[Setup mask values PMV.*]] 984 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 985 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 986 // %InitLoaded = load i32* %addr 987 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 988 // br partword.cmpxchg.loop 989 // partword.cmpxchg.loop: 990 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 991 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 992 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 993 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 994 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 995 // i32 %FullWord_NewVal success_ordering failure_ordering 996 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 997 // %Success = extractvalue { i32, i1 } %NewCI, 1 998 // br i1 %Success, label %partword.cmpxchg.end, 999 // label %partword.cmpxchg.failure 1000 // partword.cmpxchg.failure: 1001 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 1002 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 1003 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 1004 // label %partword.cmpxchg.end 1005 // partword.cmpxchg.end: 1006 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 1007 // %FinalOldVal = trunc i32 %tmp1 to i8 1008 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 1009 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 1010 1011 Value *Addr = CI->getPointerOperand(); 1012 Value *Cmp = CI->getCompareOperand(); 1013 Value *NewVal = CI->getNewValOperand(); 1014 1015 BasicBlock *BB = CI->getParent(); 1016 Function *F = BB->getParent(); 1017 ReplacementIRBuilder Builder(CI, *DL); 1018 LLVMContext &Ctx = Builder.getContext(); 1019 1020 BasicBlock *EndBB = 1021 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 1022 auto FailureBB = 1023 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 1024 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 1025 1026 // The split call above "helpfully" added a branch at the end of BB 1027 // (to the wrong place). 1028 std::prev(BB->end())->eraseFromParent(); 1029 Builder.SetInsertPoint(BB); 1030 1031 PartwordMaskValues PMV = 1032 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1033 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1034 1035 // Shift the incoming values over, into the right location in the word. 1036 Value *NewVal_Shifted = 1037 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 1038 Value *Cmp_Shifted = 1039 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 1040 1041 // Load the entire current word, and mask into place the expected and new 1042 // values 1043 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 1044 InitLoaded->setVolatile(CI->isVolatile()); 1045 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 1046 Builder.CreateBr(LoopBB); 1047 1048 // partword.cmpxchg.loop: 1049 Builder.SetInsertPoint(LoopBB); 1050 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 1051 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 1052 1053 // Mask/Or the expected and new values into place in the loaded word. 1054 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 1055 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 1056 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 1057 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 1058 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 1059 NewCI->setVolatile(CI->isVolatile()); 1060 // When we're building a strong cmpxchg, we need a loop, so you 1061 // might think we could use a weak cmpxchg inside. But, using strong 1062 // allows the below comparison for ShouldContinue, and we're 1063 // expecting the underlying cmpxchg to be a machine instruction, 1064 // which is strong anyways. 1065 NewCI->setWeak(CI->isWeak()); 1066 1067 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1068 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1069 1070 if (CI->isWeak()) 1071 Builder.CreateBr(EndBB); 1072 else 1073 Builder.CreateCondBr(Success, EndBB, FailureBB); 1074 1075 // partword.cmpxchg.failure: 1076 Builder.SetInsertPoint(FailureBB); 1077 // Upon failure, verify that the masked-out part of the loaded value 1078 // has been modified. If it didn't, abort the cmpxchg, since the 1079 // masked-in part must've. 1080 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1081 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1082 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1083 1084 // Add the second value to the phi from above 1085 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1086 1087 // partword.cmpxchg.end: 1088 Builder.SetInsertPoint(CI); 1089 1090 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1091 Value *Res = PoisonValue::get(CI->getType()); 1092 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1093 Res = Builder.CreateInsertValue(Res, Success, 1); 1094 1095 CI->replaceAllUsesWith(Res); 1096 CI->eraseFromParent(); 1097 return true; 1098 } 1099 1100 void AtomicExpandImpl::expandAtomicOpToLLSC( 1101 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1102 AtomicOrdering MemOpOrder, 1103 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1104 ReplacementIRBuilder Builder(I, *DL); 1105 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1106 MemOpOrder, PerformOp); 1107 1108 I->replaceAllUsesWith(Loaded); 1109 I->eraseFromParent(); 1110 } 1111 1112 void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1113 ReplacementIRBuilder Builder(AI, *DL); 1114 1115 PartwordMaskValues PMV = 1116 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1117 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1118 1119 // The value operand must be sign-extended for signed min/max so that the 1120 // target's signed comparison instructions can be used. Otherwise, just 1121 // zero-ext. 1122 Instruction::CastOps CastOp = Instruction::ZExt; 1123 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1124 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1125 CastOp = Instruction::SExt; 1126 1127 Value *ValOperand_Shifted = Builder.CreateShl( 1128 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1129 PMV.ShiftAmt, "ValOperand_Shifted"); 1130 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1131 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1132 AI->getOrdering()); 1133 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1134 AI->replaceAllUsesWith(FinalOldResult); 1135 AI->eraseFromParent(); 1136 } 1137 1138 void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic( 1139 AtomicCmpXchgInst *CI) { 1140 ReplacementIRBuilder Builder(CI, *DL); 1141 1142 PartwordMaskValues PMV = createMaskInstrs( 1143 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1144 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1145 1146 Value *CmpVal_Shifted = Builder.CreateShl( 1147 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1148 "CmpVal_Shifted"); 1149 Value *NewVal_Shifted = Builder.CreateShl( 1150 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1151 "NewVal_Shifted"); 1152 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1153 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1154 CI->getMergedOrdering()); 1155 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1156 Value *Res = PoisonValue::get(CI->getType()); 1157 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1158 Value *Success = Builder.CreateICmpEQ( 1159 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1160 Res = Builder.CreateInsertValue(Res, Success, 1); 1161 1162 CI->replaceAllUsesWith(Res); 1163 CI->eraseFromParent(); 1164 } 1165 1166 Value *AtomicExpandImpl::insertRMWLLSCLoop( 1167 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1168 AtomicOrdering MemOpOrder, 1169 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1170 LLVMContext &Ctx = Builder.getContext(); 1171 BasicBlock *BB = Builder.GetInsertBlock(); 1172 Function *F = BB->getParent(); 1173 1174 assert(AddrAlign >= 1175 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1176 "Expected at least natural alignment at this point."); 1177 1178 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1179 // 1180 // The standard expansion we produce is: 1181 // [...] 1182 // atomicrmw.start: 1183 // %loaded = @load.linked(%addr) 1184 // %new = some_op iN %loaded, %incr 1185 // %stored = @store_conditional(%new, %addr) 1186 // %try_again = icmp i32 ne %stored, 0 1187 // br i1 %try_again, label %loop, label %atomicrmw.end 1188 // atomicrmw.end: 1189 // [...] 1190 BasicBlock *ExitBB = 1191 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1192 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1193 1194 // The split call above "helpfully" added a branch at the end of BB (to the 1195 // wrong place). 1196 std::prev(BB->end())->eraseFromParent(); 1197 Builder.SetInsertPoint(BB); 1198 Builder.CreateBr(LoopBB); 1199 1200 // Start the main loop block now that we've taken care of the preliminaries. 1201 Builder.SetInsertPoint(LoopBB); 1202 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1203 1204 Value *NewVal = PerformOp(Builder, Loaded); 1205 1206 Value *StoreSuccess = 1207 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1208 Value *TryAgain = Builder.CreateICmpNE( 1209 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1210 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1211 1212 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1213 return Loaded; 1214 } 1215 1216 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1217 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1218 /// IR. As a migration step, we convert back to what use to be the standard 1219 /// way to represent a pointer cmpxchg so that we can update backends one by 1220 /// one. 1221 AtomicCmpXchgInst * 1222 AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1223 auto *M = CI->getModule(); 1224 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1225 M->getDataLayout()); 1226 1227 ReplacementIRBuilder Builder(CI, *DL); 1228 1229 Value *Addr = CI->getPointerOperand(); 1230 1231 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1232 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1233 1234 auto *NewCI = Builder.CreateAtomicCmpXchg( 1235 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1236 CI->getFailureOrdering(), CI->getSyncScopeID()); 1237 NewCI->setVolatile(CI->isVolatile()); 1238 NewCI->setWeak(CI->isWeak()); 1239 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1240 1241 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1242 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1243 1244 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1245 1246 Value *Res = PoisonValue::get(CI->getType()); 1247 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1248 Res = Builder.CreateInsertValue(Res, Succ, 1); 1249 1250 CI->replaceAllUsesWith(Res); 1251 CI->eraseFromParent(); 1252 return NewCI; 1253 } 1254 1255 bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1256 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1257 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1258 Value *Addr = CI->getPointerOperand(); 1259 BasicBlock *BB = CI->getParent(); 1260 Function *F = BB->getParent(); 1261 LLVMContext &Ctx = F->getContext(); 1262 // If shouldInsertFencesForAtomic() returns true, then the target does not 1263 // want to deal with memory orders, and emitLeading/TrailingFence should take 1264 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1265 // should preserve the ordering. 1266 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1267 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1268 ? AtomicOrdering::Monotonic 1269 : CI->getMergedOrdering(); 1270 1271 // In implementations which use a barrier to achieve release semantics, we can 1272 // delay emitting this barrier until we know a store is actually going to be 1273 // attempted. The cost of this delay is that we need 2 copies of the block 1274 // emitting the load-linked, affecting code size. 1275 // 1276 // Ideally, this logic would be unconditional except for the minsize check 1277 // since in other cases the extra blocks naturally collapse down to the 1278 // minimal loop. Unfortunately, this puts too much stress on later 1279 // optimisations so we avoid emitting the extra logic in those cases too. 1280 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1281 SuccessOrder != AtomicOrdering::Monotonic && 1282 SuccessOrder != AtomicOrdering::Acquire && 1283 !F->hasMinSize(); 1284 1285 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1286 // do it even on minsize. 1287 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1288 1289 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1290 // 1291 // The full expansion we produce is: 1292 // [...] 1293 // %aligned.addr = ... 1294 // cmpxchg.start: 1295 // %unreleasedload = @load.linked(%aligned.addr) 1296 // %unreleasedload.extract = extract value from %unreleasedload 1297 // %should_store = icmp eq %unreleasedload.extract, %desired 1298 // br i1 %should_store, label %cmpxchg.releasingstore, 1299 // label %cmpxchg.nostore 1300 // cmpxchg.releasingstore: 1301 // fence? 1302 // br label cmpxchg.trystore 1303 // cmpxchg.trystore: 1304 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1305 // [%releasedload, %cmpxchg.releasedload] 1306 // %updated.new = insert %new into %loaded.trystore 1307 // %stored = @store_conditional(%updated.new, %aligned.addr) 1308 // %success = icmp eq i32 %stored, 0 1309 // br i1 %success, label %cmpxchg.success, 1310 // label %cmpxchg.releasedload/%cmpxchg.failure 1311 // cmpxchg.releasedload: 1312 // %releasedload = @load.linked(%aligned.addr) 1313 // %releasedload.extract = extract value from %releasedload 1314 // %should_store = icmp eq %releasedload.extract, %desired 1315 // br i1 %should_store, label %cmpxchg.trystore, 1316 // label %cmpxchg.failure 1317 // cmpxchg.success: 1318 // fence? 1319 // br label %cmpxchg.end 1320 // cmpxchg.nostore: 1321 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1322 // [%releasedload, 1323 // %cmpxchg.releasedload/%cmpxchg.trystore] 1324 // @load_linked_fail_balance()? 1325 // br label %cmpxchg.failure 1326 // cmpxchg.failure: 1327 // fence? 1328 // br label %cmpxchg.end 1329 // cmpxchg.end: 1330 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1331 // [%loaded.trystore, %cmpxchg.trystore] 1332 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1333 // %loaded = extract value from %loaded.exit 1334 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1335 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1336 // [...] 1337 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1338 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1339 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1340 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1341 auto ReleasedLoadBB = 1342 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1343 auto TryStoreBB = 1344 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1345 auto ReleasingStoreBB = 1346 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1347 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1348 1349 ReplacementIRBuilder Builder(CI, *DL); 1350 1351 // The split call above "helpfully" added a branch at the end of BB (to the 1352 // wrong place), but we might want a fence too. It's easiest to just remove 1353 // the branch entirely. 1354 std::prev(BB->end())->eraseFromParent(); 1355 Builder.SetInsertPoint(BB); 1356 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1357 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1358 1359 PartwordMaskValues PMV = 1360 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1361 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1362 Builder.CreateBr(StartBB); 1363 1364 // Start the main loop block now that we've taken care of the preliminaries. 1365 Builder.SetInsertPoint(StartBB); 1366 Value *UnreleasedLoad = 1367 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1368 Value *UnreleasedLoadExtract = 1369 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1370 Value *ShouldStore = Builder.CreateICmpEQ( 1371 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1372 1373 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1374 // jump straight past that fence instruction (if it exists). 1375 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1376 1377 Builder.SetInsertPoint(ReleasingStoreBB); 1378 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1379 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1380 Builder.CreateBr(TryStoreBB); 1381 1382 Builder.SetInsertPoint(TryStoreBB); 1383 PHINode *LoadedTryStore = 1384 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1385 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1386 Value *NewValueInsert = 1387 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1388 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1389 PMV.AlignedAddr, MemOpOrder); 1390 StoreSuccess = Builder.CreateICmpEQ( 1391 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1392 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1393 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1394 CI->isWeak() ? FailureBB : RetryBB); 1395 1396 Builder.SetInsertPoint(ReleasedLoadBB); 1397 Value *SecondLoad; 1398 if (HasReleasedLoadBB) { 1399 SecondLoad = 1400 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1401 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1402 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1403 CI->getCompareOperand(), "should_store"); 1404 1405 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1406 // jump straight past that fence instruction (if it exists). 1407 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1408 // Update PHI node in TryStoreBB. 1409 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1410 } else 1411 Builder.CreateUnreachable(); 1412 1413 // Make sure later instructions don't get reordered with a fence if 1414 // necessary. 1415 Builder.SetInsertPoint(SuccessBB); 1416 if (ShouldInsertFencesForAtomic || 1417 TLI->shouldInsertTrailingFenceForAtomicStore(CI)) 1418 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1419 Builder.CreateBr(ExitBB); 1420 1421 Builder.SetInsertPoint(NoStoreBB); 1422 PHINode *LoadedNoStore = 1423 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1424 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1425 if (HasReleasedLoadBB) 1426 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1427 1428 // In the failing case, where we don't execute the store-conditional, the 1429 // target might want to balance out the load-linked with a dedicated 1430 // instruction (e.g., on ARM, clearing the exclusive monitor). 1431 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1432 Builder.CreateBr(FailureBB); 1433 1434 Builder.SetInsertPoint(FailureBB); 1435 PHINode *LoadedFailure = 1436 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1437 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1438 if (CI->isWeak()) 1439 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1440 if (ShouldInsertFencesForAtomic) 1441 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1442 Builder.CreateBr(ExitBB); 1443 1444 // Finally, we have control-flow based knowledge of whether the cmpxchg 1445 // succeeded or not. We expose this to later passes by converting any 1446 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1447 // PHI. 1448 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1449 PHINode *LoadedExit = 1450 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1451 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1452 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1453 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1454 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1455 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1456 1457 // This is the "exit value" from the cmpxchg expansion. It may be of 1458 // a type wider than the one in the cmpxchg instruction. 1459 Value *LoadedFull = LoadedExit; 1460 1461 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1462 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1463 1464 // Look for any users of the cmpxchg that are just comparing the loaded value 1465 // against the desired one, and replace them with the CFG-derived version. 1466 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1467 for (auto *User : CI->users()) { 1468 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1469 if (!EV) 1470 continue; 1471 1472 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1473 "weird extraction from { iN, i1 }"); 1474 1475 if (EV->getIndices()[0] == 0) 1476 EV->replaceAllUsesWith(Loaded); 1477 else 1478 EV->replaceAllUsesWith(Success); 1479 1480 PrunedInsts.push_back(EV); 1481 } 1482 1483 // We can remove the instructions now we're no longer iterating through them. 1484 for (auto *EV : PrunedInsts) 1485 EV->eraseFromParent(); 1486 1487 if (!CI->use_empty()) { 1488 // Some use of the full struct return that we don't understand has happened, 1489 // so we've got to reconstruct it properly. 1490 Value *Res; 1491 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0); 1492 Res = Builder.CreateInsertValue(Res, Success, 1); 1493 1494 CI->replaceAllUsesWith(Res); 1495 } 1496 1497 CI->eraseFromParent(); 1498 return true; 1499 } 1500 1501 bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) { 1502 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1503 if (!C) 1504 return false; 1505 1506 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1507 switch (Op) { 1508 case AtomicRMWInst::Add: 1509 case AtomicRMWInst::Sub: 1510 case AtomicRMWInst::Or: 1511 case AtomicRMWInst::Xor: 1512 return C->isZero(); 1513 case AtomicRMWInst::And: 1514 return C->isMinusOne(); 1515 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1516 default: 1517 return false; 1518 } 1519 } 1520 1521 bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1522 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1523 tryExpandAtomicLoad(ResultingLoad); 1524 return true; 1525 } 1526 return false; 1527 } 1528 1529 Value *AtomicExpandImpl::insertRMWCmpXchgLoop( 1530 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1531 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1532 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 1533 CreateCmpXchgInstFun CreateCmpXchg) { 1534 LLVMContext &Ctx = Builder.getContext(); 1535 BasicBlock *BB = Builder.GetInsertBlock(); 1536 Function *F = BB->getParent(); 1537 1538 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1539 // 1540 // The standard expansion we produce is: 1541 // [...] 1542 // %init_loaded = load atomic iN* %addr 1543 // br label %loop 1544 // loop: 1545 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1546 // %new = some_op iN %loaded, %incr 1547 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1548 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1549 // %success = extractvalue { iN, i1 } %pair, 1 1550 // br i1 %success, label %atomicrmw.end, label %loop 1551 // atomicrmw.end: 1552 // [...] 1553 BasicBlock *ExitBB = 1554 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1555 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1556 1557 // The split call above "helpfully" added a branch at the end of BB (to the 1558 // wrong place), but we want a load. It's easiest to just remove 1559 // the branch entirely. 1560 std::prev(BB->end())->eraseFromParent(); 1561 Builder.SetInsertPoint(BB); 1562 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1563 Builder.CreateBr(LoopBB); 1564 1565 // Start the main loop block now that we've taken care of the preliminaries. 1566 Builder.SetInsertPoint(LoopBB); 1567 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1568 Loaded->addIncoming(InitLoaded, BB); 1569 1570 Value *NewVal = PerformOp(Builder, Loaded); 1571 1572 Value *NewLoaded = nullptr; 1573 Value *Success = nullptr; 1574 1575 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1576 MemOpOrder == AtomicOrdering::Unordered 1577 ? AtomicOrdering::Monotonic 1578 : MemOpOrder, 1579 SSID, Success, NewLoaded); 1580 assert(Success && NewLoaded); 1581 1582 Loaded->addIncoming(NewLoaded, LoopBB); 1583 1584 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1585 1586 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1587 return NewLoaded; 1588 } 1589 1590 bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1591 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1592 unsigned ValueSize = getAtomicOpSize(CI); 1593 1594 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1595 default: 1596 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1597 case TargetLoweringBase::AtomicExpansionKind::None: 1598 if (ValueSize < MinCASSize) 1599 return expandPartwordCmpXchg(CI); 1600 return false; 1601 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1602 return expandAtomicCmpXchg(CI); 1603 } 1604 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1605 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1606 return true; 1607 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1608 return lowerAtomicCmpXchgInst(CI); 1609 } 1610 } 1611 1612 // Note: This function is exposed externally by AtomicExpandUtils.h 1613 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1614 CreateCmpXchgInstFun CreateCmpXchg) { 1615 ReplacementIRBuilder Builder(AI, AI->getModule()->getDataLayout()); 1616 Builder.setIsFPConstrained( 1617 AI->getFunction()->hasFnAttribute(Attribute::StrictFP)); 1618 1619 // FIXME: If FP exceptions are observable, we should force them off for the 1620 // loop for the FP atomics. 1621 Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop( 1622 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1623 AI->getOrdering(), AI->getSyncScopeID(), 1624 [&](IRBuilderBase &Builder, Value *Loaded) { 1625 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1626 AI->getValOperand()); 1627 }, 1628 CreateCmpXchg); 1629 1630 AI->replaceAllUsesWith(Loaded); 1631 AI->eraseFromParent(); 1632 return true; 1633 } 1634 1635 // In order to use one of the sized library calls such as 1636 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1637 // must be one of the potentially-specialized sizes, and the value 1638 // type must actually exist in C on the target (otherwise, the 1639 // function wouldn't actually be defined.) 1640 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1641 const DataLayout &DL) { 1642 // TODO: "LargestSize" is an approximation for "largest type that 1643 // you can express in C". It seems to be the case that int128 is 1644 // supported on all 64-bit platforms, otherwise only up to 64-bit 1645 // integers are supported. If we get this wrong, then we'll try to 1646 // call a sized libcall that doesn't actually exist. There should 1647 // really be some more reliable way in LLVM of determining integer 1648 // sizes which are valid in the target's C ABI... 1649 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1650 return Alignment >= Size && 1651 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1652 Size <= LargestSize; 1653 } 1654 1655 void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) { 1656 static const RTLIB::Libcall Libcalls[6] = { 1657 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1658 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1659 unsigned Size = getAtomicOpSize(I); 1660 1661 bool expanded = expandAtomicOpToLibcall( 1662 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1663 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1664 if (!expanded) 1665 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1666 } 1667 1668 void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) { 1669 static const RTLIB::Libcall Libcalls[6] = { 1670 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1671 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1672 unsigned Size = getAtomicOpSize(I); 1673 1674 bool expanded = expandAtomicOpToLibcall( 1675 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1676 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1677 if (!expanded) 1678 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1679 } 1680 1681 void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1682 static const RTLIB::Libcall Libcalls[6] = { 1683 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1684 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1685 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1686 unsigned Size = getAtomicOpSize(I); 1687 1688 bool expanded = expandAtomicOpToLibcall( 1689 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1690 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1691 Libcalls); 1692 if (!expanded) 1693 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1694 } 1695 1696 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1697 static const RTLIB::Libcall LibcallsXchg[6] = { 1698 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1699 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1700 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1701 static const RTLIB::Libcall LibcallsAdd[6] = { 1702 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1703 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1704 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1705 static const RTLIB::Libcall LibcallsSub[6] = { 1706 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1707 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1708 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1709 static const RTLIB::Libcall LibcallsAnd[6] = { 1710 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1711 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1712 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1713 static const RTLIB::Libcall LibcallsOr[6] = { 1714 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1715 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1716 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1717 static const RTLIB::Libcall LibcallsXor[6] = { 1718 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1719 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1720 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1721 static const RTLIB::Libcall LibcallsNand[6] = { 1722 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1723 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1724 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1725 1726 switch (Op) { 1727 case AtomicRMWInst::BAD_BINOP: 1728 llvm_unreachable("Should not have BAD_BINOP."); 1729 case AtomicRMWInst::Xchg: 1730 return ArrayRef(LibcallsXchg); 1731 case AtomicRMWInst::Add: 1732 return ArrayRef(LibcallsAdd); 1733 case AtomicRMWInst::Sub: 1734 return ArrayRef(LibcallsSub); 1735 case AtomicRMWInst::And: 1736 return ArrayRef(LibcallsAnd); 1737 case AtomicRMWInst::Or: 1738 return ArrayRef(LibcallsOr); 1739 case AtomicRMWInst::Xor: 1740 return ArrayRef(LibcallsXor); 1741 case AtomicRMWInst::Nand: 1742 return ArrayRef(LibcallsNand); 1743 case AtomicRMWInst::Max: 1744 case AtomicRMWInst::Min: 1745 case AtomicRMWInst::UMax: 1746 case AtomicRMWInst::UMin: 1747 case AtomicRMWInst::FMax: 1748 case AtomicRMWInst::FMin: 1749 case AtomicRMWInst::FAdd: 1750 case AtomicRMWInst::FSub: 1751 case AtomicRMWInst::UIncWrap: 1752 case AtomicRMWInst::UDecWrap: 1753 // No atomic libcalls are available for max/min/umax/umin. 1754 return {}; 1755 } 1756 llvm_unreachable("Unexpected AtomicRMW operation."); 1757 } 1758 1759 void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1760 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1761 1762 unsigned Size = getAtomicOpSize(I); 1763 1764 bool Success = false; 1765 if (!Libcalls.empty()) 1766 Success = expandAtomicOpToLibcall( 1767 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1768 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1769 1770 // The expansion failed: either there were no libcalls at all for 1771 // the operation (min/max), or there were only size-specialized 1772 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1773 // CAS libcall, via a CAS loop, instead. 1774 if (!Success) { 1775 expandAtomicRMWToCmpXchg( 1776 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, 1777 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1778 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1779 // Create the CAS instruction normally... 1780 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1781 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1782 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1783 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1784 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1785 1786 // ...and then expand the CAS into a libcall. 1787 expandAtomicCASToLibcall(Pair); 1788 }); 1789 } 1790 } 1791 1792 // A helper routine for the above expandAtomic*ToLibcall functions. 1793 // 1794 // 'Libcalls' contains an array of enum values for the particular 1795 // ATOMIC libcalls to be emitted. All of the other arguments besides 1796 // 'I' are extracted from the Instruction subclass by the 1797 // caller. Depending on the particular call, some will be null. 1798 bool AtomicExpandImpl::expandAtomicOpToLibcall( 1799 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1800 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1801 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1802 assert(Libcalls.size() == 6); 1803 1804 LLVMContext &Ctx = I->getContext(); 1805 Module *M = I->getModule(); 1806 const DataLayout &DL = M->getDataLayout(); 1807 IRBuilder<> Builder(I); 1808 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1809 1810 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1811 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1812 1813 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1814 1815 // TODO: the "order" argument type is "int", not int32. So 1816 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1817 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1818 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1819 Constant *OrderingVal = 1820 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1821 Constant *Ordering2Val = nullptr; 1822 if (CASExpected) { 1823 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1824 Ordering2Val = 1825 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1826 } 1827 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1828 1829 RTLIB::Libcall RTLibType; 1830 if (UseSizedLibcall) { 1831 switch (Size) { 1832 case 1: 1833 RTLibType = Libcalls[1]; 1834 break; 1835 case 2: 1836 RTLibType = Libcalls[2]; 1837 break; 1838 case 4: 1839 RTLibType = Libcalls[3]; 1840 break; 1841 case 8: 1842 RTLibType = Libcalls[4]; 1843 break; 1844 case 16: 1845 RTLibType = Libcalls[5]; 1846 break; 1847 } 1848 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1849 RTLibType = Libcalls[0]; 1850 } else { 1851 // Can't use sized function, and there's no generic for this 1852 // operation, so give up. 1853 return false; 1854 } 1855 1856 if (!TLI->getLibcallName(RTLibType)) { 1857 // This target does not implement the requested atomic libcall so give up. 1858 return false; 1859 } 1860 1861 // Build up the function call. There's two kinds. First, the sized 1862 // variants. These calls are going to be one of the following (with 1863 // N=1,2,4,8,16): 1864 // iN __atomic_load_N(iN *ptr, int ordering) 1865 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1866 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1867 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1868 // int success_order, int failure_order) 1869 // 1870 // Note that these functions can be used for non-integer atomic 1871 // operations, the values just need to be bitcast to integers on the 1872 // way in and out. 1873 // 1874 // And, then, the generic variants. They look like the following: 1875 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1876 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1877 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1878 // int ordering) 1879 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1880 // void *desired, int success_order, 1881 // int failure_order) 1882 // 1883 // The different signatures are built up depending on the 1884 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1885 // variables. 1886 1887 AllocaInst *AllocaCASExpected = nullptr; 1888 AllocaInst *AllocaValue = nullptr; 1889 AllocaInst *AllocaResult = nullptr; 1890 1891 Type *ResultTy; 1892 SmallVector<Value *, 6> Args; 1893 AttributeList Attr; 1894 1895 // 'size' argument. 1896 if (!UseSizedLibcall) { 1897 // Note, getIntPtrType is assumed equivalent to size_t. 1898 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1899 } 1900 1901 // 'ptr' argument. 1902 // note: This assumes all address spaces share a common libfunc 1903 // implementation and that addresses are convertable. For systems without 1904 // that property, we'd need to extend this mechanism to support AS-specific 1905 // families of atomic intrinsics. 1906 Value *PtrVal = PointerOperand; 1907 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx)); 1908 Args.push_back(PtrVal); 1909 1910 // 'expected' argument, if present. 1911 if (CASExpected) { 1912 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1913 AllocaCASExpected->setAlignment(AllocaAlignment); 1914 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64); 1915 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1916 Args.push_back(AllocaCASExpected); 1917 } 1918 1919 // 'val' argument ('desired' for cas), if present. 1920 if (ValueOperand) { 1921 if (UseSizedLibcall) { 1922 Value *IntValue = 1923 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1924 Args.push_back(IntValue); 1925 } else { 1926 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1927 AllocaValue->setAlignment(AllocaAlignment); 1928 Builder.CreateLifetimeStart(AllocaValue, SizeVal64); 1929 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1930 Args.push_back(AllocaValue); 1931 } 1932 } 1933 1934 // 'ret' argument. 1935 if (!CASExpected && HasResult && !UseSizedLibcall) { 1936 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1937 AllocaResult->setAlignment(AllocaAlignment); 1938 Builder.CreateLifetimeStart(AllocaResult, SizeVal64); 1939 Args.push_back(AllocaResult); 1940 } 1941 1942 // 'ordering' ('success_order' for cas) argument. 1943 Args.push_back(OrderingVal); 1944 1945 // 'failure_order' argument, if present. 1946 if (Ordering2Val) 1947 Args.push_back(Ordering2Val); 1948 1949 // Now, the return type. 1950 if (CASExpected) { 1951 ResultTy = Type::getInt1Ty(Ctx); 1952 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1953 } else if (HasResult && UseSizedLibcall) 1954 ResultTy = SizedIntTy; 1955 else 1956 ResultTy = Type::getVoidTy(Ctx); 1957 1958 // Done with setting up arguments and return types, create the call: 1959 SmallVector<Type *, 6> ArgTys; 1960 for (Value *Arg : Args) 1961 ArgTys.push_back(Arg->getType()); 1962 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1963 FunctionCallee LibcallFn = 1964 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1965 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1966 Call->setAttributes(Attr); 1967 Value *Result = Call; 1968 1969 // And then, extract the results... 1970 if (ValueOperand && !UseSizedLibcall) 1971 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64); 1972 1973 if (CASExpected) { 1974 // The final result from the CAS is {load of 'expected' alloca, bool result 1975 // from call} 1976 Type *FinalResultTy = I->getType(); 1977 Value *V = PoisonValue::get(FinalResultTy); 1978 Value *ExpectedOut = Builder.CreateAlignedLoad( 1979 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1980 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64); 1981 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1982 V = Builder.CreateInsertValue(V, Result, 1); 1983 I->replaceAllUsesWith(V); 1984 } else if (HasResult) { 1985 Value *V; 1986 if (UseSizedLibcall) 1987 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1988 else { 1989 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1990 AllocaAlignment); 1991 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64); 1992 } 1993 I->replaceAllUsesWith(V); 1994 } 1995 I->eraseFromParent(); 1996 return true; 1997 } 1998