1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstSimplifyFolder.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/CodeGen/AtomicExpand.h" 23 #include "llvm/CodeGen/AtomicExpandUtils.h" 24 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstIterator.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/AtomicOrdering.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Transforms/Utils/LowerAtomic.h" 55 #include <cassert> 56 #include <cstdint> 57 #include <iterator> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "atomic-expand" 62 63 namespace { 64 65 class AtomicExpandImpl { 66 const TargetLowering *TLI = nullptr; 67 const DataLayout *DL = nullptr; 68 69 private: 70 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 71 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 72 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 73 bool tryExpandAtomicLoad(LoadInst *LI); 74 bool expandAtomicLoadToLL(LoadInst *LI); 75 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 76 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 77 bool tryExpandAtomicStore(StoreInst *SI); 78 void expandAtomicStore(StoreInst *SI); 79 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 80 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 81 Value * 82 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, 83 Align AddrAlign, AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 87 AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 89 void expandPartwordAtomicRMW( 90 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 92 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 95 96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 97 static Value *insertRMWCmpXchgLoop( 98 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 99 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 100 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 101 CreateCmpXchgInstFun CreateCmpXchg, Instruction *MetadataSrc); 102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 103 104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 bool isIdempotentRMW(AtomicRMWInst *RMWI); 106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 107 108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 109 Value *PointerOperand, Value *ValueOperand, 110 Value *CASExpected, AtomicOrdering Ordering, 111 AtomicOrdering Ordering2, 112 ArrayRef<RTLIB::Libcall> Libcalls); 113 void expandAtomicLoadToLibcall(LoadInst *LI); 114 void expandAtomicStoreToLibcall(StoreInst *LI); 115 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 117 118 friend bool 119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 120 CreateCmpXchgInstFun CreateCmpXchg); 121 122 bool processAtomicInstr(Instruction *I); 123 124 public: 125 bool run(Function &F, const TargetMachine *TM); 126 }; 127 128 class AtomicExpandLegacy : public FunctionPass { 129 public: 130 static char ID; // Pass identification, replacement for typeid 131 132 AtomicExpandLegacy() : FunctionPass(ID) { 133 initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry()); 134 } 135 136 bool runOnFunction(Function &F) override; 137 }; 138 139 // IRBuilder to be used for replacement atomic instructions. 140 struct ReplacementIRBuilder 141 : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> { 142 MDNode *MMRAMD = nullptr; 143 144 // Preserves the DebugLoc from I, and preserves still valid metadata. 145 // Enable StrictFP builder mode when appropriate. 146 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) 147 : IRBuilder(I->getContext(), InstSimplifyFolder(DL), 148 IRBuilderCallbackInserter( 149 [this](Instruction *I) { addMMRAMD(I); })) { 150 SetInsertPoint(I); 151 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections}); 152 if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP)) 153 this->setIsFPConstrained(true); 154 155 MMRAMD = I->getMetadata(LLVMContext::MD_mmra); 156 } 157 158 void addMMRAMD(Instruction *I) { 159 if (canInstructionHaveMMRAs(*I)) 160 I->setMetadata(LLVMContext::MD_mmra, MMRAMD); 161 } 162 }; 163 164 } // end anonymous namespace 165 166 char AtomicExpandLegacy::ID = 0; 167 168 char &llvm::AtomicExpandID = AtomicExpandLegacy::ID; 169 170 INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE, 171 "Expand Atomic instructions", false, false) 172 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 173 INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE, 174 "Expand Atomic instructions", false, false) 175 176 // Helper functions to retrieve the size of atomic instructions. 177 static unsigned getAtomicOpSize(LoadInst *LI) { 178 const DataLayout &DL = LI->getDataLayout(); 179 return DL.getTypeStoreSize(LI->getType()); 180 } 181 182 static unsigned getAtomicOpSize(StoreInst *SI) { 183 const DataLayout &DL = SI->getDataLayout(); 184 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 185 } 186 187 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 188 const DataLayout &DL = RMWI->getDataLayout(); 189 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 190 } 191 192 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 193 const DataLayout &DL = CASI->getDataLayout(); 194 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 195 } 196 197 /// Copy metadata that's safe to preserve when widening atomics. 198 static void copyMetadataForAtomic(Instruction &Dest, 199 const Instruction &Source) { 200 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 201 Source.getAllMetadata(MD); 202 LLVMContext &Ctx = Dest.getContext(); 203 MDBuilder MDB(Ctx); 204 205 for (auto [ID, N] : MD) { 206 switch (ID) { 207 case LLVMContext::MD_dbg: 208 case LLVMContext::MD_tbaa: 209 case LLVMContext::MD_tbaa_struct: 210 case LLVMContext::MD_alias_scope: 211 case LLVMContext::MD_noalias: 212 case LLVMContext::MD_noalias_addrspace: 213 case LLVMContext::MD_access_group: 214 case LLVMContext::MD_mmra: 215 Dest.setMetadata(ID, N); 216 break; 217 default: 218 if (ID == Ctx.getMDKindID("amdgpu.no.remote.memory")) 219 Dest.setMetadata(ID, N); 220 else if (ID == Ctx.getMDKindID("amdgpu.no.fine.grained.memory")) 221 Dest.setMetadata(ID, N); 222 223 // Losing amdgpu.ignore.denormal.mode, but it doesn't matter for current 224 // uses. 225 break; 226 } 227 } 228 } 229 230 // Determine if a particular atomic operation has a supported size, 231 // and is of appropriate alignment, to be passed through for target 232 // lowering. (Versus turning into a __atomic libcall) 233 template <typename Inst> 234 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 235 unsigned Size = getAtomicOpSize(I); 236 Align Alignment = I->getAlign(); 237 return Alignment >= Size && 238 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 239 } 240 241 bool AtomicExpandImpl::processAtomicInstr(Instruction *I) { 242 auto *LI = dyn_cast<LoadInst>(I); 243 auto *SI = dyn_cast<StoreInst>(I); 244 auto *RMWI = dyn_cast<AtomicRMWInst>(I); 245 auto *CASI = dyn_cast<AtomicCmpXchgInst>(I); 246 247 bool MadeChange = false; 248 249 // If the Size/Alignment is not supported, replace with a libcall. 250 if (LI) { 251 if (!LI->isAtomic()) 252 return false; 253 254 if (!atomicSizeSupported(TLI, LI)) { 255 expandAtomicLoadToLibcall(LI); 256 return true; 257 } 258 259 if (TLI->shouldCastAtomicLoadInIR(LI) == 260 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 261 I = LI = convertAtomicLoadToIntegerType(LI); 262 MadeChange = true; 263 } 264 } else if (SI) { 265 if (!SI->isAtomic()) 266 return false; 267 268 if (!atomicSizeSupported(TLI, SI)) { 269 expandAtomicStoreToLibcall(SI); 270 return true; 271 } 272 273 if (TLI->shouldCastAtomicStoreInIR(SI) == 274 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 275 I = SI = convertAtomicStoreToIntegerType(SI); 276 MadeChange = true; 277 } 278 } else if (RMWI) { 279 if (!atomicSizeSupported(TLI, RMWI)) { 280 expandAtomicRMWToLibcall(RMWI); 281 return true; 282 } 283 284 if (TLI->shouldCastAtomicRMWIInIR(RMWI) == 285 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 286 I = RMWI = convertAtomicXchgToIntegerType(RMWI); 287 MadeChange = true; 288 } 289 } else if (CASI) { 290 if (!atomicSizeSupported(TLI, CASI)) { 291 expandAtomicCASToLibcall(CASI); 292 return true; 293 } 294 295 // TODO: when we're ready to make the change at the IR level, we can 296 // extend convertCmpXchgToInteger for floating point too. 297 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 298 // TODO: add a TLI hook to control this so that each target can 299 // convert to lowering the original type one at a time. 300 I = CASI = convertCmpXchgToIntegerType(CASI); 301 MadeChange = true; 302 } 303 } else 304 return false; 305 306 if (TLI->shouldInsertFencesForAtomic(I)) { 307 auto FenceOrdering = AtomicOrdering::Monotonic; 308 if (LI && isAcquireOrStronger(LI->getOrdering())) { 309 FenceOrdering = LI->getOrdering(); 310 LI->setOrdering(AtomicOrdering::Monotonic); 311 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 312 FenceOrdering = SI->getOrdering(); 313 SI->setOrdering(AtomicOrdering::Monotonic); 314 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 315 isAcquireOrStronger(RMWI->getOrdering()))) { 316 FenceOrdering = RMWI->getOrdering(); 317 RMWI->setOrdering(AtomicOrdering::Monotonic); 318 } else if (CASI && 319 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 320 TargetLoweringBase::AtomicExpansionKind::None && 321 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 322 isAcquireOrStronger(CASI->getSuccessOrdering()) || 323 isAcquireOrStronger(CASI->getFailureOrdering()))) { 324 // If a compare and swap is lowered to LL/SC, we can do smarter fence 325 // insertion, with a stronger one on the success path than on the 326 // failure path. As a result, fence insertion is directly done by 327 // expandAtomicCmpXchg in that case. 328 FenceOrdering = CASI->getMergedOrdering(); 329 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 330 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 331 } 332 333 if (FenceOrdering != AtomicOrdering::Monotonic) { 334 MadeChange |= bracketInstWithFences(I, FenceOrdering); 335 } 336 } else if (I->hasAtomicStore() && 337 TLI->shouldInsertTrailingFenceForAtomicStore(I)) { 338 auto FenceOrdering = AtomicOrdering::Monotonic; 339 if (SI) 340 FenceOrdering = SI->getOrdering(); 341 else if (RMWI) 342 FenceOrdering = RMWI->getOrdering(); 343 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) != 344 TargetLoweringBase::AtomicExpansionKind::LLSC) 345 // LLSC is handled in expandAtomicCmpXchg(). 346 FenceOrdering = CASI->getSuccessOrdering(); 347 348 IRBuilder Builder(I); 349 if (auto TrailingFence = 350 TLI->emitTrailingFence(Builder, I, FenceOrdering)) { 351 TrailingFence->moveAfter(I); 352 MadeChange = true; 353 } 354 } 355 356 if (LI) 357 MadeChange |= tryExpandAtomicLoad(LI); 358 else if (SI) 359 MadeChange |= tryExpandAtomicStore(SI); 360 else if (RMWI) { 361 // There are two different ways of expanding RMW instructions: 362 // - into a load if it is idempotent 363 // - into a Cmpxchg/LL-SC loop otherwise 364 // we try them in that order. 365 366 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 367 MadeChange = true; 368 369 } else { 370 MadeChange |= tryExpandAtomicRMW(RMWI); 371 } 372 } else if (CASI) 373 MadeChange |= tryExpandAtomicCmpXchg(CASI); 374 375 return MadeChange; 376 } 377 378 bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) { 379 const auto *Subtarget = TM->getSubtargetImpl(F); 380 if (!Subtarget->enableAtomicExpand()) 381 return false; 382 TLI = Subtarget->getTargetLowering(); 383 DL = &F.getDataLayout(); 384 385 bool MadeChange = false; 386 387 for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { 388 BasicBlock *BB = &*BBI; 389 390 BasicBlock::reverse_iterator Next; 391 392 for (BasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend(); I != E; 393 I = Next) { 394 Instruction &Inst = *I; 395 Next = std::next(I); 396 397 if (processAtomicInstr(&Inst)) { 398 MadeChange = true; 399 400 // New blocks may have been inserted. 401 BBE = F.end(); 402 } 403 } 404 } 405 406 return MadeChange; 407 } 408 409 bool AtomicExpandLegacy::runOnFunction(Function &F) { 410 411 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 412 if (!TPC) 413 return false; 414 auto *TM = &TPC->getTM<TargetMachine>(); 415 AtomicExpandImpl AE; 416 return AE.run(F, TM); 417 } 418 419 FunctionPass *llvm::createAtomicExpandLegacyPass() { 420 return new AtomicExpandLegacy(); 421 } 422 423 PreservedAnalyses AtomicExpandPass::run(Function &F, 424 FunctionAnalysisManager &AM) { 425 AtomicExpandImpl AE; 426 427 bool Changed = AE.run(F, TM); 428 if (!Changed) 429 return PreservedAnalyses::all(); 430 431 return PreservedAnalyses::none(); 432 } 433 434 bool AtomicExpandImpl::bracketInstWithFences(Instruction *I, 435 AtomicOrdering Order) { 436 ReplacementIRBuilder Builder(I, *DL); 437 438 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 439 440 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 441 // We have a guard here because not every atomic operation generates a 442 // trailing fence. 443 if (TrailingFence) 444 TrailingFence->moveAfter(I); 445 446 return (LeadingFence || TrailingFence); 447 } 448 449 /// Get the iX type with the same bitwidth as T. 450 IntegerType * 451 AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { 452 EVT VT = TLI->getMemValueType(DL, T); 453 unsigned BitWidth = VT.getStoreSizeInBits(); 454 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 455 return IntegerType::get(T->getContext(), BitWidth); 456 } 457 458 /// Convert an atomic load of a non-integral type to an integer load of the 459 /// equivalent bitwidth. See the function comment on 460 /// convertAtomicStoreToIntegerType for background. 461 LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) { 462 auto *M = LI->getModule(); 463 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 464 465 ReplacementIRBuilder Builder(LI, *DL); 466 467 Value *Addr = LI->getPointerOperand(); 468 469 auto *NewLI = Builder.CreateLoad(NewTy, Addr); 470 NewLI->setAlignment(LI->getAlign()); 471 NewLI->setVolatile(LI->isVolatile()); 472 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 473 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 474 475 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 476 LI->replaceAllUsesWith(NewVal); 477 LI->eraseFromParent(); 478 return NewLI; 479 } 480 481 AtomicRMWInst * 482 AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 483 assert(RMWI->getOperation() == AtomicRMWInst::Xchg); 484 485 auto *M = RMWI->getModule(); 486 Type *NewTy = 487 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 488 489 ReplacementIRBuilder Builder(RMWI, *DL); 490 491 Value *Addr = RMWI->getPointerOperand(); 492 Value *Val = RMWI->getValOperand(); 493 Value *NewVal = Val->getType()->isPointerTy() 494 ? Builder.CreatePtrToInt(Val, NewTy) 495 : Builder.CreateBitCast(Val, NewTy); 496 497 auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal, 498 RMWI->getAlign(), RMWI->getOrdering(), 499 RMWI->getSyncScopeID()); 500 NewRMWI->setVolatile(RMWI->isVolatile()); 501 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 502 503 Value *NewRVal = RMWI->getType()->isPointerTy() 504 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType()) 505 : Builder.CreateBitCast(NewRMWI, RMWI->getType()); 506 RMWI->replaceAllUsesWith(NewRVal); 507 RMWI->eraseFromParent(); 508 return NewRMWI; 509 } 510 511 bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) { 512 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 513 case TargetLoweringBase::AtomicExpansionKind::None: 514 return false; 515 case TargetLoweringBase::AtomicExpansionKind::LLSC: 516 expandAtomicOpToLLSC( 517 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 518 LI->getOrdering(), 519 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); 520 return true; 521 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 522 return expandAtomicLoadToLL(LI); 523 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 524 return expandAtomicLoadToCmpXchg(LI); 525 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 526 LI->setAtomic(AtomicOrdering::NotAtomic); 527 return true; 528 default: 529 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 530 } 531 } 532 533 bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) { 534 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 535 case TargetLoweringBase::AtomicExpansionKind::None: 536 return false; 537 case TargetLoweringBase::AtomicExpansionKind::Expand: 538 expandAtomicStore(SI); 539 return true; 540 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 541 SI->setAtomic(AtomicOrdering::NotAtomic); 542 return true; 543 default: 544 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 545 } 546 } 547 548 bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) { 549 ReplacementIRBuilder Builder(LI, *DL); 550 551 // On some architectures, load-linked instructions are atomic for larger 552 // sizes than normal loads. For example, the only 64-bit load guaranteed 553 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 554 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 555 LI->getPointerOperand(), LI->getOrdering()); 556 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 557 558 LI->replaceAllUsesWith(Val); 559 LI->eraseFromParent(); 560 561 return true; 562 } 563 564 bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) { 565 ReplacementIRBuilder Builder(LI, *DL); 566 AtomicOrdering Order = LI->getOrdering(); 567 if (Order == AtomicOrdering::Unordered) 568 Order = AtomicOrdering::Monotonic; 569 570 Value *Addr = LI->getPointerOperand(); 571 Type *Ty = LI->getType(); 572 Constant *DummyVal = Constant::getNullValue(Ty); 573 574 Value *Pair = Builder.CreateAtomicCmpXchg( 575 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 576 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 577 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 578 579 LI->replaceAllUsesWith(Loaded); 580 LI->eraseFromParent(); 581 582 return true; 583 } 584 585 /// Convert an atomic store of a non-integral type to an integer store of the 586 /// equivalent bitwidth. We used to not support floating point or vector 587 /// atomics in the IR at all. The backends learned to deal with the bitcast 588 /// idiom because that was the only way of expressing the notion of a atomic 589 /// float or vector store. The long term plan is to teach each backend to 590 /// instruction select from the original atomic store, but as a migration 591 /// mechanism, we convert back to the old format which the backends understand. 592 /// Each backend will need individual work to recognize the new format. 593 StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) { 594 ReplacementIRBuilder Builder(SI, *DL); 595 auto *M = SI->getModule(); 596 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 597 M->getDataLayout()); 598 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 599 600 Value *Addr = SI->getPointerOperand(); 601 602 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr); 603 NewSI->setAlignment(SI->getAlign()); 604 NewSI->setVolatile(SI->isVolatile()); 605 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 606 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 607 SI->eraseFromParent(); 608 return NewSI; 609 } 610 611 void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) { 612 // This function is only called on atomic stores that are too large to be 613 // atomic if implemented as a native store. So we replace them by an 614 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 615 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 616 // It is the responsibility of the target to only signal expansion via 617 // shouldExpandAtomicRMW in cases where this is required and possible. 618 ReplacementIRBuilder Builder(SI, *DL); 619 AtomicOrdering Ordering = SI->getOrdering(); 620 assert(Ordering != AtomicOrdering::NotAtomic); 621 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered 622 ? AtomicOrdering::Monotonic 623 : Ordering; 624 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 625 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 626 SI->getAlign(), RMWOrdering); 627 SI->eraseFromParent(); 628 629 // Now we have an appropriate swap instruction, lower it as usual. 630 tryExpandAtomicRMW(AI); 631 } 632 633 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, 634 Value *Loaded, Value *NewVal, Align AddrAlign, 635 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 636 Value *&Success, Value *&NewLoaded, 637 Instruction *MetadataSrc) { 638 Type *OrigTy = NewVal->getType(); 639 640 // This code can go away when cmpxchg supports FP and vector types. 641 assert(!OrigTy->isPointerTy()); 642 bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy(); 643 if (NeedBitcast) { 644 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 645 NewVal = Builder.CreateBitCast(NewVal, IntTy); 646 Loaded = Builder.CreateBitCast(Loaded, IntTy); 647 } 648 649 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 650 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 651 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 652 if (MetadataSrc) 653 copyMetadataForAtomic(*Pair, *MetadataSrc); 654 655 Success = Builder.CreateExtractValue(Pair, 1, "success"); 656 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 657 658 if (NeedBitcast) 659 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 660 } 661 662 bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) { 663 LLVMContext &Ctx = AI->getModule()->getContext(); 664 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 665 switch (Kind) { 666 case TargetLoweringBase::AtomicExpansionKind::None: 667 return false; 668 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 669 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 670 unsigned ValueSize = getAtomicOpSize(AI); 671 if (ValueSize < MinCASSize) { 672 expandPartwordAtomicRMW(AI, 673 TargetLoweringBase::AtomicExpansionKind::LLSC); 674 } else { 675 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { 676 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 677 AI->getValOperand()); 678 }; 679 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 680 AI->getAlign(), AI->getOrdering(), PerformOp); 681 } 682 return true; 683 } 684 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 685 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 686 unsigned ValueSize = getAtomicOpSize(AI); 687 if (ValueSize < MinCASSize) { 688 expandPartwordAtomicRMW(AI, 689 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 690 } else { 691 SmallVector<StringRef> SSNs; 692 Ctx.getSyncScopeNames(SSNs); 693 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 694 ? "system" 695 : SSNs[AI->getSyncScopeID()]; 696 OptimizationRemarkEmitter ORE(AI->getFunction()); 697 ORE.emit([&]() { 698 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 699 << "A compare and swap loop was generated for an atomic " 700 << AI->getOperationName(AI->getOperation()) << " operation at " 701 << MemScope << " memory scope"; 702 }); 703 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 704 } 705 return true; 706 } 707 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 708 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 709 unsigned ValueSize = getAtomicOpSize(AI); 710 if (ValueSize < MinCASSize) { 711 AtomicRMWInst::BinOp Op = AI->getOperation(); 712 // Widen And/Or/Xor and give the target another chance at expanding it. 713 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 714 Op == AtomicRMWInst::And) { 715 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 716 return true; 717 } 718 } 719 expandAtomicRMWToMaskedIntrinsic(AI); 720 return true; 721 } 722 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 723 TLI->emitBitTestAtomicRMWIntrinsic(AI); 724 return true; 725 } 726 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { 727 TLI->emitCmpArithAtomicRMWIntrinsic(AI); 728 return true; 729 } 730 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 731 return lowerAtomicRMWInst(AI); 732 case TargetLoweringBase::AtomicExpansionKind::Expand: 733 TLI->emitExpandAtomicRMW(AI); 734 return true; 735 default: 736 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 737 } 738 } 739 740 namespace { 741 742 struct PartwordMaskValues { 743 // These three fields are guaranteed to be set by createMaskInstrs. 744 Type *WordType = nullptr; 745 Type *ValueType = nullptr; 746 Type *IntValueType = nullptr; 747 Value *AlignedAddr = nullptr; 748 Align AlignedAddrAlignment; 749 // The remaining fields can be null. 750 Value *ShiftAmt = nullptr; 751 Value *Mask = nullptr; 752 Value *Inv_Mask = nullptr; 753 }; 754 755 LLVM_ATTRIBUTE_UNUSED 756 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 757 auto PrintObj = [&O](auto *V) { 758 if (V) 759 O << *V; 760 else 761 O << "nullptr"; 762 O << '\n'; 763 }; 764 O << "PartwordMaskValues {\n"; 765 O << " WordType: "; 766 PrintObj(PMV.WordType); 767 O << " ValueType: "; 768 PrintObj(PMV.ValueType); 769 O << " AlignedAddr: "; 770 PrintObj(PMV.AlignedAddr); 771 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 772 O << " ShiftAmt: "; 773 PrintObj(PMV.ShiftAmt); 774 O << " Mask: "; 775 PrintObj(PMV.Mask); 776 O << " Inv_Mask: "; 777 PrintObj(PMV.Inv_Mask); 778 O << "}\n"; 779 return O; 780 } 781 782 } // end anonymous namespace 783 784 /// This is a helper function which builds instructions to provide 785 /// values necessary for partword atomic operations. It takes an 786 /// incoming address, Addr, and ValueType, and constructs the address, 787 /// shift-amounts and masks needed to work with a larger value of size 788 /// WordSize. 789 /// 790 /// AlignedAddr: Addr rounded down to a multiple of WordSize 791 /// 792 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 793 /// from AlignAddr for it to have the same value as if 794 /// ValueType was loaded from Addr. 795 /// 796 /// Mask: Value to mask with the value loaded from AlignAddr to 797 /// include only the part that would've been loaded from Addr. 798 /// 799 /// Inv_Mask: The inverse of Mask. 800 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, 801 Instruction *I, Type *ValueType, 802 Value *Addr, Align AddrAlign, 803 unsigned MinWordSize) { 804 PartwordMaskValues PMV; 805 806 Module *M = I->getModule(); 807 LLVMContext &Ctx = M->getContext(); 808 const DataLayout &DL = M->getDataLayout(); 809 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 810 811 PMV.ValueType = PMV.IntValueType = ValueType; 812 if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy()) 813 PMV.IntValueType = 814 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits()); 815 816 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 817 : ValueType; 818 if (PMV.ValueType == PMV.WordType) { 819 PMV.AlignedAddr = Addr; 820 PMV.AlignedAddrAlignment = AddrAlign; 821 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 822 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 823 return PMV; 824 } 825 826 PMV.AlignedAddrAlignment = Align(MinWordSize); 827 828 assert(ValueSize < MinWordSize); 829 830 PointerType *PtrTy = cast<PointerType>(Addr->getType()); 831 IntegerType *IntTy = DL.getIndexType(Ctx, PtrTy->getAddressSpace()); 832 Value *PtrLSB; 833 834 if (AddrAlign < MinWordSize) { 835 PMV.AlignedAddr = Builder.CreateIntrinsic( 836 Intrinsic::ptrmask, {PtrTy, IntTy}, 837 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr, 838 "AlignedAddr"); 839 840 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy); 841 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 842 } else { 843 // If the alignment is high enough, the LSB are known 0. 844 PMV.AlignedAddr = Addr; 845 PtrLSB = ConstantInt::getNullValue(IntTy); 846 } 847 848 if (DL.isLittleEndian()) { 849 // turn bytes into bits 850 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 851 } else { 852 // turn bytes into bits, and count from the other side. 853 PMV.ShiftAmt = Builder.CreateShl( 854 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 855 } 856 857 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 858 PMV.Mask = Builder.CreateShl( 859 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 860 "Mask"); 861 862 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 863 864 return PMV; 865 } 866 867 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord, 868 const PartwordMaskValues &PMV) { 869 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 870 if (PMV.WordType == PMV.ValueType) 871 return WideWord; 872 873 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 874 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted"); 875 return Builder.CreateBitCast(Trunc, PMV.ValueType); 876 } 877 878 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, 879 Value *Updated, const PartwordMaskValues &PMV) { 880 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 881 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 882 if (PMV.WordType == PMV.ValueType) 883 return Updated; 884 885 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType); 886 887 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 888 Value *Shift = 889 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 890 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 891 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 892 return Or; 893 } 894 895 /// Emit IR to implement a masked version of a given atomicrmw 896 /// operation. (That is, only the bits under the Mask should be 897 /// affected by the operation) 898 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 899 IRBuilderBase &Builder, Value *Loaded, 900 Value *Shifted_Inc, Value *Inc, 901 const PartwordMaskValues &PMV) { 902 // TODO: update to use 903 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 904 // to merge bits from two values without requiring PMV.Inv_Mask. 905 switch (Op) { 906 case AtomicRMWInst::Xchg: { 907 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 908 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 909 return FinalVal; 910 } 911 case AtomicRMWInst::Or: 912 case AtomicRMWInst::Xor: 913 case AtomicRMWInst::And: 914 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 915 case AtomicRMWInst::Add: 916 case AtomicRMWInst::Sub: 917 case AtomicRMWInst::Nand: { 918 // The other arithmetic ops need to be masked into place. 919 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 920 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 921 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 922 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 923 return FinalVal; 924 } 925 case AtomicRMWInst::Max: 926 case AtomicRMWInst::Min: 927 case AtomicRMWInst::UMax: 928 case AtomicRMWInst::UMin: 929 case AtomicRMWInst::FAdd: 930 case AtomicRMWInst::FSub: 931 case AtomicRMWInst::FMin: 932 case AtomicRMWInst::FMax: 933 case AtomicRMWInst::UIncWrap: 934 case AtomicRMWInst::UDecWrap: 935 case AtomicRMWInst::USubCond: 936 case AtomicRMWInst::USubSat: { 937 // Finally, other ops will operate on the full value, so truncate down to 938 // the original size, and expand out again after doing the 939 // operation. Bitcasts will be inserted for FP values. 940 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 941 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 942 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 943 return FinalVal; 944 } 945 default: 946 llvm_unreachable("Unknown atomic op"); 947 } 948 } 949 950 /// Expand a sub-word atomicrmw operation into an appropriate 951 /// word-sized operation. 952 /// 953 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 954 /// way as a typical atomicrmw expansion. The only difference here is 955 /// that the operation inside of the loop may operate upon only a 956 /// part of the value. 957 void AtomicExpandImpl::expandPartwordAtomicRMW( 958 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 959 // Widen And/Or/Xor and give the target another chance at expanding it. 960 AtomicRMWInst::BinOp Op = AI->getOperation(); 961 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 962 Op == AtomicRMWInst::And) { 963 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 964 return; 965 } 966 AtomicOrdering MemOpOrder = AI->getOrdering(); 967 SyncScope::ID SSID = AI->getSyncScopeID(); 968 969 ReplacementIRBuilder Builder(AI, *DL); 970 971 PartwordMaskValues PMV = 972 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 973 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 974 975 Value *ValOperand_Shifted = nullptr; 976 if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add || 977 Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) { 978 Value *ValOp = Builder.CreateBitCast(AI->getValOperand(), PMV.IntValueType); 979 ValOperand_Shifted = 980 Builder.CreateShl(Builder.CreateZExt(ValOp, PMV.WordType), PMV.ShiftAmt, 981 "ValOperand_Shifted"); 982 } 983 984 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { 985 return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted, 986 AI->getValOperand(), PMV); 987 }; 988 989 Value *OldResult; 990 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 991 OldResult = insertRMWCmpXchgLoop( 992 Builder, PMV.WordType, PMV.AlignedAddr, PMV.AlignedAddrAlignment, 993 MemOpOrder, SSID, PerformPartwordOp, createCmpXchgInstFun, AI); 994 } else { 995 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 996 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 997 PMV.AlignedAddrAlignment, MemOpOrder, 998 PerformPartwordOp); 999 } 1000 1001 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1002 AI->replaceAllUsesWith(FinalOldResult); 1003 AI->eraseFromParent(); 1004 } 1005 1006 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 1007 AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 1008 ReplacementIRBuilder Builder(AI, *DL); 1009 AtomicRMWInst::BinOp Op = AI->getOperation(); 1010 1011 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 1012 Op == AtomicRMWInst::And) && 1013 "Unable to widen operation"); 1014 1015 PartwordMaskValues PMV = 1016 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1017 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1018 1019 Value *ValOperand_Shifted = 1020 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 1021 PMV.ShiftAmt, "ValOperand_Shifted"); 1022 1023 Value *NewOperand; 1024 1025 if (Op == AtomicRMWInst::And) 1026 NewOperand = 1027 Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand"); 1028 else 1029 NewOperand = ValOperand_Shifted; 1030 1031 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( 1032 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment, 1033 AI->getOrdering(), AI->getSyncScopeID()); 1034 1035 copyMetadataForAtomic(*NewAI, *AI); 1036 1037 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 1038 AI->replaceAllUsesWith(FinalOldResult); 1039 AI->eraseFromParent(); 1040 return NewAI; 1041 } 1042 1043 bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 1044 // The basic idea here is that we're expanding a cmpxchg of a 1045 // smaller memory size up to a word-sized cmpxchg. To do this, we 1046 // need to add a retry-loop for strong cmpxchg, so that 1047 // modifications to other parts of the word don't cause a spurious 1048 // failure. 1049 1050 // This generates code like the following: 1051 // [[Setup mask values PMV.*]] 1052 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 1053 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 1054 // %InitLoaded = load i32* %addr 1055 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 1056 // br partword.cmpxchg.loop 1057 // partword.cmpxchg.loop: 1058 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 1059 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 1060 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 1061 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 1062 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 1063 // i32 %FullWord_NewVal success_ordering failure_ordering 1064 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 1065 // %Success = extractvalue { i32, i1 } %NewCI, 1 1066 // br i1 %Success, label %partword.cmpxchg.end, 1067 // label %partword.cmpxchg.failure 1068 // partword.cmpxchg.failure: 1069 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 1070 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 1071 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 1072 // label %partword.cmpxchg.end 1073 // partword.cmpxchg.end: 1074 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 1075 // %FinalOldVal = trunc i32 %tmp1 to i8 1076 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 1077 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 1078 1079 Value *Addr = CI->getPointerOperand(); 1080 Value *Cmp = CI->getCompareOperand(); 1081 Value *NewVal = CI->getNewValOperand(); 1082 1083 BasicBlock *BB = CI->getParent(); 1084 Function *F = BB->getParent(); 1085 ReplacementIRBuilder Builder(CI, *DL); 1086 LLVMContext &Ctx = Builder.getContext(); 1087 1088 BasicBlock *EndBB = 1089 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 1090 auto FailureBB = 1091 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 1092 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 1093 1094 // The split call above "helpfully" added a branch at the end of BB 1095 // (to the wrong place). 1096 std::prev(BB->end())->eraseFromParent(); 1097 Builder.SetInsertPoint(BB); 1098 1099 PartwordMaskValues PMV = 1100 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1101 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1102 1103 // Shift the incoming values over, into the right location in the word. 1104 Value *NewVal_Shifted = 1105 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 1106 Value *Cmp_Shifted = 1107 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 1108 1109 // Load the entire current word, and mask into place the expected and new 1110 // values 1111 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 1112 InitLoaded->setVolatile(CI->isVolatile()); 1113 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 1114 Builder.CreateBr(LoopBB); 1115 1116 // partword.cmpxchg.loop: 1117 Builder.SetInsertPoint(LoopBB); 1118 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 1119 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 1120 1121 // Mask/Or the expected and new values into place in the loaded word. 1122 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 1123 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 1124 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 1125 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 1126 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 1127 NewCI->setVolatile(CI->isVolatile()); 1128 // When we're building a strong cmpxchg, we need a loop, so you 1129 // might think we could use a weak cmpxchg inside. But, using strong 1130 // allows the below comparison for ShouldContinue, and we're 1131 // expecting the underlying cmpxchg to be a machine instruction, 1132 // which is strong anyways. 1133 NewCI->setWeak(CI->isWeak()); 1134 1135 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1136 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1137 1138 if (CI->isWeak()) 1139 Builder.CreateBr(EndBB); 1140 else 1141 Builder.CreateCondBr(Success, EndBB, FailureBB); 1142 1143 // partword.cmpxchg.failure: 1144 Builder.SetInsertPoint(FailureBB); 1145 // Upon failure, verify that the masked-out part of the loaded value 1146 // has been modified. If it didn't, abort the cmpxchg, since the 1147 // masked-in part must've. 1148 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1149 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1150 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1151 1152 // Add the second value to the phi from above 1153 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1154 1155 // partword.cmpxchg.end: 1156 Builder.SetInsertPoint(CI); 1157 1158 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1159 Value *Res = PoisonValue::get(CI->getType()); 1160 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1161 Res = Builder.CreateInsertValue(Res, Success, 1); 1162 1163 CI->replaceAllUsesWith(Res); 1164 CI->eraseFromParent(); 1165 return true; 1166 } 1167 1168 void AtomicExpandImpl::expandAtomicOpToLLSC( 1169 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1170 AtomicOrdering MemOpOrder, 1171 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1172 ReplacementIRBuilder Builder(I, *DL); 1173 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1174 MemOpOrder, PerformOp); 1175 1176 I->replaceAllUsesWith(Loaded); 1177 I->eraseFromParent(); 1178 } 1179 1180 void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1181 ReplacementIRBuilder Builder(AI, *DL); 1182 1183 PartwordMaskValues PMV = 1184 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1185 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1186 1187 // The value operand must be sign-extended for signed min/max so that the 1188 // target's signed comparison instructions can be used. Otherwise, just 1189 // zero-ext. 1190 Instruction::CastOps CastOp = Instruction::ZExt; 1191 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1192 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1193 CastOp = Instruction::SExt; 1194 1195 Value *ValOperand_Shifted = Builder.CreateShl( 1196 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1197 PMV.ShiftAmt, "ValOperand_Shifted"); 1198 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1199 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1200 AI->getOrdering()); 1201 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1202 AI->replaceAllUsesWith(FinalOldResult); 1203 AI->eraseFromParent(); 1204 } 1205 1206 void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic( 1207 AtomicCmpXchgInst *CI) { 1208 ReplacementIRBuilder Builder(CI, *DL); 1209 1210 PartwordMaskValues PMV = createMaskInstrs( 1211 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1212 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1213 1214 Value *CmpVal_Shifted = Builder.CreateShl( 1215 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1216 "CmpVal_Shifted"); 1217 Value *NewVal_Shifted = Builder.CreateShl( 1218 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1219 "NewVal_Shifted"); 1220 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1221 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1222 CI->getMergedOrdering()); 1223 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1224 Value *Res = PoisonValue::get(CI->getType()); 1225 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1226 Value *Success = Builder.CreateICmpEQ( 1227 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1228 Res = Builder.CreateInsertValue(Res, Success, 1); 1229 1230 CI->replaceAllUsesWith(Res); 1231 CI->eraseFromParent(); 1232 } 1233 1234 Value *AtomicExpandImpl::insertRMWLLSCLoop( 1235 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1236 AtomicOrdering MemOpOrder, 1237 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1238 LLVMContext &Ctx = Builder.getContext(); 1239 BasicBlock *BB = Builder.GetInsertBlock(); 1240 Function *F = BB->getParent(); 1241 1242 assert(AddrAlign >= 1243 F->getDataLayout().getTypeStoreSize(ResultTy) && 1244 "Expected at least natural alignment at this point."); 1245 1246 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1247 // 1248 // The standard expansion we produce is: 1249 // [...] 1250 // atomicrmw.start: 1251 // %loaded = @load.linked(%addr) 1252 // %new = some_op iN %loaded, %incr 1253 // %stored = @store_conditional(%new, %addr) 1254 // %try_again = icmp i32 ne %stored, 0 1255 // br i1 %try_again, label %loop, label %atomicrmw.end 1256 // atomicrmw.end: 1257 // [...] 1258 BasicBlock *ExitBB = 1259 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1260 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1261 1262 // The split call above "helpfully" added a branch at the end of BB (to the 1263 // wrong place). 1264 std::prev(BB->end())->eraseFromParent(); 1265 Builder.SetInsertPoint(BB); 1266 Builder.CreateBr(LoopBB); 1267 1268 // Start the main loop block now that we've taken care of the preliminaries. 1269 Builder.SetInsertPoint(LoopBB); 1270 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1271 1272 Value *NewVal = PerformOp(Builder, Loaded); 1273 1274 Value *StoreSuccess = 1275 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1276 Value *TryAgain = Builder.CreateICmpNE( 1277 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1278 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1279 1280 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1281 return Loaded; 1282 } 1283 1284 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1285 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1286 /// IR. As a migration step, we convert back to what use to be the standard 1287 /// way to represent a pointer cmpxchg so that we can update backends one by 1288 /// one. 1289 AtomicCmpXchgInst * 1290 AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1291 auto *M = CI->getModule(); 1292 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1293 M->getDataLayout()); 1294 1295 ReplacementIRBuilder Builder(CI, *DL); 1296 1297 Value *Addr = CI->getPointerOperand(); 1298 1299 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1300 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1301 1302 auto *NewCI = Builder.CreateAtomicCmpXchg( 1303 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1304 CI->getFailureOrdering(), CI->getSyncScopeID()); 1305 NewCI->setVolatile(CI->isVolatile()); 1306 NewCI->setWeak(CI->isWeak()); 1307 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1308 1309 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1310 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1311 1312 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1313 1314 Value *Res = PoisonValue::get(CI->getType()); 1315 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1316 Res = Builder.CreateInsertValue(Res, Succ, 1); 1317 1318 CI->replaceAllUsesWith(Res); 1319 CI->eraseFromParent(); 1320 return NewCI; 1321 } 1322 1323 bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1324 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1325 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1326 Value *Addr = CI->getPointerOperand(); 1327 BasicBlock *BB = CI->getParent(); 1328 Function *F = BB->getParent(); 1329 LLVMContext &Ctx = F->getContext(); 1330 // If shouldInsertFencesForAtomic() returns true, then the target does not 1331 // want to deal with memory orders, and emitLeading/TrailingFence should take 1332 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1333 // should preserve the ordering. 1334 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1335 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1336 ? AtomicOrdering::Monotonic 1337 : CI->getMergedOrdering(); 1338 1339 // In implementations which use a barrier to achieve release semantics, we can 1340 // delay emitting this barrier until we know a store is actually going to be 1341 // attempted. The cost of this delay is that we need 2 copies of the block 1342 // emitting the load-linked, affecting code size. 1343 // 1344 // Ideally, this logic would be unconditional except for the minsize check 1345 // since in other cases the extra blocks naturally collapse down to the 1346 // minimal loop. Unfortunately, this puts too much stress on later 1347 // optimisations so we avoid emitting the extra logic in those cases too. 1348 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1349 SuccessOrder != AtomicOrdering::Monotonic && 1350 SuccessOrder != AtomicOrdering::Acquire && 1351 !F->hasMinSize(); 1352 1353 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1354 // do it even on minsize. 1355 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1356 1357 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1358 // 1359 // The full expansion we produce is: 1360 // [...] 1361 // %aligned.addr = ... 1362 // cmpxchg.start: 1363 // %unreleasedload = @load.linked(%aligned.addr) 1364 // %unreleasedload.extract = extract value from %unreleasedload 1365 // %should_store = icmp eq %unreleasedload.extract, %desired 1366 // br i1 %should_store, label %cmpxchg.releasingstore, 1367 // label %cmpxchg.nostore 1368 // cmpxchg.releasingstore: 1369 // fence? 1370 // br label cmpxchg.trystore 1371 // cmpxchg.trystore: 1372 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1373 // [%releasedload, %cmpxchg.releasedload] 1374 // %updated.new = insert %new into %loaded.trystore 1375 // %stored = @store_conditional(%updated.new, %aligned.addr) 1376 // %success = icmp eq i32 %stored, 0 1377 // br i1 %success, label %cmpxchg.success, 1378 // label %cmpxchg.releasedload/%cmpxchg.failure 1379 // cmpxchg.releasedload: 1380 // %releasedload = @load.linked(%aligned.addr) 1381 // %releasedload.extract = extract value from %releasedload 1382 // %should_store = icmp eq %releasedload.extract, %desired 1383 // br i1 %should_store, label %cmpxchg.trystore, 1384 // label %cmpxchg.failure 1385 // cmpxchg.success: 1386 // fence? 1387 // br label %cmpxchg.end 1388 // cmpxchg.nostore: 1389 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1390 // [%releasedload, 1391 // %cmpxchg.releasedload/%cmpxchg.trystore] 1392 // @load_linked_fail_balance()? 1393 // br label %cmpxchg.failure 1394 // cmpxchg.failure: 1395 // fence? 1396 // br label %cmpxchg.end 1397 // cmpxchg.end: 1398 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1399 // [%loaded.trystore, %cmpxchg.trystore] 1400 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1401 // %loaded = extract value from %loaded.exit 1402 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1403 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1404 // [...] 1405 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1406 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1407 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1408 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1409 auto ReleasedLoadBB = 1410 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1411 auto TryStoreBB = 1412 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1413 auto ReleasingStoreBB = 1414 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1415 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1416 1417 ReplacementIRBuilder Builder(CI, *DL); 1418 1419 // The split call above "helpfully" added a branch at the end of BB (to the 1420 // wrong place), but we might want a fence too. It's easiest to just remove 1421 // the branch entirely. 1422 std::prev(BB->end())->eraseFromParent(); 1423 Builder.SetInsertPoint(BB); 1424 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1425 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1426 1427 PartwordMaskValues PMV = 1428 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1429 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1430 Builder.CreateBr(StartBB); 1431 1432 // Start the main loop block now that we've taken care of the preliminaries. 1433 Builder.SetInsertPoint(StartBB); 1434 Value *UnreleasedLoad = 1435 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1436 Value *UnreleasedLoadExtract = 1437 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1438 Value *ShouldStore = Builder.CreateICmpEQ( 1439 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1440 1441 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1442 // jump straight past that fence instruction (if it exists). 1443 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1444 1445 Builder.SetInsertPoint(ReleasingStoreBB); 1446 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1447 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1448 Builder.CreateBr(TryStoreBB); 1449 1450 Builder.SetInsertPoint(TryStoreBB); 1451 PHINode *LoadedTryStore = 1452 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1453 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1454 Value *NewValueInsert = 1455 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1456 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1457 PMV.AlignedAddr, MemOpOrder); 1458 StoreSuccess = Builder.CreateICmpEQ( 1459 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1460 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1461 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1462 CI->isWeak() ? FailureBB : RetryBB); 1463 1464 Builder.SetInsertPoint(ReleasedLoadBB); 1465 Value *SecondLoad; 1466 if (HasReleasedLoadBB) { 1467 SecondLoad = 1468 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1469 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1470 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1471 CI->getCompareOperand(), "should_store"); 1472 1473 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1474 // jump straight past that fence instruction (if it exists). 1475 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1476 // Update PHI node in TryStoreBB. 1477 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1478 } else 1479 Builder.CreateUnreachable(); 1480 1481 // Make sure later instructions don't get reordered with a fence if 1482 // necessary. 1483 Builder.SetInsertPoint(SuccessBB); 1484 if (ShouldInsertFencesForAtomic || 1485 TLI->shouldInsertTrailingFenceForAtomicStore(CI)) 1486 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1487 Builder.CreateBr(ExitBB); 1488 1489 Builder.SetInsertPoint(NoStoreBB); 1490 PHINode *LoadedNoStore = 1491 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1492 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1493 if (HasReleasedLoadBB) 1494 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1495 1496 // In the failing case, where we don't execute the store-conditional, the 1497 // target might want to balance out the load-linked with a dedicated 1498 // instruction (e.g., on ARM, clearing the exclusive monitor). 1499 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1500 Builder.CreateBr(FailureBB); 1501 1502 Builder.SetInsertPoint(FailureBB); 1503 PHINode *LoadedFailure = 1504 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1505 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1506 if (CI->isWeak()) 1507 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1508 if (ShouldInsertFencesForAtomic) 1509 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1510 Builder.CreateBr(ExitBB); 1511 1512 // Finally, we have control-flow based knowledge of whether the cmpxchg 1513 // succeeded or not. We expose this to later passes by converting any 1514 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1515 // PHI. 1516 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1517 PHINode *LoadedExit = 1518 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1519 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1520 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1521 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1522 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1523 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1524 1525 // This is the "exit value" from the cmpxchg expansion. It may be of 1526 // a type wider than the one in the cmpxchg instruction. 1527 Value *LoadedFull = LoadedExit; 1528 1529 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1530 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1531 1532 // Look for any users of the cmpxchg that are just comparing the loaded value 1533 // against the desired one, and replace them with the CFG-derived version. 1534 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1535 for (auto *User : CI->users()) { 1536 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1537 if (!EV) 1538 continue; 1539 1540 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1541 "weird extraction from { iN, i1 }"); 1542 1543 if (EV->getIndices()[0] == 0) 1544 EV->replaceAllUsesWith(Loaded); 1545 else 1546 EV->replaceAllUsesWith(Success); 1547 1548 PrunedInsts.push_back(EV); 1549 } 1550 1551 // We can remove the instructions now we're no longer iterating through them. 1552 for (auto *EV : PrunedInsts) 1553 EV->eraseFromParent(); 1554 1555 if (!CI->use_empty()) { 1556 // Some use of the full struct return that we don't understand has happened, 1557 // so we've got to reconstruct it properly. 1558 Value *Res; 1559 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0); 1560 Res = Builder.CreateInsertValue(Res, Success, 1); 1561 1562 CI->replaceAllUsesWith(Res); 1563 } 1564 1565 CI->eraseFromParent(); 1566 return true; 1567 } 1568 1569 bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) { 1570 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1571 if (!C) 1572 return false; 1573 1574 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1575 switch (Op) { 1576 case AtomicRMWInst::Add: 1577 case AtomicRMWInst::Sub: 1578 case AtomicRMWInst::Or: 1579 case AtomicRMWInst::Xor: 1580 return C->isZero(); 1581 case AtomicRMWInst::And: 1582 return C->isMinusOne(); 1583 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1584 default: 1585 return false; 1586 } 1587 } 1588 1589 bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1590 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1591 tryExpandAtomicLoad(ResultingLoad); 1592 return true; 1593 } 1594 return false; 1595 } 1596 1597 Value *AtomicExpandImpl::insertRMWCmpXchgLoop( 1598 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1599 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1600 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 1601 CreateCmpXchgInstFun CreateCmpXchg, Instruction *MetadataSrc) { 1602 LLVMContext &Ctx = Builder.getContext(); 1603 BasicBlock *BB = Builder.GetInsertBlock(); 1604 Function *F = BB->getParent(); 1605 1606 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1607 // 1608 // The standard expansion we produce is: 1609 // [...] 1610 // %init_loaded = load atomic iN* %addr 1611 // br label %loop 1612 // loop: 1613 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1614 // %new = some_op iN %loaded, %incr 1615 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1616 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1617 // %success = extractvalue { iN, i1 } %pair, 1 1618 // br i1 %success, label %atomicrmw.end, label %loop 1619 // atomicrmw.end: 1620 // [...] 1621 BasicBlock *ExitBB = 1622 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1623 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1624 1625 // The split call above "helpfully" added a branch at the end of BB (to the 1626 // wrong place), but we want a load. It's easiest to just remove 1627 // the branch entirely. 1628 std::prev(BB->end())->eraseFromParent(); 1629 Builder.SetInsertPoint(BB); 1630 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1631 Builder.CreateBr(LoopBB); 1632 1633 // Start the main loop block now that we've taken care of the preliminaries. 1634 Builder.SetInsertPoint(LoopBB); 1635 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1636 Loaded->addIncoming(InitLoaded, BB); 1637 1638 Value *NewVal = PerformOp(Builder, Loaded); 1639 1640 Value *NewLoaded = nullptr; 1641 Value *Success = nullptr; 1642 1643 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1644 MemOpOrder == AtomicOrdering::Unordered 1645 ? AtomicOrdering::Monotonic 1646 : MemOpOrder, 1647 SSID, Success, NewLoaded, MetadataSrc); 1648 assert(Success && NewLoaded); 1649 1650 Loaded->addIncoming(NewLoaded, LoopBB); 1651 1652 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1653 1654 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1655 return NewLoaded; 1656 } 1657 1658 bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1659 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1660 unsigned ValueSize = getAtomicOpSize(CI); 1661 1662 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1663 default: 1664 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1665 case TargetLoweringBase::AtomicExpansionKind::None: 1666 if (ValueSize < MinCASSize) 1667 return expandPartwordCmpXchg(CI); 1668 return false; 1669 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1670 return expandAtomicCmpXchg(CI); 1671 } 1672 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1673 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1674 return true; 1675 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1676 return lowerAtomicCmpXchgInst(CI); 1677 } 1678 } 1679 1680 // Note: This function is exposed externally by AtomicExpandUtils.h 1681 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1682 CreateCmpXchgInstFun CreateCmpXchg) { 1683 ReplacementIRBuilder Builder(AI, AI->getDataLayout()); 1684 Builder.setIsFPConstrained( 1685 AI->getFunction()->hasFnAttribute(Attribute::StrictFP)); 1686 1687 // FIXME: If FP exceptions are observable, we should force them off for the 1688 // loop for the FP atomics. 1689 Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop( 1690 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1691 AI->getOrdering(), AI->getSyncScopeID(), 1692 [&](IRBuilderBase &Builder, Value *Loaded) { 1693 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1694 AI->getValOperand()); 1695 }, 1696 CreateCmpXchg, /*MetadataSrc=*/AI); 1697 1698 AI->replaceAllUsesWith(Loaded); 1699 AI->eraseFromParent(); 1700 return true; 1701 } 1702 1703 // In order to use one of the sized library calls such as 1704 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1705 // must be one of the potentially-specialized sizes, and the value 1706 // type must actually exist in C on the target (otherwise, the 1707 // function wouldn't actually be defined.) 1708 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1709 const DataLayout &DL) { 1710 // TODO: "LargestSize" is an approximation for "largest type that 1711 // you can express in C". It seems to be the case that int128 is 1712 // supported on all 64-bit platforms, otherwise only up to 64-bit 1713 // integers are supported. If we get this wrong, then we'll try to 1714 // call a sized libcall that doesn't actually exist. There should 1715 // really be some more reliable way in LLVM of determining integer 1716 // sizes which are valid in the target's C ABI... 1717 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1718 return Alignment >= Size && 1719 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1720 Size <= LargestSize; 1721 } 1722 1723 void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) { 1724 static const RTLIB::Libcall Libcalls[6] = { 1725 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1726 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1727 unsigned Size = getAtomicOpSize(I); 1728 1729 bool expanded = expandAtomicOpToLibcall( 1730 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1731 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1732 if (!expanded) 1733 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1734 } 1735 1736 void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) { 1737 static const RTLIB::Libcall Libcalls[6] = { 1738 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1739 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1740 unsigned Size = getAtomicOpSize(I); 1741 1742 bool expanded = expandAtomicOpToLibcall( 1743 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1744 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1745 if (!expanded) 1746 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1747 } 1748 1749 void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1750 static const RTLIB::Libcall Libcalls[6] = { 1751 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1752 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1753 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1754 unsigned Size = getAtomicOpSize(I); 1755 1756 bool expanded = expandAtomicOpToLibcall( 1757 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1758 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1759 Libcalls); 1760 if (!expanded) 1761 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1762 } 1763 1764 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1765 static const RTLIB::Libcall LibcallsXchg[6] = { 1766 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1767 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1768 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1769 static const RTLIB::Libcall LibcallsAdd[6] = { 1770 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1771 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1772 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1773 static const RTLIB::Libcall LibcallsSub[6] = { 1774 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1775 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1776 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1777 static const RTLIB::Libcall LibcallsAnd[6] = { 1778 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1779 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1780 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1781 static const RTLIB::Libcall LibcallsOr[6] = { 1782 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1783 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1784 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1785 static const RTLIB::Libcall LibcallsXor[6] = { 1786 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1787 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1788 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1789 static const RTLIB::Libcall LibcallsNand[6] = { 1790 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1791 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1792 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1793 1794 switch (Op) { 1795 case AtomicRMWInst::BAD_BINOP: 1796 llvm_unreachable("Should not have BAD_BINOP."); 1797 case AtomicRMWInst::Xchg: 1798 return ArrayRef(LibcallsXchg); 1799 case AtomicRMWInst::Add: 1800 return ArrayRef(LibcallsAdd); 1801 case AtomicRMWInst::Sub: 1802 return ArrayRef(LibcallsSub); 1803 case AtomicRMWInst::And: 1804 return ArrayRef(LibcallsAnd); 1805 case AtomicRMWInst::Or: 1806 return ArrayRef(LibcallsOr); 1807 case AtomicRMWInst::Xor: 1808 return ArrayRef(LibcallsXor); 1809 case AtomicRMWInst::Nand: 1810 return ArrayRef(LibcallsNand); 1811 case AtomicRMWInst::Max: 1812 case AtomicRMWInst::Min: 1813 case AtomicRMWInst::UMax: 1814 case AtomicRMWInst::UMin: 1815 case AtomicRMWInst::FMax: 1816 case AtomicRMWInst::FMin: 1817 case AtomicRMWInst::FAdd: 1818 case AtomicRMWInst::FSub: 1819 case AtomicRMWInst::UIncWrap: 1820 case AtomicRMWInst::UDecWrap: 1821 case AtomicRMWInst::USubCond: 1822 case AtomicRMWInst::USubSat: 1823 // No atomic libcalls are available for these. 1824 return {}; 1825 } 1826 llvm_unreachable("Unexpected AtomicRMW operation."); 1827 } 1828 1829 void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1830 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1831 1832 unsigned Size = getAtomicOpSize(I); 1833 1834 bool Success = false; 1835 if (!Libcalls.empty()) 1836 Success = expandAtomicOpToLibcall( 1837 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1838 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1839 1840 // The expansion failed: either there were no libcalls at all for 1841 // the operation (min/max), or there were only size-specialized 1842 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1843 // CAS libcall, via a CAS loop, instead. 1844 if (!Success) { 1845 expandAtomicRMWToCmpXchg( 1846 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, 1847 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1848 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded, 1849 Instruction *MetadataSrc) { 1850 // Create the CAS instruction normally... 1851 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1852 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1853 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1854 if (MetadataSrc) 1855 copyMetadataForAtomic(*Pair, *MetadataSrc); 1856 1857 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1858 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1859 1860 // ...and then expand the CAS into a libcall. 1861 expandAtomicCASToLibcall(Pair); 1862 }); 1863 } 1864 } 1865 1866 // A helper routine for the above expandAtomic*ToLibcall functions. 1867 // 1868 // 'Libcalls' contains an array of enum values for the particular 1869 // ATOMIC libcalls to be emitted. All of the other arguments besides 1870 // 'I' are extracted from the Instruction subclass by the 1871 // caller. Depending on the particular call, some will be null. 1872 bool AtomicExpandImpl::expandAtomicOpToLibcall( 1873 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1874 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1875 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1876 assert(Libcalls.size() == 6); 1877 1878 LLVMContext &Ctx = I->getContext(); 1879 Module *M = I->getModule(); 1880 const DataLayout &DL = M->getDataLayout(); 1881 IRBuilder<> Builder(I); 1882 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1883 1884 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1885 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1886 1887 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1888 1889 // TODO: the "order" argument type is "int", not int32. So 1890 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1891 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1892 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1893 Constant *OrderingVal = 1894 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1895 Constant *Ordering2Val = nullptr; 1896 if (CASExpected) { 1897 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1898 Ordering2Val = 1899 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1900 } 1901 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1902 1903 RTLIB::Libcall RTLibType; 1904 if (UseSizedLibcall) { 1905 switch (Size) { 1906 case 1: 1907 RTLibType = Libcalls[1]; 1908 break; 1909 case 2: 1910 RTLibType = Libcalls[2]; 1911 break; 1912 case 4: 1913 RTLibType = Libcalls[3]; 1914 break; 1915 case 8: 1916 RTLibType = Libcalls[4]; 1917 break; 1918 case 16: 1919 RTLibType = Libcalls[5]; 1920 break; 1921 } 1922 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1923 RTLibType = Libcalls[0]; 1924 } else { 1925 // Can't use sized function, and there's no generic for this 1926 // operation, so give up. 1927 return false; 1928 } 1929 1930 if (!TLI->getLibcallName(RTLibType)) { 1931 // This target does not implement the requested atomic libcall so give up. 1932 return false; 1933 } 1934 1935 // Build up the function call. There's two kinds. First, the sized 1936 // variants. These calls are going to be one of the following (with 1937 // N=1,2,4,8,16): 1938 // iN __atomic_load_N(iN *ptr, int ordering) 1939 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1940 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1941 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1942 // int success_order, int failure_order) 1943 // 1944 // Note that these functions can be used for non-integer atomic 1945 // operations, the values just need to be bitcast to integers on the 1946 // way in and out. 1947 // 1948 // And, then, the generic variants. They look like the following: 1949 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1950 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1951 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1952 // int ordering) 1953 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1954 // void *desired, int success_order, 1955 // int failure_order) 1956 // 1957 // The different signatures are built up depending on the 1958 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1959 // variables. 1960 1961 AllocaInst *AllocaCASExpected = nullptr; 1962 AllocaInst *AllocaValue = nullptr; 1963 AllocaInst *AllocaResult = nullptr; 1964 1965 Type *ResultTy; 1966 SmallVector<Value *, 6> Args; 1967 AttributeList Attr; 1968 1969 // 'size' argument. 1970 if (!UseSizedLibcall) { 1971 // Note, getIntPtrType is assumed equivalent to size_t. 1972 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1973 } 1974 1975 // 'ptr' argument. 1976 // note: This assumes all address spaces share a common libfunc 1977 // implementation and that addresses are convertable. For systems without 1978 // that property, we'd need to extend this mechanism to support AS-specific 1979 // families of atomic intrinsics. 1980 Value *PtrVal = PointerOperand; 1981 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx)); 1982 Args.push_back(PtrVal); 1983 1984 // 'expected' argument, if present. 1985 if (CASExpected) { 1986 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1987 AllocaCASExpected->setAlignment(AllocaAlignment); 1988 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64); 1989 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1990 Args.push_back(AllocaCASExpected); 1991 } 1992 1993 // 'val' argument ('desired' for cas), if present. 1994 if (ValueOperand) { 1995 if (UseSizedLibcall) { 1996 Value *IntValue = 1997 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1998 Args.push_back(IntValue); 1999 } else { 2000 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 2001 AllocaValue->setAlignment(AllocaAlignment); 2002 Builder.CreateLifetimeStart(AllocaValue, SizeVal64); 2003 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 2004 Args.push_back(AllocaValue); 2005 } 2006 } 2007 2008 // 'ret' argument. 2009 if (!CASExpected && HasResult && !UseSizedLibcall) { 2010 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 2011 AllocaResult->setAlignment(AllocaAlignment); 2012 Builder.CreateLifetimeStart(AllocaResult, SizeVal64); 2013 Args.push_back(AllocaResult); 2014 } 2015 2016 // 'ordering' ('success_order' for cas) argument. 2017 Args.push_back(OrderingVal); 2018 2019 // 'failure_order' argument, if present. 2020 if (Ordering2Val) 2021 Args.push_back(Ordering2Val); 2022 2023 // Now, the return type. 2024 if (CASExpected) { 2025 ResultTy = Type::getInt1Ty(Ctx); 2026 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 2027 } else if (HasResult && UseSizedLibcall) 2028 ResultTy = SizedIntTy; 2029 else 2030 ResultTy = Type::getVoidTy(Ctx); 2031 2032 // Done with setting up arguments and return types, create the call: 2033 SmallVector<Type *, 6> ArgTys; 2034 for (Value *Arg : Args) 2035 ArgTys.push_back(Arg->getType()); 2036 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 2037 FunctionCallee LibcallFn = 2038 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 2039 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 2040 Call->setAttributes(Attr); 2041 Value *Result = Call; 2042 2043 // And then, extract the results... 2044 if (ValueOperand && !UseSizedLibcall) 2045 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64); 2046 2047 if (CASExpected) { 2048 // The final result from the CAS is {load of 'expected' alloca, bool result 2049 // from call} 2050 Type *FinalResultTy = I->getType(); 2051 Value *V = PoisonValue::get(FinalResultTy); 2052 Value *ExpectedOut = Builder.CreateAlignedLoad( 2053 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 2054 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64); 2055 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 2056 V = Builder.CreateInsertValue(V, Result, 1); 2057 I->replaceAllUsesWith(V); 2058 } else if (HasResult) { 2059 Value *V; 2060 if (UseSizedLibcall) 2061 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 2062 else { 2063 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 2064 AllocaAlignment); 2065 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64); 2066 } 2067 I->replaceAllUsesWith(V); 2068 } 2069 I->eraseFromParent(); 2070 return true; 2071 } 2072