1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstSimplifyFolder.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/CodeGen/AtomicExpand.h" 23 #include "llvm/CodeGen/AtomicExpandUtils.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/User.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Target/TargetMachine.h" 52 #include "llvm/Transforms/Utils/LowerAtomic.h" 53 #include <cassert> 54 #include <cstdint> 55 #include <iterator> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "atomic-expand" 60 61 namespace { 62 63 class AtomicExpandImpl { 64 const TargetLowering *TLI = nullptr; 65 const DataLayout *DL = nullptr; 66 67 private: 68 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 69 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 70 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 71 bool tryExpandAtomicLoad(LoadInst *LI); 72 bool expandAtomicLoadToLL(LoadInst *LI); 73 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 74 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 75 bool tryExpandAtomicStore(StoreInst *SI); 76 void expandAtomicStore(StoreInst *SI); 77 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 78 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 79 Value * 80 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, 81 Align AddrAlign, AtomicOrdering MemOpOrder, 82 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 83 void expandAtomicOpToLLSC( 84 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 85 AtomicOrdering MemOpOrder, 86 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 87 void expandPartwordAtomicRMW( 88 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 89 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 90 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 91 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 92 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 93 94 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 95 static Value *insertRMWCmpXchgLoop( 96 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 97 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 98 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 99 CreateCmpXchgInstFun CreateCmpXchg, Instruction *MetadataSrc); 100 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 101 102 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 103 bool isIdempotentRMW(AtomicRMWInst *RMWI); 104 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 105 106 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 107 Value *PointerOperand, Value *ValueOperand, 108 Value *CASExpected, AtomicOrdering Ordering, 109 AtomicOrdering Ordering2, 110 ArrayRef<RTLIB::Libcall> Libcalls); 111 void expandAtomicLoadToLibcall(LoadInst *LI); 112 void expandAtomicStoreToLibcall(StoreInst *LI); 113 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 114 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 115 116 friend bool 117 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 118 CreateCmpXchgInstFun CreateCmpXchg); 119 120 bool processAtomicInstr(Instruction *I); 121 122 public: 123 bool run(Function &F, const TargetMachine *TM); 124 }; 125 126 class AtomicExpandLegacy : public FunctionPass { 127 public: 128 static char ID; // Pass identification, replacement for typeid 129 130 AtomicExpandLegacy() : FunctionPass(ID) { 131 initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry()); 132 } 133 134 bool runOnFunction(Function &F) override; 135 }; 136 137 // IRBuilder to be used for replacement atomic instructions. 138 struct ReplacementIRBuilder 139 : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> { 140 MDNode *MMRAMD = nullptr; 141 142 // Preserves the DebugLoc from I, and preserves still valid metadata. 143 // Enable StrictFP builder mode when appropriate. 144 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) 145 : IRBuilder(I->getContext(), InstSimplifyFolder(DL), 146 IRBuilderCallbackInserter( 147 [this](Instruction *I) { addMMRAMD(I); })) { 148 SetInsertPoint(I); 149 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections}); 150 if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP)) 151 this->setIsFPConstrained(true); 152 153 MMRAMD = I->getMetadata(LLVMContext::MD_mmra); 154 } 155 156 void addMMRAMD(Instruction *I) { 157 if (canInstructionHaveMMRAs(*I)) 158 I->setMetadata(LLVMContext::MD_mmra, MMRAMD); 159 } 160 }; 161 162 } // end anonymous namespace 163 164 char AtomicExpandLegacy::ID = 0; 165 166 char &llvm::AtomicExpandID = AtomicExpandLegacy::ID; 167 168 INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE, 169 "Expand Atomic instructions", false, false) 170 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 171 INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE, 172 "Expand Atomic instructions", false, false) 173 174 // Helper functions to retrieve the size of atomic instructions. 175 static unsigned getAtomicOpSize(LoadInst *LI) { 176 const DataLayout &DL = LI->getDataLayout(); 177 return DL.getTypeStoreSize(LI->getType()); 178 } 179 180 static unsigned getAtomicOpSize(StoreInst *SI) { 181 const DataLayout &DL = SI->getDataLayout(); 182 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 183 } 184 185 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 186 const DataLayout &DL = RMWI->getDataLayout(); 187 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 188 } 189 190 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 191 const DataLayout &DL = CASI->getDataLayout(); 192 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 193 } 194 195 /// Copy metadata that's safe to preserve when widening atomics. 196 static void copyMetadataForAtomic(Instruction &Dest, 197 const Instruction &Source) { 198 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 199 Source.getAllMetadata(MD); 200 LLVMContext &Ctx = Dest.getContext(); 201 MDBuilder MDB(Ctx); 202 203 for (auto [ID, N] : MD) { 204 switch (ID) { 205 case LLVMContext::MD_dbg: 206 case LLVMContext::MD_tbaa: 207 case LLVMContext::MD_tbaa_struct: 208 case LLVMContext::MD_alias_scope: 209 case LLVMContext::MD_noalias: 210 case LLVMContext::MD_noalias_addrspace: 211 case LLVMContext::MD_access_group: 212 case LLVMContext::MD_mmra: 213 Dest.setMetadata(ID, N); 214 break; 215 default: 216 if (ID == Ctx.getMDKindID("amdgpu.no.remote.memory")) 217 Dest.setMetadata(ID, N); 218 else if (ID == Ctx.getMDKindID("amdgpu.no.fine.grained.memory")) 219 Dest.setMetadata(ID, N); 220 221 // Losing amdgpu.ignore.denormal.mode, but it doesn't matter for current 222 // uses. 223 break; 224 } 225 } 226 } 227 228 // Determine if a particular atomic operation has a supported size, 229 // and is of appropriate alignment, to be passed through for target 230 // lowering. (Versus turning into a __atomic libcall) 231 template <typename Inst> 232 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 233 unsigned Size = getAtomicOpSize(I); 234 Align Alignment = I->getAlign(); 235 return Alignment >= Size && 236 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 237 } 238 239 bool AtomicExpandImpl::processAtomicInstr(Instruction *I) { 240 auto *LI = dyn_cast<LoadInst>(I); 241 auto *SI = dyn_cast<StoreInst>(I); 242 auto *RMWI = dyn_cast<AtomicRMWInst>(I); 243 auto *CASI = dyn_cast<AtomicCmpXchgInst>(I); 244 245 bool MadeChange = false; 246 247 // If the Size/Alignment is not supported, replace with a libcall. 248 if (LI) { 249 if (!LI->isAtomic()) 250 return false; 251 252 if (!atomicSizeSupported(TLI, LI)) { 253 expandAtomicLoadToLibcall(LI); 254 return true; 255 } 256 257 if (TLI->shouldCastAtomicLoadInIR(LI) == 258 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 259 I = LI = convertAtomicLoadToIntegerType(LI); 260 MadeChange = true; 261 } 262 } else if (SI) { 263 if (!SI->isAtomic()) 264 return false; 265 266 if (!atomicSizeSupported(TLI, SI)) { 267 expandAtomicStoreToLibcall(SI); 268 return true; 269 } 270 271 if (TLI->shouldCastAtomicStoreInIR(SI) == 272 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 273 I = SI = convertAtomicStoreToIntegerType(SI); 274 MadeChange = true; 275 } 276 } else if (RMWI) { 277 if (!atomicSizeSupported(TLI, RMWI)) { 278 expandAtomicRMWToLibcall(RMWI); 279 return true; 280 } 281 282 if (TLI->shouldCastAtomicRMWIInIR(RMWI) == 283 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 284 I = RMWI = convertAtomicXchgToIntegerType(RMWI); 285 MadeChange = true; 286 } 287 } else if (CASI) { 288 if (!atomicSizeSupported(TLI, CASI)) { 289 expandAtomicCASToLibcall(CASI); 290 return true; 291 } 292 293 // TODO: when we're ready to make the change at the IR level, we can 294 // extend convertCmpXchgToInteger for floating point too. 295 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 296 // TODO: add a TLI hook to control this so that each target can 297 // convert to lowering the original type one at a time. 298 I = CASI = convertCmpXchgToIntegerType(CASI); 299 MadeChange = true; 300 } 301 } else 302 return false; 303 304 if (TLI->shouldInsertFencesForAtomic(I)) { 305 auto FenceOrdering = AtomicOrdering::Monotonic; 306 if (LI && isAcquireOrStronger(LI->getOrdering())) { 307 FenceOrdering = LI->getOrdering(); 308 LI->setOrdering(AtomicOrdering::Monotonic); 309 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 310 FenceOrdering = SI->getOrdering(); 311 SI->setOrdering(AtomicOrdering::Monotonic); 312 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 313 isAcquireOrStronger(RMWI->getOrdering()))) { 314 FenceOrdering = RMWI->getOrdering(); 315 RMWI->setOrdering(AtomicOrdering::Monotonic); 316 } else if (CASI && 317 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 318 TargetLoweringBase::AtomicExpansionKind::None && 319 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 320 isAcquireOrStronger(CASI->getSuccessOrdering()) || 321 isAcquireOrStronger(CASI->getFailureOrdering()))) { 322 // If a compare and swap is lowered to LL/SC, we can do smarter fence 323 // insertion, with a stronger one on the success path than on the 324 // failure path. As a result, fence insertion is directly done by 325 // expandAtomicCmpXchg in that case. 326 FenceOrdering = CASI->getMergedOrdering(); 327 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 328 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 329 } 330 331 if (FenceOrdering != AtomicOrdering::Monotonic) { 332 MadeChange |= bracketInstWithFences(I, FenceOrdering); 333 } 334 } else if (I->hasAtomicStore() && 335 TLI->shouldInsertTrailingFenceForAtomicStore(I)) { 336 auto FenceOrdering = AtomicOrdering::Monotonic; 337 if (SI) 338 FenceOrdering = SI->getOrdering(); 339 else if (RMWI) 340 FenceOrdering = RMWI->getOrdering(); 341 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) != 342 TargetLoweringBase::AtomicExpansionKind::LLSC) 343 // LLSC is handled in expandAtomicCmpXchg(). 344 FenceOrdering = CASI->getSuccessOrdering(); 345 346 IRBuilder Builder(I); 347 if (auto TrailingFence = 348 TLI->emitTrailingFence(Builder, I, FenceOrdering)) { 349 TrailingFence->moveAfter(I); 350 MadeChange = true; 351 } 352 } 353 354 if (LI) 355 MadeChange |= tryExpandAtomicLoad(LI); 356 else if (SI) 357 MadeChange |= tryExpandAtomicStore(SI); 358 else if (RMWI) { 359 // There are two different ways of expanding RMW instructions: 360 // - into a load if it is idempotent 361 // - into a Cmpxchg/LL-SC loop otherwise 362 // we try them in that order. 363 364 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 365 MadeChange = true; 366 367 } else { 368 MadeChange |= tryExpandAtomicRMW(RMWI); 369 } 370 } else if (CASI) 371 MadeChange |= tryExpandAtomicCmpXchg(CASI); 372 373 return MadeChange; 374 } 375 376 bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) { 377 const auto *Subtarget = TM->getSubtargetImpl(F); 378 if (!Subtarget->enableAtomicExpand()) 379 return false; 380 TLI = Subtarget->getTargetLowering(); 381 DL = &F.getDataLayout(); 382 383 bool MadeChange = false; 384 385 for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { 386 BasicBlock *BB = &*BBI; 387 388 BasicBlock::reverse_iterator Next; 389 390 for (BasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend(); I != E; 391 I = Next) { 392 Instruction &Inst = *I; 393 Next = std::next(I); 394 395 if (processAtomicInstr(&Inst)) { 396 MadeChange = true; 397 398 // New blocks may have been inserted. 399 BBE = F.end(); 400 } 401 } 402 } 403 404 return MadeChange; 405 } 406 407 bool AtomicExpandLegacy::runOnFunction(Function &F) { 408 409 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 410 if (!TPC) 411 return false; 412 auto *TM = &TPC->getTM<TargetMachine>(); 413 AtomicExpandImpl AE; 414 return AE.run(F, TM); 415 } 416 417 FunctionPass *llvm::createAtomicExpandLegacyPass() { 418 return new AtomicExpandLegacy(); 419 } 420 421 PreservedAnalyses AtomicExpandPass::run(Function &F, 422 FunctionAnalysisManager &AM) { 423 AtomicExpandImpl AE; 424 425 bool Changed = AE.run(F, TM); 426 if (!Changed) 427 return PreservedAnalyses::all(); 428 429 return PreservedAnalyses::none(); 430 } 431 432 bool AtomicExpandImpl::bracketInstWithFences(Instruction *I, 433 AtomicOrdering Order) { 434 ReplacementIRBuilder Builder(I, *DL); 435 436 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 437 438 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 439 // We have a guard here because not every atomic operation generates a 440 // trailing fence. 441 if (TrailingFence) 442 TrailingFence->moveAfter(I); 443 444 return (LeadingFence || TrailingFence); 445 } 446 447 /// Get the iX type with the same bitwidth as T. 448 IntegerType * 449 AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { 450 EVT VT = TLI->getMemValueType(DL, T); 451 unsigned BitWidth = VT.getStoreSizeInBits(); 452 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 453 return IntegerType::get(T->getContext(), BitWidth); 454 } 455 456 /// Convert an atomic load of a non-integral type to an integer load of the 457 /// equivalent bitwidth. See the function comment on 458 /// convertAtomicStoreToIntegerType for background. 459 LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) { 460 auto *M = LI->getModule(); 461 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 462 463 ReplacementIRBuilder Builder(LI, *DL); 464 465 Value *Addr = LI->getPointerOperand(); 466 467 auto *NewLI = Builder.CreateLoad(NewTy, Addr); 468 NewLI->setAlignment(LI->getAlign()); 469 NewLI->setVolatile(LI->isVolatile()); 470 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 471 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 472 473 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 474 LI->replaceAllUsesWith(NewVal); 475 LI->eraseFromParent(); 476 return NewLI; 477 } 478 479 AtomicRMWInst * 480 AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 481 assert(RMWI->getOperation() == AtomicRMWInst::Xchg); 482 483 auto *M = RMWI->getModule(); 484 Type *NewTy = 485 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 486 487 ReplacementIRBuilder Builder(RMWI, *DL); 488 489 Value *Addr = RMWI->getPointerOperand(); 490 Value *Val = RMWI->getValOperand(); 491 Value *NewVal = Val->getType()->isPointerTy() 492 ? Builder.CreatePtrToInt(Val, NewTy) 493 : Builder.CreateBitCast(Val, NewTy); 494 495 auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal, 496 RMWI->getAlign(), RMWI->getOrdering(), 497 RMWI->getSyncScopeID()); 498 NewRMWI->setVolatile(RMWI->isVolatile()); 499 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 500 501 Value *NewRVal = RMWI->getType()->isPointerTy() 502 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType()) 503 : Builder.CreateBitCast(NewRMWI, RMWI->getType()); 504 RMWI->replaceAllUsesWith(NewRVal); 505 RMWI->eraseFromParent(); 506 return NewRMWI; 507 } 508 509 bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) { 510 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 511 case TargetLoweringBase::AtomicExpansionKind::None: 512 return false; 513 case TargetLoweringBase::AtomicExpansionKind::LLSC: 514 expandAtomicOpToLLSC( 515 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 516 LI->getOrdering(), 517 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); 518 return true; 519 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 520 return expandAtomicLoadToLL(LI); 521 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 522 return expandAtomicLoadToCmpXchg(LI); 523 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 524 LI->setAtomic(AtomicOrdering::NotAtomic); 525 return true; 526 default: 527 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 528 } 529 } 530 531 bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) { 532 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 533 case TargetLoweringBase::AtomicExpansionKind::None: 534 return false; 535 case TargetLoweringBase::AtomicExpansionKind::Expand: 536 expandAtomicStore(SI); 537 return true; 538 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 539 SI->setAtomic(AtomicOrdering::NotAtomic); 540 return true; 541 default: 542 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 543 } 544 } 545 546 bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) { 547 ReplacementIRBuilder Builder(LI, *DL); 548 549 // On some architectures, load-linked instructions are atomic for larger 550 // sizes than normal loads. For example, the only 64-bit load guaranteed 551 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 552 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 553 LI->getPointerOperand(), LI->getOrdering()); 554 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 555 556 LI->replaceAllUsesWith(Val); 557 LI->eraseFromParent(); 558 559 return true; 560 } 561 562 bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) { 563 ReplacementIRBuilder Builder(LI, *DL); 564 AtomicOrdering Order = LI->getOrdering(); 565 if (Order == AtomicOrdering::Unordered) 566 Order = AtomicOrdering::Monotonic; 567 568 Value *Addr = LI->getPointerOperand(); 569 Type *Ty = LI->getType(); 570 Constant *DummyVal = Constant::getNullValue(Ty); 571 572 Value *Pair = Builder.CreateAtomicCmpXchg( 573 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 574 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 575 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 576 577 LI->replaceAllUsesWith(Loaded); 578 LI->eraseFromParent(); 579 580 return true; 581 } 582 583 /// Convert an atomic store of a non-integral type to an integer store of the 584 /// equivalent bitwidth. We used to not support floating point or vector 585 /// atomics in the IR at all. The backends learned to deal with the bitcast 586 /// idiom because that was the only way of expressing the notion of a atomic 587 /// float or vector store. The long term plan is to teach each backend to 588 /// instruction select from the original atomic store, but as a migration 589 /// mechanism, we convert back to the old format which the backends understand. 590 /// Each backend will need individual work to recognize the new format. 591 StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) { 592 ReplacementIRBuilder Builder(SI, *DL); 593 auto *M = SI->getModule(); 594 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 595 M->getDataLayout()); 596 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 597 598 Value *Addr = SI->getPointerOperand(); 599 600 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr); 601 NewSI->setAlignment(SI->getAlign()); 602 NewSI->setVolatile(SI->isVolatile()); 603 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 604 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 605 SI->eraseFromParent(); 606 return NewSI; 607 } 608 609 void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) { 610 // This function is only called on atomic stores that are too large to be 611 // atomic if implemented as a native store. So we replace them by an 612 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 613 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 614 // It is the responsibility of the target to only signal expansion via 615 // shouldExpandAtomicRMW in cases where this is required and possible. 616 ReplacementIRBuilder Builder(SI, *DL); 617 AtomicOrdering Ordering = SI->getOrdering(); 618 assert(Ordering != AtomicOrdering::NotAtomic); 619 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered 620 ? AtomicOrdering::Monotonic 621 : Ordering; 622 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 623 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 624 SI->getAlign(), RMWOrdering); 625 SI->eraseFromParent(); 626 627 // Now we have an appropriate swap instruction, lower it as usual. 628 tryExpandAtomicRMW(AI); 629 } 630 631 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, 632 Value *Loaded, Value *NewVal, Align AddrAlign, 633 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 634 Value *&Success, Value *&NewLoaded, 635 Instruction *MetadataSrc) { 636 Type *OrigTy = NewVal->getType(); 637 638 // This code can go away when cmpxchg supports FP and vector types. 639 assert(!OrigTy->isPointerTy()); 640 bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy(); 641 if (NeedBitcast) { 642 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 643 NewVal = Builder.CreateBitCast(NewVal, IntTy); 644 Loaded = Builder.CreateBitCast(Loaded, IntTy); 645 } 646 647 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 648 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 649 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 650 if (MetadataSrc) 651 copyMetadataForAtomic(*Pair, *MetadataSrc); 652 653 Success = Builder.CreateExtractValue(Pair, 1, "success"); 654 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 655 656 if (NeedBitcast) 657 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 658 } 659 660 bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) { 661 LLVMContext &Ctx = AI->getModule()->getContext(); 662 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 663 switch (Kind) { 664 case TargetLoweringBase::AtomicExpansionKind::None: 665 return false; 666 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 667 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 668 unsigned ValueSize = getAtomicOpSize(AI); 669 if (ValueSize < MinCASSize) { 670 expandPartwordAtomicRMW(AI, 671 TargetLoweringBase::AtomicExpansionKind::LLSC); 672 } else { 673 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { 674 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 675 AI->getValOperand()); 676 }; 677 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 678 AI->getAlign(), AI->getOrdering(), PerformOp); 679 } 680 return true; 681 } 682 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 683 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 684 unsigned ValueSize = getAtomicOpSize(AI); 685 if (ValueSize < MinCASSize) { 686 expandPartwordAtomicRMW(AI, 687 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 688 } else { 689 SmallVector<StringRef> SSNs; 690 Ctx.getSyncScopeNames(SSNs); 691 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 692 ? "system" 693 : SSNs[AI->getSyncScopeID()]; 694 OptimizationRemarkEmitter ORE(AI->getFunction()); 695 ORE.emit([&]() { 696 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 697 << "A compare and swap loop was generated for an atomic " 698 << AI->getOperationName(AI->getOperation()) << " operation at " 699 << MemScope << " memory scope"; 700 }); 701 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 702 } 703 return true; 704 } 705 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 706 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 707 unsigned ValueSize = getAtomicOpSize(AI); 708 if (ValueSize < MinCASSize) { 709 AtomicRMWInst::BinOp Op = AI->getOperation(); 710 // Widen And/Or/Xor and give the target another chance at expanding it. 711 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 712 Op == AtomicRMWInst::And) { 713 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 714 return true; 715 } 716 } 717 expandAtomicRMWToMaskedIntrinsic(AI); 718 return true; 719 } 720 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 721 TLI->emitBitTestAtomicRMWIntrinsic(AI); 722 return true; 723 } 724 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { 725 TLI->emitCmpArithAtomicRMWIntrinsic(AI); 726 return true; 727 } 728 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 729 return lowerAtomicRMWInst(AI); 730 case TargetLoweringBase::AtomicExpansionKind::Expand: 731 TLI->emitExpandAtomicRMW(AI); 732 return true; 733 default: 734 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 735 } 736 } 737 738 namespace { 739 740 struct PartwordMaskValues { 741 // These three fields are guaranteed to be set by createMaskInstrs. 742 Type *WordType = nullptr; 743 Type *ValueType = nullptr; 744 Type *IntValueType = nullptr; 745 Value *AlignedAddr = nullptr; 746 Align AlignedAddrAlignment; 747 // The remaining fields can be null. 748 Value *ShiftAmt = nullptr; 749 Value *Mask = nullptr; 750 Value *Inv_Mask = nullptr; 751 }; 752 753 LLVM_ATTRIBUTE_UNUSED 754 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 755 auto PrintObj = [&O](auto *V) { 756 if (V) 757 O << *V; 758 else 759 O << "nullptr"; 760 O << '\n'; 761 }; 762 O << "PartwordMaskValues {\n"; 763 O << " WordType: "; 764 PrintObj(PMV.WordType); 765 O << " ValueType: "; 766 PrintObj(PMV.ValueType); 767 O << " AlignedAddr: "; 768 PrintObj(PMV.AlignedAddr); 769 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 770 O << " ShiftAmt: "; 771 PrintObj(PMV.ShiftAmt); 772 O << " Mask: "; 773 PrintObj(PMV.Mask); 774 O << " Inv_Mask: "; 775 PrintObj(PMV.Inv_Mask); 776 O << "}\n"; 777 return O; 778 } 779 780 } // end anonymous namespace 781 782 /// This is a helper function which builds instructions to provide 783 /// values necessary for partword atomic operations. It takes an 784 /// incoming address, Addr, and ValueType, and constructs the address, 785 /// shift-amounts and masks needed to work with a larger value of size 786 /// WordSize. 787 /// 788 /// AlignedAddr: Addr rounded down to a multiple of WordSize 789 /// 790 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 791 /// from AlignAddr for it to have the same value as if 792 /// ValueType was loaded from Addr. 793 /// 794 /// Mask: Value to mask with the value loaded from AlignAddr to 795 /// include only the part that would've been loaded from Addr. 796 /// 797 /// Inv_Mask: The inverse of Mask. 798 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, 799 Instruction *I, Type *ValueType, 800 Value *Addr, Align AddrAlign, 801 unsigned MinWordSize) { 802 PartwordMaskValues PMV; 803 804 Module *M = I->getModule(); 805 LLVMContext &Ctx = M->getContext(); 806 const DataLayout &DL = M->getDataLayout(); 807 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 808 809 PMV.ValueType = PMV.IntValueType = ValueType; 810 if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy()) 811 PMV.IntValueType = 812 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits()); 813 814 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 815 : ValueType; 816 if (PMV.ValueType == PMV.WordType) { 817 PMV.AlignedAddr = Addr; 818 PMV.AlignedAddrAlignment = AddrAlign; 819 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 820 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 821 return PMV; 822 } 823 824 PMV.AlignedAddrAlignment = Align(MinWordSize); 825 826 assert(ValueSize < MinWordSize); 827 828 PointerType *PtrTy = cast<PointerType>(Addr->getType()); 829 IntegerType *IntTy = DL.getIndexType(Ctx, PtrTy->getAddressSpace()); 830 Value *PtrLSB; 831 832 if (AddrAlign < MinWordSize) { 833 PMV.AlignedAddr = Builder.CreateIntrinsic( 834 Intrinsic::ptrmask, {PtrTy, IntTy}, 835 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr, 836 "AlignedAddr"); 837 838 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy); 839 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 840 } else { 841 // If the alignment is high enough, the LSB are known 0. 842 PMV.AlignedAddr = Addr; 843 PtrLSB = ConstantInt::getNullValue(IntTy); 844 } 845 846 if (DL.isLittleEndian()) { 847 // turn bytes into bits 848 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 849 } else { 850 // turn bytes into bits, and count from the other side. 851 PMV.ShiftAmt = Builder.CreateShl( 852 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 853 } 854 855 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 856 PMV.Mask = Builder.CreateShl( 857 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 858 "Mask"); 859 860 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 861 862 return PMV; 863 } 864 865 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord, 866 const PartwordMaskValues &PMV) { 867 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 868 if (PMV.WordType == PMV.ValueType) 869 return WideWord; 870 871 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 872 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted"); 873 return Builder.CreateBitCast(Trunc, PMV.ValueType); 874 } 875 876 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, 877 Value *Updated, const PartwordMaskValues &PMV) { 878 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 879 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 880 if (PMV.WordType == PMV.ValueType) 881 return Updated; 882 883 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType); 884 885 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 886 Value *Shift = 887 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 888 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 889 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 890 return Or; 891 } 892 893 /// Emit IR to implement a masked version of a given atomicrmw 894 /// operation. (That is, only the bits under the Mask should be 895 /// affected by the operation) 896 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 897 IRBuilderBase &Builder, Value *Loaded, 898 Value *Shifted_Inc, Value *Inc, 899 const PartwordMaskValues &PMV) { 900 // TODO: update to use 901 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 902 // to merge bits from two values without requiring PMV.Inv_Mask. 903 switch (Op) { 904 case AtomicRMWInst::Xchg: { 905 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 906 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 907 return FinalVal; 908 } 909 case AtomicRMWInst::Or: 910 case AtomicRMWInst::Xor: 911 case AtomicRMWInst::And: 912 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 913 case AtomicRMWInst::Add: 914 case AtomicRMWInst::Sub: 915 case AtomicRMWInst::Nand: { 916 // The other arithmetic ops need to be masked into place. 917 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 918 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 919 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 920 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 921 return FinalVal; 922 } 923 case AtomicRMWInst::Max: 924 case AtomicRMWInst::Min: 925 case AtomicRMWInst::UMax: 926 case AtomicRMWInst::UMin: 927 case AtomicRMWInst::FAdd: 928 case AtomicRMWInst::FSub: 929 case AtomicRMWInst::FMin: 930 case AtomicRMWInst::FMax: 931 case AtomicRMWInst::UIncWrap: 932 case AtomicRMWInst::UDecWrap: 933 case AtomicRMWInst::USubCond: 934 case AtomicRMWInst::USubSat: { 935 // Finally, other ops will operate on the full value, so truncate down to 936 // the original size, and expand out again after doing the 937 // operation. Bitcasts will be inserted for FP values. 938 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 939 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 940 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 941 return FinalVal; 942 } 943 default: 944 llvm_unreachable("Unknown atomic op"); 945 } 946 } 947 948 /// Expand a sub-word atomicrmw operation into an appropriate 949 /// word-sized operation. 950 /// 951 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 952 /// way as a typical atomicrmw expansion. The only difference here is 953 /// that the operation inside of the loop may operate upon only a 954 /// part of the value. 955 void AtomicExpandImpl::expandPartwordAtomicRMW( 956 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 957 // Widen And/Or/Xor and give the target another chance at expanding it. 958 AtomicRMWInst::BinOp Op = AI->getOperation(); 959 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 960 Op == AtomicRMWInst::And) { 961 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 962 return; 963 } 964 AtomicOrdering MemOpOrder = AI->getOrdering(); 965 SyncScope::ID SSID = AI->getSyncScopeID(); 966 967 ReplacementIRBuilder Builder(AI, *DL); 968 969 PartwordMaskValues PMV = 970 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 971 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 972 973 Value *ValOperand_Shifted = nullptr; 974 if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add || 975 Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) { 976 Value *ValOp = Builder.CreateBitCast(AI->getValOperand(), PMV.IntValueType); 977 ValOperand_Shifted = 978 Builder.CreateShl(Builder.CreateZExt(ValOp, PMV.WordType), PMV.ShiftAmt, 979 "ValOperand_Shifted"); 980 } 981 982 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { 983 return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted, 984 AI->getValOperand(), PMV); 985 }; 986 987 Value *OldResult; 988 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 989 OldResult = insertRMWCmpXchgLoop( 990 Builder, PMV.WordType, PMV.AlignedAddr, PMV.AlignedAddrAlignment, 991 MemOpOrder, SSID, PerformPartwordOp, createCmpXchgInstFun, AI); 992 } else { 993 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 994 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 995 PMV.AlignedAddrAlignment, MemOpOrder, 996 PerformPartwordOp); 997 } 998 999 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1000 AI->replaceAllUsesWith(FinalOldResult); 1001 AI->eraseFromParent(); 1002 } 1003 1004 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 1005 AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 1006 ReplacementIRBuilder Builder(AI, *DL); 1007 AtomicRMWInst::BinOp Op = AI->getOperation(); 1008 1009 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 1010 Op == AtomicRMWInst::And) && 1011 "Unable to widen operation"); 1012 1013 PartwordMaskValues PMV = 1014 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1015 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1016 1017 Value *ValOperand_Shifted = 1018 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 1019 PMV.ShiftAmt, "ValOperand_Shifted"); 1020 1021 Value *NewOperand; 1022 1023 if (Op == AtomicRMWInst::And) 1024 NewOperand = 1025 Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand"); 1026 else 1027 NewOperand = ValOperand_Shifted; 1028 1029 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( 1030 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment, 1031 AI->getOrdering(), AI->getSyncScopeID()); 1032 1033 copyMetadataForAtomic(*NewAI, *AI); 1034 1035 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 1036 AI->replaceAllUsesWith(FinalOldResult); 1037 AI->eraseFromParent(); 1038 return NewAI; 1039 } 1040 1041 bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 1042 // The basic idea here is that we're expanding a cmpxchg of a 1043 // smaller memory size up to a word-sized cmpxchg. To do this, we 1044 // need to add a retry-loop for strong cmpxchg, so that 1045 // modifications to other parts of the word don't cause a spurious 1046 // failure. 1047 1048 // This generates code like the following: 1049 // [[Setup mask values PMV.*]] 1050 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 1051 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 1052 // %InitLoaded = load i32* %addr 1053 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 1054 // br partword.cmpxchg.loop 1055 // partword.cmpxchg.loop: 1056 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 1057 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 1058 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 1059 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 1060 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 1061 // i32 %FullWord_NewVal success_ordering failure_ordering 1062 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 1063 // %Success = extractvalue { i32, i1 } %NewCI, 1 1064 // br i1 %Success, label %partword.cmpxchg.end, 1065 // label %partword.cmpxchg.failure 1066 // partword.cmpxchg.failure: 1067 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 1068 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 1069 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 1070 // label %partword.cmpxchg.end 1071 // partword.cmpxchg.end: 1072 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 1073 // %FinalOldVal = trunc i32 %tmp1 to i8 1074 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 1075 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 1076 1077 Value *Addr = CI->getPointerOperand(); 1078 Value *Cmp = CI->getCompareOperand(); 1079 Value *NewVal = CI->getNewValOperand(); 1080 1081 BasicBlock *BB = CI->getParent(); 1082 Function *F = BB->getParent(); 1083 ReplacementIRBuilder Builder(CI, *DL); 1084 LLVMContext &Ctx = Builder.getContext(); 1085 1086 BasicBlock *EndBB = 1087 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 1088 auto FailureBB = 1089 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 1090 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 1091 1092 // The split call above "helpfully" added a branch at the end of BB 1093 // (to the wrong place). 1094 std::prev(BB->end())->eraseFromParent(); 1095 Builder.SetInsertPoint(BB); 1096 1097 PartwordMaskValues PMV = 1098 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1099 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1100 1101 // Shift the incoming values over, into the right location in the word. 1102 Value *NewVal_Shifted = 1103 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 1104 Value *Cmp_Shifted = 1105 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 1106 1107 // Load the entire current word, and mask into place the expected and new 1108 // values 1109 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 1110 InitLoaded->setVolatile(CI->isVolatile()); 1111 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 1112 Builder.CreateBr(LoopBB); 1113 1114 // partword.cmpxchg.loop: 1115 Builder.SetInsertPoint(LoopBB); 1116 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 1117 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 1118 1119 // Mask/Or the expected and new values into place in the loaded word. 1120 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 1121 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 1122 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 1123 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 1124 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 1125 NewCI->setVolatile(CI->isVolatile()); 1126 // When we're building a strong cmpxchg, we need a loop, so you 1127 // might think we could use a weak cmpxchg inside. But, using strong 1128 // allows the below comparison for ShouldContinue, and we're 1129 // expecting the underlying cmpxchg to be a machine instruction, 1130 // which is strong anyways. 1131 NewCI->setWeak(CI->isWeak()); 1132 1133 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1134 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1135 1136 if (CI->isWeak()) 1137 Builder.CreateBr(EndBB); 1138 else 1139 Builder.CreateCondBr(Success, EndBB, FailureBB); 1140 1141 // partword.cmpxchg.failure: 1142 Builder.SetInsertPoint(FailureBB); 1143 // Upon failure, verify that the masked-out part of the loaded value 1144 // has been modified. If it didn't, abort the cmpxchg, since the 1145 // masked-in part must've. 1146 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1147 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1148 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1149 1150 // Add the second value to the phi from above 1151 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1152 1153 // partword.cmpxchg.end: 1154 Builder.SetInsertPoint(CI); 1155 1156 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1157 Value *Res = PoisonValue::get(CI->getType()); 1158 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1159 Res = Builder.CreateInsertValue(Res, Success, 1); 1160 1161 CI->replaceAllUsesWith(Res); 1162 CI->eraseFromParent(); 1163 return true; 1164 } 1165 1166 void AtomicExpandImpl::expandAtomicOpToLLSC( 1167 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1168 AtomicOrdering MemOpOrder, 1169 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1170 ReplacementIRBuilder Builder(I, *DL); 1171 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1172 MemOpOrder, PerformOp); 1173 1174 I->replaceAllUsesWith(Loaded); 1175 I->eraseFromParent(); 1176 } 1177 1178 void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1179 ReplacementIRBuilder Builder(AI, *DL); 1180 1181 PartwordMaskValues PMV = 1182 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1183 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1184 1185 // The value operand must be sign-extended for signed min/max so that the 1186 // target's signed comparison instructions can be used. Otherwise, just 1187 // zero-ext. 1188 Instruction::CastOps CastOp = Instruction::ZExt; 1189 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1190 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1191 CastOp = Instruction::SExt; 1192 1193 Value *ValOperand_Shifted = Builder.CreateShl( 1194 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1195 PMV.ShiftAmt, "ValOperand_Shifted"); 1196 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1197 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1198 AI->getOrdering()); 1199 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1200 AI->replaceAllUsesWith(FinalOldResult); 1201 AI->eraseFromParent(); 1202 } 1203 1204 void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic( 1205 AtomicCmpXchgInst *CI) { 1206 ReplacementIRBuilder Builder(CI, *DL); 1207 1208 PartwordMaskValues PMV = createMaskInstrs( 1209 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1210 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1211 1212 Value *CmpVal_Shifted = Builder.CreateShl( 1213 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1214 "CmpVal_Shifted"); 1215 Value *NewVal_Shifted = Builder.CreateShl( 1216 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1217 "NewVal_Shifted"); 1218 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1219 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1220 CI->getMergedOrdering()); 1221 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1222 Value *Res = PoisonValue::get(CI->getType()); 1223 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1224 Value *Success = Builder.CreateICmpEQ( 1225 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1226 Res = Builder.CreateInsertValue(Res, Success, 1); 1227 1228 CI->replaceAllUsesWith(Res); 1229 CI->eraseFromParent(); 1230 } 1231 1232 Value *AtomicExpandImpl::insertRMWLLSCLoop( 1233 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1234 AtomicOrdering MemOpOrder, 1235 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1236 LLVMContext &Ctx = Builder.getContext(); 1237 BasicBlock *BB = Builder.GetInsertBlock(); 1238 Function *F = BB->getParent(); 1239 1240 assert(AddrAlign >= 1241 F->getDataLayout().getTypeStoreSize(ResultTy) && 1242 "Expected at least natural alignment at this point."); 1243 1244 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1245 // 1246 // The standard expansion we produce is: 1247 // [...] 1248 // atomicrmw.start: 1249 // %loaded = @load.linked(%addr) 1250 // %new = some_op iN %loaded, %incr 1251 // %stored = @store_conditional(%new, %addr) 1252 // %try_again = icmp i32 ne %stored, 0 1253 // br i1 %try_again, label %loop, label %atomicrmw.end 1254 // atomicrmw.end: 1255 // [...] 1256 BasicBlock *ExitBB = 1257 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1258 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1259 1260 // The split call above "helpfully" added a branch at the end of BB (to the 1261 // wrong place). 1262 std::prev(BB->end())->eraseFromParent(); 1263 Builder.SetInsertPoint(BB); 1264 Builder.CreateBr(LoopBB); 1265 1266 // Start the main loop block now that we've taken care of the preliminaries. 1267 Builder.SetInsertPoint(LoopBB); 1268 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1269 1270 Value *NewVal = PerformOp(Builder, Loaded); 1271 1272 Value *StoreSuccess = 1273 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1274 Value *TryAgain = Builder.CreateICmpNE( 1275 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1276 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1277 1278 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1279 return Loaded; 1280 } 1281 1282 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1283 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1284 /// IR. As a migration step, we convert back to what use to be the standard 1285 /// way to represent a pointer cmpxchg so that we can update backends one by 1286 /// one. 1287 AtomicCmpXchgInst * 1288 AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1289 auto *M = CI->getModule(); 1290 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1291 M->getDataLayout()); 1292 1293 ReplacementIRBuilder Builder(CI, *DL); 1294 1295 Value *Addr = CI->getPointerOperand(); 1296 1297 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1298 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1299 1300 auto *NewCI = Builder.CreateAtomicCmpXchg( 1301 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1302 CI->getFailureOrdering(), CI->getSyncScopeID()); 1303 NewCI->setVolatile(CI->isVolatile()); 1304 NewCI->setWeak(CI->isWeak()); 1305 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1306 1307 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1308 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1309 1310 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1311 1312 Value *Res = PoisonValue::get(CI->getType()); 1313 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1314 Res = Builder.CreateInsertValue(Res, Succ, 1); 1315 1316 CI->replaceAllUsesWith(Res); 1317 CI->eraseFromParent(); 1318 return NewCI; 1319 } 1320 1321 bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1322 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1323 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1324 Value *Addr = CI->getPointerOperand(); 1325 BasicBlock *BB = CI->getParent(); 1326 Function *F = BB->getParent(); 1327 LLVMContext &Ctx = F->getContext(); 1328 // If shouldInsertFencesForAtomic() returns true, then the target does not 1329 // want to deal with memory orders, and emitLeading/TrailingFence should take 1330 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1331 // should preserve the ordering. 1332 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1333 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1334 ? AtomicOrdering::Monotonic 1335 : CI->getMergedOrdering(); 1336 1337 // In implementations which use a barrier to achieve release semantics, we can 1338 // delay emitting this barrier until we know a store is actually going to be 1339 // attempted. The cost of this delay is that we need 2 copies of the block 1340 // emitting the load-linked, affecting code size. 1341 // 1342 // Ideally, this logic would be unconditional except for the minsize check 1343 // since in other cases the extra blocks naturally collapse down to the 1344 // minimal loop. Unfortunately, this puts too much stress on later 1345 // optimisations so we avoid emitting the extra logic in those cases too. 1346 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1347 SuccessOrder != AtomicOrdering::Monotonic && 1348 SuccessOrder != AtomicOrdering::Acquire && 1349 !F->hasMinSize(); 1350 1351 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1352 // do it even on minsize. 1353 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1354 1355 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1356 // 1357 // The full expansion we produce is: 1358 // [...] 1359 // %aligned.addr = ... 1360 // cmpxchg.start: 1361 // %unreleasedload = @load.linked(%aligned.addr) 1362 // %unreleasedload.extract = extract value from %unreleasedload 1363 // %should_store = icmp eq %unreleasedload.extract, %desired 1364 // br i1 %should_store, label %cmpxchg.releasingstore, 1365 // label %cmpxchg.nostore 1366 // cmpxchg.releasingstore: 1367 // fence? 1368 // br label cmpxchg.trystore 1369 // cmpxchg.trystore: 1370 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1371 // [%releasedload, %cmpxchg.releasedload] 1372 // %updated.new = insert %new into %loaded.trystore 1373 // %stored = @store_conditional(%updated.new, %aligned.addr) 1374 // %success = icmp eq i32 %stored, 0 1375 // br i1 %success, label %cmpxchg.success, 1376 // label %cmpxchg.releasedload/%cmpxchg.failure 1377 // cmpxchg.releasedload: 1378 // %releasedload = @load.linked(%aligned.addr) 1379 // %releasedload.extract = extract value from %releasedload 1380 // %should_store = icmp eq %releasedload.extract, %desired 1381 // br i1 %should_store, label %cmpxchg.trystore, 1382 // label %cmpxchg.failure 1383 // cmpxchg.success: 1384 // fence? 1385 // br label %cmpxchg.end 1386 // cmpxchg.nostore: 1387 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1388 // [%releasedload, 1389 // %cmpxchg.releasedload/%cmpxchg.trystore] 1390 // @load_linked_fail_balance()? 1391 // br label %cmpxchg.failure 1392 // cmpxchg.failure: 1393 // fence? 1394 // br label %cmpxchg.end 1395 // cmpxchg.end: 1396 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1397 // [%loaded.trystore, %cmpxchg.trystore] 1398 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1399 // %loaded = extract value from %loaded.exit 1400 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1401 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1402 // [...] 1403 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1404 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1405 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1406 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1407 auto ReleasedLoadBB = 1408 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1409 auto TryStoreBB = 1410 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1411 auto ReleasingStoreBB = 1412 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1413 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1414 1415 ReplacementIRBuilder Builder(CI, *DL); 1416 1417 // The split call above "helpfully" added a branch at the end of BB (to the 1418 // wrong place), but we might want a fence too. It's easiest to just remove 1419 // the branch entirely. 1420 std::prev(BB->end())->eraseFromParent(); 1421 Builder.SetInsertPoint(BB); 1422 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1423 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1424 1425 PartwordMaskValues PMV = 1426 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1427 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1428 Builder.CreateBr(StartBB); 1429 1430 // Start the main loop block now that we've taken care of the preliminaries. 1431 Builder.SetInsertPoint(StartBB); 1432 Value *UnreleasedLoad = 1433 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1434 Value *UnreleasedLoadExtract = 1435 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1436 Value *ShouldStore = Builder.CreateICmpEQ( 1437 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1438 1439 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1440 // jump straight past that fence instruction (if it exists). 1441 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1442 1443 Builder.SetInsertPoint(ReleasingStoreBB); 1444 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1445 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1446 Builder.CreateBr(TryStoreBB); 1447 1448 Builder.SetInsertPoint(TryStoreBB); 1449 PHINode *LoadedTryStore = 1450 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1451 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1452 Value *NewValueInsert = 1453 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1454 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1455 PMV.AlignedAddr, MemOpOrder); 1456 StoreSuccess = Builder.CreateICmpEQ( 1457 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1458 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1459 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1460 CI->isWeak() ? FailureBB : RetryBB); 1461 1462 Builder.SetInsertPoint(ReleasedLoadBB); 1463 Value *SecondLoad; 1464 if (HasReleasedLoadBB) { 1465 SecondLoad = 1466 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1467 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1468 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1469 CI->getCompareOperand(), "should_store"); 1470 1471 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1472 // jump straight past that fence instruction (if it exists). 1473 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1474 // Update PHI node in TryStoreBB. 1475 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1476 } else 1477 Builder.CreateUnreachable(); 1478 1479 // Make sure later instructions don't get reordered with a fence if 1480 // necessary. 1481 Builder.SetInsertPoint(SuccessBB); 1482 if (ShouldInsertFencesForAtomic || 1483 TLI->shouldInsertTrailingFenceForAtomicStore(CI)) 1484 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1485 Builder.CreateBr(ExitBB); 1486 1487 Builder.SetInsertPoint(NoStoreBB); 1488 PHINode *LoadedNoStore = 1489 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1490 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1491 if (HasReleasedLoadBB) 1492 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1493 1494 // In the failing case, where we don't execute the store-conditional, the 1495 // target might want to balance out the load-linked with a dedicated 1496 // instruction (e.g., on ARM, clearing the exclusive monitor). 1497 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1498 Builder.CreateBr(FailureBB); 1499 1500 Builder.SetInsertPoint(FailureBB); 1501 PHINode *LoadedFailure = 1502 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1503 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1504 if (CI->isWeak()) 1505 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1506 if (ShouldInsertFencesForAtomic) 1507 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1508 Builder.CreateBr(ExitBB); 1509 1510 // Finally, we have control-flow based knowledge of whether the cmpxchg 1511 // succeeded or not. We expose this to later passes by converting any 1512 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1513 // PHI. 1514 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1515 PHINode *LoadedExit = 1516 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1517 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1518 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1519 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1520 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1521 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1522 1523 // This is the "exit value" from the cmpxchg expansion. It may be of 1524 // a type wider than the one in the cmpxchg instruction. 1525 Value *LoadedFull = LoadedExit; 1526 1527 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1528 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1529 1530 // Look for any users of the cmpxchg that are just comparing the loaded value 1531 // against the desired one, and replace them with the CFG-derived version. 1532 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1533 for (auto *User : CI->users()) { 1534 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1535 if (!EV) 1536 continue; 1537 1538 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1539 "weird extraction from { iN, i1 }"); 1540 1541 if (EV->getIndices()[0] == 0) 1542 EV->replaceAllUsesWith(Loaded); 1543 else 1544 EV->replaceAllUsesWith(Success); 1545 1546 PrunedInsts.push_back(EV); 1547 } 1548 1549 // We can remove the instructions now we're no longer iterating through them. 1550 for (auto *EV : PrunedInsts) 1551 EV->eraseFromParent(); 1552 1553 if (!CI->use_empty()) { 1554 // Some use of the full struct return that we don't understand has happened, 1555 // so we've got to reconstruct it properly. 1556 Value *Res; 1557 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0); 1558 Res = Builder.CreateInsertValue(Res, Success, 1); 1559 1560 CI->replaceAllUsesWith(Res); 1561 } 1562 1563 CI->eraseFromParent(); 1564 return true; 1565 } 1566 1567 bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) { 1568 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1569 if (!C) 1570 return false; 1571 1572 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1573 switch (Op) { 1574 case AtomicRMWInst::Add: 1575 case AtomicRMWInst::Sub: 1576 case AtomicRMWInst::Or: 1577 case AtomicRMWInst::Xor: 1578 return C->isZero(); 1579 case AtomicRMWInst::And: 1580 return C->isMinusOne(); 1581 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1582 default: 1583 return false; 1584 } 1585 } 1586 1587 bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1588 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1589 tryExpandAtomicLoad(ResultingLoad); 1590 return true; 1591 } 1592 return false; 1593 } 1594 1595 Value *AtomicExpandImpl::insertRMWCmpXchgLoop( 1596 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1597 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1598 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 1599 CreateCmpXchgInstFun CreateCmpXchg, Instruction *MetadataSrc) { 1600 LLVMContext &Ctx = Builder.getContext(); 1601 BasicBlock *BB = Builder.GetInsertBlock(); 1602 Function *F = BB->getParent(); 1603 1604 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1605 // 1606 // The standard expansion we produce is: 1607 // [...] 1608 // %init_loaded = load atomic iN* %addr 1609 // br label %loop 1610 // loop: 1611 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1612 // %new = some_op iN %loaded, %incr 1613 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1614 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1615 // %success = extractvalue { iN, i1 } %pair, 1 1616 // br i1 %success, label %atomicrmw.end, label %loop 1617 // atomicrmw.end: 1618 // [...] 1619 BasicBlock *ExitBB = 1620 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1621 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1622 1623 // The split call above "helpfully" added a branch at the end of BB (to the 1624 // wrong place), but we want a load. It's easiest to just remove 1625 // the branch entirely. 1626 std::prev(BB->end())->eraseFromParent(); 1627 Builder.SetInsertPoint(BB); 1628 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1629 Builder.CreateBr(LoopBB); 1630 1631 // Start the main loop block now that we've taken care of the preliminaries. 1632 Builder.SetInsertPoint(LoopBB); 1633 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1634 Loaded->addIncoming(InitLoaded, BB); 1635 1636 Value *NewVal = PerformOp(Builder, Loaded); 1637 1638 Value *NewLoaded = nullptr; 1639 Value *Success = nullptr; 1640 1641 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1642 MemOpOrder == AtomicOrdering::Unordered 1643 ? AtomicOrdering::Monotonic 1644 : MemOpOrder, 1645 SSID, Success, NewLoaded, MetadataSrc); 1646 assert(Success && NewLoaded); 1647 1648 Loaded->addIncoming(NewLoaded, LoopBB); 1649 1650 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1651 1652 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1653 return NewLoaded; 1654 } 1655 1656 bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1657 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1658 unsigned ValueSize = getAtomicOpSize(CI); 1659 1660 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1661 default: 1662 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1663 case TargetLoweringBase::AtomicExpansionKind::None: 1664 if (ValueSize < MinCASSize) 1665 return expandPartwordCmpXchg(CI); 1666 return false; 1667 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1668 return expandAtomicCmpXchg(CI); 1669 } 1670 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1671 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1672 return true; 1673 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1674 return lowerAtomicCmpXchgInst(CI); 1675 case TargetLoweringBase::AtomicExpansionKind::Expand: { 1676 TLI->emitExpandAtomicCmpXchg(CI); 1677 return true; 1678 } 1679 } 1680 } 1681 1682 // Note: This function is exposed externally by AtomicExpandUtils.h 1683 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1684 CreateCmpXchgInstFun CreateCmpXchg) { 1685 ReplacementIRBuilder Builder(AI, AI->getDataLayout()); 1686 Builder.setIsFPConstrained( 1687 AI->getFunction()->hasFnAttribute(Attribute::StrictFP)); 1688 1689 // FIXME: If FP exceptions are observable, we should force them off for the 1690 // loop for the FP atomics. 1691 Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop( 1692 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1693 AI->getOrdering(), AI->getSyncScopeID(), 1694 [&](IRBuilderBase &Builder, Value *Loaded) { 1695 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1696 AI->getValOperand()); 1697 }, 1698 CreateCmpXchg, /*MetadataSrc=*/AI); 1699 1700 AI->replaceAllUsesWith(Loaded); 1701 AI->eraseFromParent(); 1702 return true; 1703 } 1704 1705 // In order to use one of the sized library calls such as 1706 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1707 // must be one of the potentially-specialized sizes, and the value 1708 // type must actually exist in C on the target (otherwise, the 1709 // function wouldn't actually be defined.) 1710 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1711 const DataLayout &DL) { 1712 // TODO: "LargestSize" is an approximation for "largest type that 1713 // you can express in C". It seems to be the case that int128 is 1714 // supported on all 64-bit platforms, otherwise only up to 64-bit 1715 // integers are supported. If we get this wrong, then we'll try to 1716 // call a sized libcall that doesn't actually exist. There should 1717 // really be some more reliable way in LLVM of determining integer 1718 // sizes which are valid in the target's C ABI... 1719 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1720 return Alignment >= Size && 1721 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1722 Size <= LargestSize; 1723 } 1724 1725 void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) { 1726 static const RTLIB::Libcall Libcalls[6] = { 1727 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1728 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1729 unsigned Size = getAtomicOpSize(I); 1730 1731 bool expanded = expandAtomicOpToLibcall( 1732 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1733 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1734 if (!expanded) 1735 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1736 } 1737 1738 void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) { 1739 static const RTLIB::Libcall Libcalls[6] = { 1740 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1741 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1742 unsigned Size = getAtomicOpSize(I); 1743 1744 bool expanded = expandAtomicOpToLibcall( 1745 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1746 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1747 if (!expanded) 1748 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1749 } 1750 1751 void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1752 static const RTLIB::Libcall Libcalls[6] = { 1753 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1754 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1755 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1756 unsigned Size = getAtomicOpSize(I); 1757 1758 bool expanded = expandAtomicOpToLibcall( 1759 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1760 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1761 Libcalls); 1762 if (!expanded) 1763 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1764 } 1765 1766 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1767 static const RTLIB::Libcall LibcallsXchg[6] = { 1768 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1769 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1770 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1771 static const RTLIB::Libcall LibcallsAdd[6] = { 1772 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1773 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1774 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1775 static const RTLIB::Libcall LibcallsSub[6] = { 1776 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1777 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1778 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1779 static const RTLIB::Libcall LibcallsAnd[6] = { 1780 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1781 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1782 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1783 static const RTLIB::Libcall LibcallsOr[6] = { 1784 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1785 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1786 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1787 static const RTLIB::Libcall LibcallsXor[6] = { 1788 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1789 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1790 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1791 static const RTLIB::Libcall LibcallsNand[6] = { 1792 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1793 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1794 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1795 1796 switch (Op) { 1797 case AtomicRMWInst::BAD_BINOP: 1798 llvm_unreachable("Should not have BAD_BINOP."); 1799 case AtomicRMWInst::Xchg: 1800 return ArrayRef(LibcallsXchg); 1801 case AtomicRMWInst::Add: 1802 return ArrayRef(LibcallsAdd); 1803 case AtomicRMWInst::Sub: 1804 return ArrayRef(LibcallsSub); 1805 case AtomicRMWInst::And: 1806 return ArrayRef(LibcallsAnd); 1807 case AtomicRMWInst::Or: 1808 return ArrayRef(LibcallsOr); 1809 case AtomicRMWInst::Xor: 1810 return ArrayRef(LibcallsXor); 1811 case AtomicRMWInst::Nand: 1812 return ArrayRef(LibcallsNand); 1813 case AtomicRMWInst::Max: 1814 case AtomicRMWInst::Min: 1815 case AtomicRMWInst::UMax: 1816 case AtomicRMWInst::UMin: 1817 case AtomicRMWInst::FMax: 1818 case AtomicRMWInst::FMin: 1819 case AtomicRMWInst::FAdd: 1820 case AtomicRMWInst::FSub: 1821 case AtomicRMWInst::UIncWrap: 1822 case AtomicRMWInst::UDecWrap: 1823 case AtomicRMWInst::USubCond: 1824 case AtomicRMWInst::USubSat: 1825 // No atomic libcalls are available for these. 1826 return {}; 1827 } 1828 llvm_unreachable("Unexpected AtomicRMW operation."); 1829 } 1830 1831 void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1832 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1833 1834 unsigned Size = getAtomicOpSize(I); 1835 1836 bool Success = false; 1837 if (!Libcalls.empty()) 1838 Success = expandAtomicOpToLibcall( 1839 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1840 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1841 1842 // The expansion failed: either there were no libcalls at all for 1843 // the operation (min/max), or there were only size-specialized 1844 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1845 // CAS libcall, via a CAS loop, instead. 1846 if (!Success) { 1847 expandAtomicRMWToCmpXchg( 1848 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, 1849 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1850 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded, 1851 Instruction *MetadataSrc) { 1852 // Create the CAS instruction normally... 1853 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1854 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1855 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1856 if (MetadataSrc) 1857 copyMetadataForAtomic(*Pair, *MetadataSrc); 1858 1859 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1860 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1861 1862 // ...and then expand the CAS into a libcall. 1863 expandAtomicCASToLibcall(Pair); 1864 }); 1865 } 1866 } 1867 1868 // A helper routine for the above expandAtomic*ToLibcall functions. 1869 // 1870 // 'Libcalls' contains an array of enum values for the particular 1871 // ATOMIC libcalls to be emitted. All of the other arguments besides 1872 // 'I' are extracted from the Instruction subclass by the 1873 // caller. Depending on the particular call, some will be null. 1874 bool AtomicExpandImpl::expandAtomicOpToLibcall( 1875 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1876 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1877 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1878 assert(Libcalls.size() == 6); 1879 1880 LLVMContext &Ctx = I->getContext(); 1881 Module *M = I->getModule(); 1882 const DataLayout &DL = M->getDataLayout(); 1883 IRBuilder<> Builder(I); 1884 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1885 1886 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1887 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1888 1889 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1890 1891 // TODO: the "order" argument type is "int", not int32. So 1892 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1893 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1894 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1895 Constant *OrderingVal = 1896 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1897 Constant *Ordering2Val = nullptr; 1898 if (CASExpected) { 1899 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1900 Ordering2Val = 1901 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1902 } 1903 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1904 1905 RTLIB::Libcall RTLibType; 1906 if (UseSizedLibcall) { 1907 switch (Size) { 1908 case 1: 1909 RTLibType = Libcalls[1]; 1910 break; 1911 case 2: 1912 RTLibType = Libcalls[2]; 1913 break; 1914 case 4: 1915 RTLibType = Libcalls[3]; 1916 break; 1917 case 8: 1918 RTLibType = Libcalls[4]; 1919 break; 1920 case 16: 1921 RTLibType = Libcalls[5]; 1922 break; 1923 } 1924 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1925 RTLibType = Libcalls[0]; 1926 } else { 1927 // Can't use sized function, and there's no generic for this 1928 // operation, so give up. 1929 return false; 1930 } 1931 1932 if (!TLI->getLibcallName(RTLibType)) { 1933 // This target does not implement the requested atomic libcall so give up. 1934 return false; 1935 } 1936 1937 // Build up the function call. There's two kinds. First, the sized 1938 // variants. These calls are going to be one of the following (with 1939 // N=1,2,4,8,16): 1940 // iN __atomic_load_N(iN *ptr, int ordering) 1941 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1942 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1943 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1944 // int success_order, int failure_order) 1945 // 1946 // Note that these functions can be used for non-integer atomic 1947 // operations, the values just need to be bitcast to integers on the 1948 // way in and out. 1949 // 1950 // And, then, the generic variants. They look like the following: 1951 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1952 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1953 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1954 // int ordering) 1955 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1956 // void *desired, int success_order, 1957 // int failure_order) 1958 // 1959 // The different signatures are built up depending on the 1960 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1961 // variables. 1962 1963 AllocaInst *AllocaCASExpected = nullptr; 1964 AllocaInst *AllocaValue = nullptr; 1965 AllocaInst *AllocaResult = nullptr; 1966 1967 Type *ResultTy; 1968 SmallVector<Value *, 6> Args; 1969 AttributeList Attr; 1970 1971 // 'size' argument. 1972 if (!UseSizedLibcall) { 1973 // Note, getIntPtrType is assumed equivalent to size_t. 1974 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1975 } 1976 1977 // 'ptr' argument. 1978 // note: This assumes all address spaces share a common libfunc 1979 // implementation and that addresses are convertable. For systems without 1980 // that property, we'd need to extend this mechanism to support AS-specific 1981 // families of atomic intrinsics. 1982 Value *PtrVal = PointerOperand; 1983 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx)); 1984 Args.push_back(PtrVal); 1985 1986 // 'expected' argument, if present. 1987 if (CASExpected) { 1988 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1989 AllocaCASExpected->setAlignment(AllocaAlignment); 1990 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64); 1991 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1992 Args.push_back(AllocaCASExpected); 1993 } 1994 1995 // 'val' argument ('desired' for cas), if present. 1996 if (ValueOperand) { 1997 if (UseSizedLibcall) { 1998 Value *IntValue = 1999 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 2000 Args.push_back(IntValue); 2001 } else { 2002 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 2003 AllocaValue->setAlignment(AllocaAlignment); 2004 Builder.CreateLifetimeStart(AllocaValue, SizeVal64); 2005 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 2006 Args.push_back(AllocaValue); 2007 } 2008 } 2009 2010 // 'ret' argument. 2011 if (!CASExpected && HasResult && !UseSizedLibcall) { 2012 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 2013 AllocaResult->setAlignment(AllocaAlignment); 2014 Builder.CreateLifetimeStart(AllocaResult, SizeVal64); 2015 Args.push_back(AllocaResult); 2016 } 2017 2018 // 'ordering' ('success_order' for cas) argument. 2019 Args.push_back(OrderingVal); 2020 2021 // 'failure_order' argument, if present. 2022 if (Ordering2Val) 2023 Args.push_back(Ordering2Val); 2024 2025 // Now, the return type. 2026 if (CASExpected) { 2027 ResultTy = Type::getInt1Ty(Ctx); 2028 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 2029 } else if (HasResult && UseSizedLibcall) 2030 ResultTy = SizedIntTy; 2031 else 2032 ResultTy = Type::getVoidTy(Ctx); 2033 2034 // Done with setting up arguments and return types, create the call: 2035 SmallVector<Type *, 6> ArgTys; 2036 for (Value *Arg : Args) 2037 ArgTys.push_back(Arg->getType()); 2038 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 2039 FunctionCallee LibcallFn = 2040 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 2041 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 2042 Call->setAttributes(Attr); 2043 Value *Result = Call; 2044 2045 // And then, extract the results... 2046 if (ValueOperand && !UseSizedLibcall) 2047 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64); 2048 2049 if (CASExpected) { 2050 // The final result from the CAS is {load of 'expected' alloca, bool result 2051 // from call} 2052 Type *FinalResultTy = I->getType(); 2053 Value *V = PoisonValue::get(FinalResultTy); 2054 Value *ExpectedOut = Builder.CreateAlignedLoad( 2055 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 2056 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64); 2057 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 2058 V = Builder.CreateInsertValue(V, Result, 1); 2059 I->replaceAllUsesWith(V); 2060 } else if (HasResult) { 2061 Value *V; 2062 if (UseSizedLibcall) 2063 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 2064 else { 2065 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 2066 AllocaAlignment); 2067 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64); 2068 } 2069 I->replaceAllUsesWith(V); 2070 } 2071 I->eraseFromParent(); 2072 return true; 2073 } 2074